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Background: Previous studies have demonstrated that PANoptosis is strongly

correlated with cancer immunity and progression. This study aimed to develop a

PANoptosis-related signature (PANRS) to explore its potential value in predicting

the prognosis and immunotherapy response of hepatocellular carcinoma (HCC).

Methods: Based on the expression of PANoptosis-related genes, three

molecular subtypes were identified. To construct a signature, the differentially

expressed genes between different molecular subtypes were subjected to

multivariate least absolute shrinkage and selection operator Cox regression

analyses. The risk scores of patients in the training set were calculated using

the signature. The patients were classified into high-risk and low-risk groups

based on the median risk scores. The predictive performance of the signature

was evaluated using Kaplan-Meier plotter, receiving operating characteristic

curves, nomogram, and calibration curve. The results were validated using

external datasets. Additionally, the correlation of the signature with the

immune landscape and drug sensitivity was examined. Furthermore, the effect

of LPCAT1 knockdown on HCC cell behavior was verified using in vitro

experiments.

Results: This study developed a PANRS. The risk score obtained by using the

PANRSwas an independent risk factor for the prognosis of patients with HCC and

exhibited good prognostic predictive performance. The nomogram constructed

based on the risk score and clinical information can accurately predicted the
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survival probability of patients with HCC. Patients with HCC in the high-risk

groups have high immune scores and tend to generate an immunosuppressive

microenvironment. They also exhibited a favorable response to

immunotherapy, as evidenced by high tumor mutational burden, high

immune checkpoint gene expression, high human leukocyte antigen gene

expression, low tumor immune dysfunction and low exclusion scores.

Additionally, the PANRS enabled the identification of 15 chemotherapeutic

agents, including sorafenib, for patients with HCC with different risk levels,

guiding clinical treatment. The signature gene LPCAT1was upregulated in HCC

cell lines. LPCAT1 knockdown markedly decreased HCC cell proliferation and

migration.

Conclusion: PANRS can accurately predict the prognosis and immunotherapy

response of patients with HCC and consequently guide individualized

treatment.
KEYWORDS

PANoptosis, hepatocellular carcinoma, molecular subtypes, signature, prognosis,
immunotherapy response
1 Introduction

In 2020, primary liver cancer accounted for more than 900,000

new cases and 800,000 cancer-related fatalities (1). Primary liver

cancer predominantly manifests as hepatocellular carcinoma

(HCC), which accounts for 75%–85% of all primary liver cases

(2). HCC is a major threat to human health owing to its high

prevalence and propensity for aggressive and often treatment-

resistant disease progression. Currently, radical hepatectomy, liver

transplantation, and local ablation are viable curative options for

some patients with early-stage HCC (3). Patients with intermediate-

stage or advanced-stage HCC can undergo locoregional therapy or

systemic therapy (treatment with the multitargeted tyrosine kinase

inhibitor sorafenib) (4). These therapeutic modalities have yielded

promising results in achieving long-term disease control. However,

the high drug resistance of HCC limits the efficacy of these

therapeutic modalities (3, 5, 6). The efficacy of even promising

immunotherapies is limited in some patients with HCC. Thus, the

urgent task at hand is to identify a specific molecular signature that

can effectively forecast the response of the target population to these

treatments, ultimately enhancing their efficacy (7).

As the primary objective of cancer treatment is to eliminate the

tumor cells, the induction of cancer cell death is a crucial therapeutic

strategy for cancer (8). Programmed cell death (PCD) is an active

mechanism to maintain body development and survival (9). The

most well-studied PCD pathways are apoptosis, pyroptosis, and

necroptosis (10). In apoptosis, dying cells are degraded into

apoptotic bodies, which are removed by phagocytes to maintain

homeostasis. Apoptosis is characterized by the maintenance of

membrane integrity (11). Pyroptosis and necroptosis, which are

relatively “violent” modes of PCD, are triggered by the activation
02
of key pore-forming proteins. In pyroptosis and necroptosis, dying

cells are ruptured, facilitating the release of potent inflammatory

factors that protect the host against diverse external threats, including

invading pathogens (12). Recent studies have identified a cell death

process, called PANoptosis, in which apoptosis, pyroptosis, and

necroptosis are simultaneously initiated in pathogen-infected cells

(13). PANoptosis is regulated by a cytoplasmic multimeric protein

complex called PANoptosome, which comprises key molecules

required for the induction of pyroptosis, apoptosis, and

necroptosis, promoting the pro-inflammatory cell death process

(14–16). With the deepening of research, the role of PANoptosis in

some tumors has also been confirmed. For example, Karki et al.

demonstrated that ADAR promotesmelanoma and colorectal cancer

by suppressing ZBP1-mediated immune responses and PANoptosis

(17). Recent studies have further suggested that the induction of

PANoptosis is a potential therapeutic strategy for colon cancer. In

particular, the pro-inflammatory cytokines tumor necrosis factor

(TNF)-a and interferon (IFN)-g exert growth-inhibitory effects on

human colon cancer cells by triggering the onset of PANoptosis (18).

The research team of Pan identified three different PANoptosis

patterns in 1316 patients with gastric cancer and constructed a

scoring system called PANscore (19). The survival and immune

response of patients with gastric cancer were accurately predicted

using PANscore. These findings improved our understanding of the

function of PANoptosis in gastric cancer pathogenesis. However, the

role of PANoptosis in the pathogenesis of HCC has not been

previously reported. Analysis of the potential applicability of

PANscore (19) or other PANoptosis scoring systems in HCC is a

promising avenue for future research.

This study investigated the prognostic value of PANoptosis-

related genes and developed a signature to predict the prognosis and
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immunotherapy response of patients with HCC. The clinical

applicability of the signature was comprehensively evaluated and

validated using an external dataset. Additionally, this study

demonstrated that the signature was significantly correlated with

the tumor immune microenvironment. Thus, these findings provide

novel insights for developing individualized treatment plans for

HCC patients with HCC and improving their clinical outcomes.
2 Methods

2.1 Data collection and processing

The workflow of this study is shown in Figure 1. The

transcriptome data of 424 samples (50 non-cancerous samples and

374 tumor samples), the clinical data of 377 samples, and the

mutation data of 368 samples of patients with liver hepatocellular

carcinoma (LIHC) were downloaded from The Cancer Genome

Atlas (TCGA) database. Additionally, the transcriptome data of

445 samples (202 non-cancerous samples and 243 tumor samples)

and the clinical data of 260 samples in the International Cancer

Genome Consortium-Liver cancer-Riken-Japan (ICGC-LIRI-JP)

cohort were obtained from the ICGC database. Healthy samples

and any samples with an unclear survival status or a survival time of <

30 days were excluded. After matching the transcriptome data from

both databases with eligible survival data, 343 samples from TCGA-

LIHC cohort were used for modeling and internal validation.

Meanwhile, 230 samples of the ICGC-LIRI-JP cohort were used for

external validation. Next, this study obtained a PANoptosis-related

gene set comprising 25 pyroptosis-related genes, 8 necroptosis-

related genes, and 32 apoptosis-related genes (Table S1) from
Frontiers in Immunology 03
previous studies (19). To objectively evaluate the differential

expression levels of PANoptosis-related genes between liver cancer

tissue and non-cancerous liver tissues, the transcriptome data of 110

normal liver tissue were extracted from the University of California

Santa Cruz Xena’s Genotype-Tissue Expression(GTEx) project to

narrow the gap in sample size between the two tissues.
2.2 Identification of molecular subtypes
of PANoptosis

The PANoptosis molecular subtypes were identified using the

consensus clustering algorithm based on the expression of the

PANoptosis-related genes in TCGA-LIHC datasets. The

clustering process was set to 50 iterations, and 80% of the sample

data in each iteration were subsampled to identify a stable and

reliable typing. To assess the validity of the classification,

visualization was performed using principal component analysis

(PCA). The single-sample gene set enrichment analysis (ssGSEA)

was used to quantify the abundance of immune cell infiltration (on

a scale of 0 to 1). Additionally, the levels of infiltrating immune cells

in the three molecular subtypes were compared using the Kruskal-

Wallis test. Gene set variation analysis (GSVA) was used to assess

the biological functions associated with the molecular subtypes of

PANoptosis. The screening criteria to identify the significantly

enriched pathway between each two subtypes were as follows: |log

fold-change (logFC)| > 0.1 and P (false discovery rate (FDR)) < 0.05.

Differentially expressed genes (DEGs) between the molecular

subtypes of PANoptosis were identified based on the following

criteria: [logFC| ≥ 0.585 and FDR < 0.05.To understand the

potential function, DEGs were subjected to Kyoto Encyclopedia
FIGURE 1

The brief flow chart of the study (By Figdraw, ID: AUYWT8d80f).
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of Genes and Genomes (KEGG) and Gene ontology (GO)

enrichment analyses (the criterion for significant enrichment was

q value < 0.05).
2.3 Establishment and identification of
PANoptosis-related signature in
TCGA cohort

Univariate Cox regression analyses were performed with the

expression levels of DEGs in 343 samples of TCGA-LIHC cohort as

independent variables and survival time and status as dependent

variables (p < 0.05 indicates that DEGs are associated with

prognosis). TCGA-LIHC cohort combined with prognostic-

related DEGs was randomly split into training and test cohorts in

the ratio 1:1. The least absolute shrinkage and selection operator

(LASSO) algorithm (when partial likelihood deviance is at its

lowest) and multivariate Cox regression analysis were used to

further filter prognosis-related DEGs in the training cohort.

Finally, a PANRS was obtained. The LASSO method is a

compression estimator that can generate finer models by

constructing penalty functions. The advantages of the LASSO

method include compressing the number of coefficients and

reducing multicollinearity problems in regression analysis (20).

This study developed a new risk score for patients with HCC

based on a gene signature. The risk score was calculated as the

sum of the weighted expression of individual genes as follows: risk

score = S (expression (Genen) × coefficient (Genen)) (where

expression (Genen) represents the expression of a specific gene

and coefficient (Genen) is its corresponding coefficient). The median

risk score of the training cohort was used as the optimal threshold to

classify TCGA-LIHC, training, test, and ICGC-LIRI-JP cohorts into

high-risk and low-risk groups. To evaluate the prognostic accuracy

of the signature, receiver operating characteristic (ROC) curve

analysis was performed, and the C-index was calculated. The

potential clinical relevance of this signature was determined using

a clinical applicability analysis. Additionally, a nomogram was

developed to further evaluate the accuracy of the signature using

a calibration curve.
2.4 Prediction of immune landscape,
immunotherapy response,
and chemosensitivity

The cell-type identification by estimating relative subsets of

RNA transcripts algorithm was used to obtain the abundance scores

of 22 infiltrating immune cells for each TCGA-LIHC sample (total

score was 1; p < 0.05 indicates that the accuracy of the levels of

infiltrating immune cells obtained in a sample is good). The

correlation of the risk scores or risk groups with the abundance

of accurate immune cell infiltration was determined using

Spearman’s or Wilcoxon tests, respectively. The stromal and

immune scores, as well as the combined scores of the two

components, in the tumor immune microenvironment were

determined using the Estimation of STromal and Immune cells in
Frontiers in Immunology 04
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algorithms. The scores of the high-risk and low-risk groups were

compared using the Wilcoxon test. Tumor immune dysfunction

and exclusion (TIDE), exclusion, and dysfunction, and

microsatellite instability (MSI) scores were used to predict the

response of HCC to immunotherapy using the TIDE website

(http://tide.dfci.harvard.edu/). Gene expression and clinical

information of the immunotherapy cohort are stored in a public

database (IMvigor210) (21). The effect of the signature gene

lysophosphatidylcholine acyltransferase 1(LPCAT1) on the

prognosis of the bladder cancer immunotherapy cohort was

evaluated using the Comprehensive Analysis on Multi-Omics of

Immunotherapy in Pan-cancer online website (http://camoip.net/).

Tumor mutation burden (TMB) can predict immune checkpoint

inhibitor (ICI) treatment response as it contributes to the

production of neoantigens that activate anti-tumor immune

responses (22). Additionally, the neoantigen, as a tumor-specific

mutant peptide, is presented only by major histocompatibility

complex (MHC) molecules (23). MHC-1 was reported to predict

durable ICI response (24). Therefore, this study examined the

expression of human leukocyte antigen (HLA) molecules in

different risk groups. The variations in each parameter among

different groups were analyzed using Spearman’s correlation

analysis. The half-maximal inhibitory concentration (IC50) of

drugs was predicted using the R package “pRRophetic.”
2.5 Cell culture and transfection

HCC cell lines (HCCLM3 (BNCC338460), MHCC97-H

(BNCC359345), and HepG2 (CL-0103)) and hepatic epithelial

cells (THLE-2 (BFN60808733)) were obtained from BeNa Culture

Collection (Suzhou, China), Procell (Wuhan, China) and Qingqi

Biotechnology Development Co., Ltd (Shanghai, China). These cell

lines were cultured in complete medium of Dulbecco’s modified

Eagle’s medium. The HepG2 and HCCLM3 cells were transfected in

6-well plates (NEST Biotechnology, Wuxi, China) using

Lipofectamine 2000 (Invitrogen), following the manufacturer’s

instructions. The corresponding small-interfering RNA (siRNA)

sequences are listed in Table S2. HCC cells were subjected to

pyroptosis induction using LPS (1 mg/mL) and ATP (100 mM) as

in previous studies (25).
2.6 Quantitative real-time PCR (qRT-PCR)
and western blotting

Total RNA was isolated from cells using the Steady Pure Quick

RNA extraction kit (Accurate Biotechnology, AG21023). The

isolated RNA was reverse-transcribed into complementary DNA

using the Evo Moloney-murine leukemia virus reverse transcription

premix kit (Accurate Biotechnology, AG11728). qRT-PCR was

performed in a LightCycler (Roche, Germany) with 2× Universal

SYBR Green Fast qPCR Mix (Abclonal, RK21203). The mRNA

expression of LPCAT1 was calculated using the 2−DDCt method. The

primer sequences are shown in Table S2. Western blotting was
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performed a western blot as described previously (26). The

following antibodies were used in western blotting analysis: anti-

LPCAT1 antibody (1:500, Proteintech, 16112-1-AP), anti-CASP1

(1:6000, Proteintech, 22915-1-AP), anti-CASP3 (1:500, ABclonal,

A2156), anti-CASP7 (1:600, Proteintech, 27155-1-AP), anti-CASP8

(1:500, ABclonal, A0215), anti-GSDME (1:5000, Proteintech,

13075-1-AP), anti-cleaved GSDME antibody(1:500, ABclonal,

A23072), anti-GSDMD (Full Length+N terminal, 1:500, ABclonal,

A20197), anti-MLKL (1:500, ABclonal, A21894), anti-phospho-

MLKL antibody(1:50, ABclonal, A1244), and anti-GAPDH

antibody (1:10000, Proteintech, 60004-1-Ig).
2.7 In vitro experiments

Cell proliferation was evaluated using ethynyl-2-deoxyuridine

(EdU) staining. Cells from the experimental and control groups

were seeded at a density of 20,000 cells per well (100 µL) in a 96-well

plate. The EdU-positive cell experiments were conducted using the

EdU Apollo 488 kit (RiboBio, C10310-1). EdU‐positive cells rate

(%) was calculated as follows: EdU-positive cell rate (%) = [number

of EdU‐positive cells (green)/number of Hoechst‐33342-positive

cells (blue)] × 100%.

Cell proliferation was examined using the cell counting kit-8

(CCK-8). Cells from the experimental and control groups were

seeded in a 96-well plate at a density of 4000 cells (100 µL) per well.

The proliferation of HepG2 and HCCLM3 cells at 0, 24, 48, and 72

h post-seeding was determined using CCK-8 reagent (GK10001,

GLPBIO, Montclair, USA). The optical density at 450 nm of the

reaction mixture was determined using an automatic

microplate reader.

The migration ability of HCC cells was assessed using the

wound-healing assay. Cells from the experimental group and the

control groups were seeded in a 6-well culture plate. When the

confluency of cells reached approximately 90%, a scratch was

introduced in the monolayer using a 200-µL micropipette tip. The

wound closure rate, the following formula was quantified as follows:

Wound closure rate (%) = [(original wound area − unhealed wound

area)/original wound area] × 100%.

Cell migration was examined using the Transwell assay. HCC

cells were trypsinized, and the cell suspension was centrifuged at

1000 rpm for 5 min. The cell pellet was resuspended in phosphate-

buffered saline and centrifuged. Next, the cell pellet was

resuspended in a serum-free medium. The appropriate amount of

cell suspension (300 mL) was inoculated into the Transwell chamber

(20,000 cells per well for HCCLM3 and 100,000 cells per well for

HepG2) and cultured for 24 h. Non-migrated cells were removed by

gently scraping with a cotton swab. The migrated cells were

immobilized by using 4% paraformaldehyde, stained with 0.2%

crystal violet, imaged, and counted using ImageJ software.
2.8 Statistical analysis

Statistical analysis was performed using R software v4.1.3 and

GraphPad Prism. Means between two groups were compared using
Frontiers in Immunology 05
theWilcoxon test, while those between three groups were compared

using the Kruskal test. The Kaplan-Meir method was used to

generate survival curves, which were compared using the log-rank

test. In vitro experiments were performed in triplicate, and the data

were analyzed using Student’s t-test. Differences were considered

significant at p < 0.05.
3 Results

3.1 Expression of PANoptosis-related genes
and their prognostic relevance in HCC

The expression levels of 86.15% (56/65) of the PANoptosis-

related genes were significantly different between HCC (n = 374)

and non-cancerous tissues (n = 160). Of these, 33 PANoptosis-

related genes were upregulated in HCC samples (11 pyroptosis-

related genes, 2 necroptosis-related genes, and 20 apoptosis-related

genes), whereas 23 PANoptosis-related genes were downregulated

(12 pyroptosis-related genes, 4 necroptosis-related genes, and 7

apoptosis-related genes; Figure 2A). Additionally, the expression

levels of most PANoptosis-related genes (84.54% (53/65); 21

pyroptosis-related genes, 4 necroptosis-related genes, and 28

apoptosis-related genes) were correlated with the overall survival

(OS) in patients with HCC (Figures 2B–D). In general, the high-

expression group exhibited a poor prognosis. These findings

support further analysis of PANoptosis-related genes.
3.2 Identification of molecular subtypes
based on PANoptosis-related genes

The intersection genes of TCGA-LIHC datasets and

PANoptosis-related gene set were extracted and matched to the

transcriptome data of TCGA-LIHC tumor samples to obtain the

expression levels of 65 PANoptosis-related genes in 371 tumor

samples. These 371 samples were divided into 3 subtypes, namely

PANoptosisClusters A, B, and C, using consensus clustering

(Figure 3A). The PCA plot provided an intuitive and clear

depiction of the three distinct expression patterns in the

PANoptosisClusters (Figure 3B). To further explore the effect of

molecular subtypes of PANoptosis on the prognosis of HCC, the

different subtypes were subjected to survival and immune

infiltration analyses. The OS of patients with HCC significantly

varied according to the molecular subtypes of PANoptosis.

PANoptosisCluster B exhibited the best OS, followed by

PANoptosisClusters C and A (Figure 3C). Additionally, patients

in the PANoptosisCluster A exhibit a tumor microenvironment

characterized by increased immune cell infiltration. Consistently,

PANoptosisCluster B with the best OS exhibited the lowest

infiltration of most immune cells. In addition to tumor-

promoting immune cells (i.e. myeloid-derived suppressor cells

and mast cells), the infiltrating immune cells included anti-tumor

immune cells (CD8 (+) T cells and natural killer (NK) cells) and

immune cells with both pro-tumor and anti-tumor effects (CD4 (+)

T cells and dendritic cells) (Figure 3D). Recent single-cell
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transcriptome sequencing studies on HCC have confirmed that

different immune cells express different PANoptosis-related genes

(CRADD is upregulated in tumor-specific infiltrating regulatory T

cells; TNF is upregulated in cytotoxic FGFBP2+ double‐positive T

cells). The same PANoptosis-related gene can be upregulated in

multiple immune cells (e.g. NK cells and GNLY+ T cells (cytotoxic
Frontiers in Immunology 06
CD4T cells) exhibit upregulated expression of GZMB) (27–29). This

suggests that immune cells may express several PANoptosis-related

genes and that the levels of infiltrating immune cells can indicate the

expression level of PANoptosis-related genes to a certain extent.

This can explain the high abundance of immune cell infiltration in

PANoptosisCluster A with higher expression levels, while the low
A

B

D

C

FIGURE 2

Expression levels of PANoptosis-related genes in hepatocellular carcinoma (HCC) and their correlation with survival. (A) The mRNA expression levels
of PANoptosis-related genes in HCC and non-cancerous/para-cancerous samples were analyzed in The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEx) datasets; (B–D) Differential survival of patients in the high-expression and low-expression groups. *p < 0.05, **p
< 0.01, and ***p < 0.001.
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abundance of immune cell infiltration in PANoptosisCluster B with

lower expression levels.

Next, the biological functions of different PANoptosis molecular

subtypes were examined using GSVA. The top 10 enriched pathways

between PANoptosisClusters A and B, between PANoptosisClusters

A and C, and between PANoptosisClusters B and C are shown in

Figures 3E–G, respectively. The enrichment of progesterone-

mediated oocyte matura t ion and oocyte meios i s in

PANoptosisCluster A was higher than that in PANoptosisCluster

B. Additionally, the enrichment of drug metabolism cytochrome
Frontiers in Immunology 07
p450 in PANoptosisClusters B and C was higher than that in

PANoptosisCluster A. PANoptosisCluster B was enriched in

olfactory transduction, while PANoptosisCluster C was enriched in

mTOR and other signaling pathways. Progesterone-mediated oocyte

maturation and oocyte meiosis, which were significantly enriched in

PANoptosisCluster A, are closely correlated to HCC progression (30,

31). However, cytochrome P450, an important biosynthetase in drug

metabolism, enriched in PANoptosisClusters B and C can inhibit

HCC growth by antagonizing HGF/MET signaling or AKT signaling

(32, 33). These findings can explain the poor prognosis of
A B

D

E F G

C

FIGURE 3

Identification of three molecular subtypes of PANoptosis. (A) Three PANoptosisClusters were identified using consensus clustering based on the
expression levels of PANoptosis-related genes in The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort; (B) The three
PANoptosisClusters were visually distinguished using principal component analysis (PCA); (C) Comparison of overall survival (OS) between the three
PANoptosisClusters; (D) Differential immune cell infiltration status among the three PANoptosisClusters; (E–G) The differential biological function
between the following pairs was examined using gene set variation analysis (GSVA): PANoptosisClusters A and B (E), PANoptosisClusters A and C (F),
PANoptosisClusters B and C (G). *p < 0.05, **p < 0.01, and ***p < 0.001.
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PANoptosisCluster A. Additionally, in the olfactory transduction

pathway, which was enriched in PANoptosisCluster B, OR1A2 is

reported to suppress the proliferation of human HCC Huh-7 cells

upon activation with (–)-citronellal (34). The mTOR signal

transduction, which was significantly enriched in PANoptosisCluster

C, can accelerate HCC progression upon PRIM1 activation (35). These

results support that the OS of PANoptosisCluster B is higher than that

of PANoptosisCluster C.
3.3 Construction of PANRS

A PANRS was constructed to enable the application of these

molecular subtypes for the clinical analysis of patients with

HCC.Differential analysis of PANoptosisClusters A, B, and C

revealed 1565 DEGs (Figure 4A). GO and KEGG functional

enrichment analyses (Figures 4B, C) revealed that the main

cellular component in which DEGs were enriched was the

chromosomal region. Aberrations in chromosomal regions often

lead to HCC cell proliferation, HCC exacerbation, and multiple
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drug resistance development (36–38). Additionally, the main

biological process in which DEGs were enriched was organelle

fission. The enhancement of organelle fission is reported to promote

HCC metastasis (39, 40) and limit tumor immune surveillance by

NK cells (41). Furthermore, the main molecular function in which

DEGs were enriched was actin binding. This implies that DEGs can

accelerate the progression of HCC by promoting actin binding (42,

43). The KEGG pathway in which DEGs were enriched was human

papillomavirus (HPV) infection. Hepatitis B virus infection is a

well-known adverse factor for HCC. However, the simultaneous

infection of these cells with HPV 16 upregulates the transcriptional

activity in HCC (44).

Next, DEGs were subjected to univariate Cox regression

analysis that matched transcriptome data and survival

information (n=343) and extracted 1155 DEGs associated with

prognosis (Table S3). To facilitate subsequent internal cohort

validation, TCGA-LIHC cohort (n = 343) was randomly divided

into training and test cohorts before establishing the signature. The

survival time, survival status, tumor grade and stage, and other

important clinical indicators were not significantly different
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FIGURE 4

Establishment of PANoptosis-related signature (PANRS). (A) Screening of differentially expressed genes (DEGs) between the three
PANoptosisClusters; (B, C) Gene Ontology (GO) (B) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses (C) were
performed to examine the biological function and related pathways in which the DEGs were enriched; (D) The trajectories of the coefficients of
prognosis-related DEGs; (E) The smallest parameter graph to determine the number of included genes based on the cross-validation error; (F)
Names of genes in PANRS and their corresponding risk coefficients; (G) The Sankey diagram shows how the molecular subtype of PANoptosis is
quantified into a prognostic PANRS; (H) Distribution of risk scores among the PANoptosisClusters.
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between the two groups (Table 1), indicating that the test cohort can

be used as an internal validation cohort.

As detecting a large number of genes in clinical practice is

challenging, prognostic DEGs in the training cohort were subjected

to LASSO Cox regression analysis to control the number of genes

included in the signature. As shown in Figure 4D, the gene coefficient

trajectories revealed that an increase in the penalty coefficient (Log l)
results in fewer genes included in the signature, as evidenced by a high

proportion of genes with a coefficient of 0. To obtain a signature with

an improved fitting effect, the four genes with the smallest cross-

validation error in Figure 4E were selected and marked. These genes

were subjected to multivariate Cox regression analysis. An optimal

signature related to the molecular subtypes of PANoptosis, namely

PANRS, was obtained.The PANRS risk scorewas calculated as follows:

risk score = LPCAT1 expression level × 0.387 + chromobox 2(CBX2)

expression level × 0.377 (Figure 4F). The median risk score of 0.843

was the cut-off value for classifying the train, test, TCGA-LIHC, and

ICGC-LIRI-JP cohorts into high-risk and low-risk groups. The Sankey

diagram shows the brief process of predicting the prognosis of HCC

after the molecular subtypes of PANoptosis were quantified as PANRS
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(Figure 4G). Additionally, comparative analysis of the distribution of

risk scores in PANoptosisClusters revealed that PANoptosisCluster A

had the highest risk score, followed by PANoptosisCluster C

(Figure 4H) and PANoptosisCluster B. These results seem to explain

the OS of different PANoptosisClusters. Thus, PANRS can well reflect

the differential OS between PANoptosisClusters.
3.4 PANRS reliably predicts HCC prognosis
in TCGA cohort

The differential OS between the high-risk and low-risk groups

in the training cohort was analyzed. Patients in the high-risk group

exhibited markedly decreased OS (p < 0.001, Figure 5A). The risk

curve results indicated that patients in the high-risk group were

associated with increased mortality rates and upregulated

expression levels of the poor prognostic genes LPCAT1 and CBX2

(Figure 5B). In the training cohort, the performance of PANRS to

predict the OS of patients with HCC was evaluated using time-

dependent ROC curves. The area under the curve (AUC) values for

predicting 1-year, 3-year, and 5-year OS were 0.793, 0.720, and

0.709, respectively (Figure 5C). Similar results were obtained in the

test and TCGA-LIHC cohorts (Figures 5D, E, G, H). Additionally,

the AUC (time-dependent ROC curve) values of PANRS in both

test and TCGA-LIHC cohorts were > 0.7 (Figures 5F, I), indicating

the high prognostic prediction performance of PANRS. Finally,

independent prognostic analyses of risk scores in the three cohorts

were performed to exclude the interference of other clinical factors.

The risk scores were identified as independent prognostic factors for

HCC (p < 0.01, Figures 5J–L).

To assess the potential clinical utility of PANRS, data of TCGA-

LIHC cohort were subjected to an applicability analysis. When

factors, such as age, sex (male), tumor grade, and tumor stage were

considered, the OS of the high-risk group was significantly worse

when compared with that of the low-risk group (all p < 0.01,

Figures 6A–H). This suggests that PANRS can be widely used to

predict the survival of HCC patients with HCC. To individually

determine the probability of 1-year, 2-year, and 3-year survival rates

for each patient, a nomogram was established by combining

clinicopathological features and risk scores. As shown in

Figure 6I, the comprehensive risk score of a patient was 246

points, and the 1-year, 2-year, and 3-year survival probabilities

were predicted to be 62.3%, 37.1%, and 28.7%, respectively. The

calibration curve in Figure 6J revealed a high level of consistency

between the predicted 1-year, 2-year, and 3-year survival

probabilities and actual survival rates. Moreover, the C-index and

AUC values of the nomogram for predicting 1-year, 2-year, 3-year,

and 5-year OS of patients with HCC were higher than those of age,

gender, tumor grade, and tumor stage (Figures 6K–O). These results

indicate that PANRS is a reliable predictive tool with better

predictive performance than common clinical indicators. In

particular, the individualized predictive performance suggests the

potential clinical value of PANRS.
TABLE 1 Comparison of important clinical indicators in train cohort and
test cohort.

Indicators Train cohort Test cohort P value

Survival time(year) 0.82

<1 43 (25.00%) 39 (22.81%)

>=5 21 (12.21%) 19 (11.11%)

1-<5 108 (62.79%) 113 (66.08%)

Survival state

Alive 107 (62.21%) 113 (66.08%) 0.53

Deceased 65 (37.79%) 58 (33.92%)

Age

<=65 107 (62.21%) 109 (63.74%) 0.86

>65 65 (37.79%) 62 (36.26%)

Gender

Female 53 (30.81%) 57 (33.33%) 0.70

Male 119 (69.19%) 114 (66.67%)

Grade

G1-2 110 (63.95%) 104 (60.82%) 0.67

G3-4 60 (34.88%) 64 (37.43%)

unknow 2 (1.16%) 3 (1.75%)

Stage

I-II 120 (69.77%) 118 (69.01%) 0.68

III-IV 39 (22.67%) 44 (25.73%)

unknow 13 (7.56%) 9 (5.26%)
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3.5 Validation of the prognostic effect
of PANRS in the ICGC-LIRI cohort
and comparison with previously
reported signatures

External validation was performed to clarify the generalizability

of PANRS. The ICGC-LIRI cohort was divided into high-risk and

low-risk groups based on the median risk score of TCGA-LIHC

training cohort. As shown in Figure 7A, the high-risk group

exhibited poor OS (p < 0.001) and upregulated expression of poor

prognosis-related genes (LPCAT1 and CBX2). The AUC values of

PANRS for predicting the 1-year, 2-year, and 3-year OS of patients

with HCC were approximately 0.7 (Figure 7B). Independent

prognostic analysis, clinical applicability analysis, nomogram, and

calibration charts confirmed that the risk scores can independently,

accurately, and individually predict the survival of patients in the

ICGC-LIRI cohort for a wide range of populations (all p < 0.05,

Figures 7C–F). Clinical correlation analysis revealed that the

expression of the unfavorable prognostic gene LPCAT1 in

patients with stage III–IV tumors was markedly higher than that

in patients with stage I–II tumors (Figure S2A). Additionally,

expression of CBX2 was upregulated in patients with a positive
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family history of tumors in first-degree relatives (p = 0.027,

Figure S2B).

This study also compared the prognostic performance of

PANRS with that of previously reported signatures by

determining the AUC values. The AUC values of PANRS for

predicting the 1-year, 2-year, 3-year, and 5-year OS were higher

than those of amino acid metabolism-related gene signature (45),

basement membrane-related gene signature (46), and bile acid-

related prognostic signature (47) (Figures S2C–F). This indicates

that the predictive power of PANRS is higher than that of previously

reported signatures.
3.6 PANRS can predict the prognosis of
patients with kidney renal papillary
cell carcinoma

Based on the prognostic power of the risk score for HCC

determined in this study, the prognostic power of PANRS for 31

other tumors in TCGA database was examined. The median risk

score of PANRS was used to divide TCGA-KIRP cohort into high-

risk (n = 196) and low-risk (n = 82) groups. The OS of the high-risk
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FIGURE 5

Verification of the prognostic performance of PANoptosis-related signature (PANRS) in The Cancer Genome Atlas-Liver Hepatocellular Carcinoma
(TCGA-LIHC) cohort. (A, B) Differential overall survival (OS) and risk curve between the high-risk and low-risk groups in the training cohort; (C) In the
training cohort, PANRS predicted the area under the curve (AUC) values for 1-year, 3-year, and 5-year OS of patients with hepatocellular carcinoma
(HCC); (D, E, G, H) Differential OS (D, G) and risk curve (E, H) between the high-risk and low-risk groups in the test and TCGA-LIHC cohorts; (F, I) In
the test (F) and TCGA-LIHC cohorts (I), PANRS predicted the AUC values for 1-year, 3-year, and 5-year OS of patients with HCC; (J–L) Validation of
the independent prognostic performance of PANRS in the training (J), test (K), and TCGA-LIHC cohorts (L).
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group was significantly lower OS than that of the low-risk group

(Figure S2G). The AUC values of PANRS for predicting the 1-year,

2-year, and 3-year OS in patients with KIRP were 0.729, 0.746, and

0.712, respectively (Figure S2H). The risk scores of patients with

KIRP were combined with their clinical characteristics to obtain a

nomogram (Figure S2I) for assessing the individual survival

probability. The survival probability predicted using the

nomogram was highly consistent with the actual survival

probability, indicating that this nomogram can accurately predict

the survival probability of KIRP patients with KIRP exhibiting

different clinical characteristics (Figure S2J). Additionally, the C-

index and AUC values of the nomogram were higher than those of

age, sex, and tumor stage, except in the first year (Figures S2K–O).
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These results suggest that PANRS is a powerful prognostic tool

whose application may not be limited to HCC.
3.7 PANRS can accurately predict the
immune landscape and immunotherapy
response in patients with HCC

The tumor microenvironment (TME) is a multifaceted and

dynamic ecosystem that significantly affects cancer progression, as

well as the efficacy of both immunotherapy and drug treatments

(48). The ESTIMATE algorithm was used to obtain the stromal,

immune, and ESTIMATE scores. The immune and ESTIMATE
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FIGURE 6

Evaluation of the potential clinical application value of PANoptosis-related signature (PANRS). (A–H) The clinical applicability of PANRS was evaluated
by comparing the overall survival (OS) of the high-risk and low-risk groups according to age (A, B), gender (C, D), and tumor grades (E, F) and stages
(G, H); (I) A nomogram was constructed by combining the risk scores with age, sex, and tumor stage; (J, K) Calibration curve (J) and C-index (K)
confirmed the high accuracy of the nomogram; (L–O) The ability of nomogram to predict 1-year (L), 2-year (M), 3-year (N), and 5-year (O) OS in
HCC was compared with other common clinical indicators through receiving operating characteristic (ROC) mapping.
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scores of the high-risk group were markedly higher than those of

the low-risk group (all p < 0.05, Figure 8A). This suggests an

increased infiltration of immune cells in the TME of the high-risk

group. Further analysis revealed that the high-risk group exhibited

an increased abundance of memory B cells and M0 macrophages,
Frontiers in Immunology 12
which were both positively correlated with the risk score

(Figures 8B–D). Conversely, the abundance of naïve B cells,

resting memory CD4 T cells, and monocytes was downregulated

in the high-risk group. M1 macrophages and monocytes were

negatively correlated with the risk score (Figures 8E, F). These
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FIGURE 7

Verification of the prognostic predictive performance of PANoptosis-related signature (PANRS) in an external hepatocellular carcinoma (HCC)
cohort. (A) Differential overall survival (OS) and risk curve between the high-risk and low-risk groups in the International Cancer Genome
Consortium-Liver cancer-Riken-Japan (ICGC-LIRI-JP) cohort; (B) PANRS predicted the area under the curve (AUC) values for 1-year, 2-year, and 3-
year OS in patients with HCC in the ICGC-LIRI-JP cohort; (C) Verification of the independent prognostic value of PANRS in the ICGC-LIRI-JP
cohort; (D) Assessment of the clinical applicability of PANRS in the ICGC-LIRI-JP cohort; (E, F) The nomogram (E) and its prediction accuracy (F) in
the ICGC-LIRI-JP cohort.
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findings indicated that the high-risk group is highly susceptible to

immunosuppressive microenvironments.

ICI, a promising therapeutic for cancer, exerts growth-

inhibitory effects against tumor cells by improving the immune

function of patients. Only a small proportion of patients benefit

from the approved ICIs. The identification of new immune

checkpoints can aid in improving the immunotherapy response of

patients (49). In this study, the differential expression of 40 immune

checkpoint genes (50, 51) in different risk groups was analyzed. The

expression levels of 37 immune checkpoints, except for adenosine

A2a receptor (ADORA2A), inducible T cell costimulator ligand

(ICOSLG), and tumor necrosis factor superfamily 14(TNFSF14), in

the high-risk group were higher than those in the low-risk group

(Figure 8G). Further validation with the TIDE algorithm

demonstrated that the high-risk group exhibited decreased TIDE,

dysfunction, and MSI scores but increased exclusion scores (p <

0.05; Figures 8H–K). This suggests a reduced likelihood of tumor

immune escape and a potentially favorable response to

immunotherapy in the high-risk group.

These findings were further supported by the analysis of the

IMvigor210 cohort. The risk scores of the immunotherapy response

group (complete remission/partial remission) were markedly higher

than those of the immunotherapy non-response group (stable

disease/progressive disease) (Figure 8L). Additionally, the OS of

the high-risk group was higher than that of the low-risk group after

immunotherapy (p = 0.011, Figure 8M), indicating that patients

with high risk scores responded well to immunotherapy. The

expression levels of the model genes LPCAT1 and CBX2 in

the immunotherapy response group were higher than those

in the non-responsive group (all p < 0.01, Figures 8N, O).

The upregulated expression of LPCAT1 could also predict a

positive response to immunotherapy in patients with bladder

cancer (p = 0.032, Figure 8P).

Additionally, TMB (52) and MHC molecules (24) can predict

immunotherapy response. Neoantigens, which are produced by

tumors with high TMB, are often associated with improved

immunotherapeutic outcomes. However, the downregulation of

MHC molecules may suppress the recognition of neoantigens by

T cells and consequently decrease the efficacy of immunotherapy

(53). This study investigated TMB and MHC expression in different

risk groups and demonstrated that increased TMB was positively

correlated with the high-risk group. The expression levels of 95.83%

(23/24) of the examined HLA genes were significantly upregulated

in the high-risk group (p < 0.05, Figures 8Q, R). These findings

suggest that PANRS represents a novel and effective signature for

predicting immunotherapy response.
3.8 Chemotherapy drug sensitivity of HCC
can be predicted using PANRS

ICIs have improved the clinical outcomes of patients with HCC,

increasing the survival rate of patients who responded to the

therapy. However, multi-drug resistance mechanisms are the

major limiting factors for the efficacy of ICIs (54). Combination

therapy, including chemotherapy, is still the main treatment
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modality. This study compared the IC50 values to predict the

sensitivity of HCC populations with different risks to

chemotherapeutic drugs. The high-risk group exhibited increased

sensitivity to several drugs, including etoposide, cisplatin,

gemcitabine, docetaxel, cyclopamine, paclitaxel, pazopanib,

rapamycin, sorafenib, and doxorubicin (p < 0.01, Figures 9A–J).

Meanwhile, the low-risk group was sensitive to axitinib, gefitinib,

lapatinib, metformin, and AKT inhibitor VIII (p < 0.01,

Figures 9K–O).
3.9 Identification of the carcinogenic effect
of LPCAT1 on HCC

In our PANRS, LPCAT1 has a higher risk coefficient. Consider

that the sequencing data we previously analyzed were all at the

transcriptome level. We therefore assessed the protein expression

level of LPCAT1 using the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) database. The notable overexpression of

LPCAT1 protein in HCC, as shown in Figure S1, indicates strong

consistency between LPCAT1 mRNA and protein expression.

However, whether the effect of LPCAT1 on hepatoma cells is

consistent with our results still needs to be verified by further in

vitro experiments. By qRT-PCR and western blotting, we found that

compared with normal hepatocytes THLE-2, mRNA and protein of

LPCAT1 were substantially overexpressed in HCC cells (MHCC97-

H, HepG2, and HCCLM3) (all p < 0.05, Figures 10A, B).

Furthermore, RNA interference was performed on HepG2 and

HCCLM3 with high expression levels. As shown in Figures 10C,

D, we successfully inhibited the expression of LPCAT1 protein in

HCC cells. By EdU staining and CCK-8 assay, the results indicated

that interference with LPCAT1 expression significantly inhibited

the proliferative activity of HCC cells (all p < 0.05, Figures 10E–H).

Further analysis using wound-healing and transwell assays revealed

a significant decrease in HCC cell migration following interference

with LPCAT1 expression (all p < 0.05, Figures 10I–K). These

findings indicate that LPCAT1 contributes to the progression

of HCC.

To investigate the effect of LPCAT1 knockdown on pyroptosis,

we performed pyroptosis induction in HCCLM3 cells using LPS

and ATP and examined the expression level of cleaved GSDMD.

LPCAT1 knockdown in HCCLM3 cells promoted the cleavage of

GSDMD, generating bioactive GSDMD-N fragments, which can

formmembrane pores to initiate cellular pyroptosis (Figure 10L). In

the canonical inflammasome-mediated pyroptosis process,

GSDMD is cleaved by activated CASP1, leading to the release of

GSDMD-N fragments (55, 56). Consistent with the generation of

GSDMD-N, LPCAT1 knockdown upregulated the levels of cleaved

CASP1 (p20) (Figure 10L). GSDME, a member of the Gasdermin

family, is reported to induce pyroptosis under specific conditions

(57). LPCAT1 knockdown promoted the cleavage of GSDME

(Figure 10L). In addition to pyroptosis, LPCAT1 knockdown

promoted apoptosis in HCCLM3 cells as evidenced by the minor

cleavage of CASP3 (p17), CASP7 (p20), and CASP8 (p18)

(Figure 10M). Finally, the effect of LPCAT1 knockdown on

necroptosis was examined. LPCAT1 knockdown upregulated
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MLKL phosphorylation in HCCLM3 cells, indicating the induction

of necroptosis (Figure 10N). These findings indicate that LPCAT1

knockdown promotes PANoptosis in cells.
4 Discussion

HCC, a fatal malignancy with high incidence rates, is diagnosed

at an advanced stage. Thus, most patients with HCC are not eligible
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for curative treatments, such as liver transplantation and surgical

resection. Sorafenib and lenvatinib are the only first-line systemic

therapies for HCC. Second-line treatments are generally limited and

ineffective (58, 59). Therefore, effective strategies must be developed

to mitigate HCC-related mortality rates. Recently, the induction

and regulation of inflammatory cell death have emerged as a novel

anticancer therapeutic strategies as it elicits an immune response

and stimulates strong anticancer effect (60). This enabled the

investigators to analyze the correlation of HCC with pyroptosis,
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FIGURE 8

Ability of PANoptosis-related signature (PANRS) to predict immune landscape and immunotherapy response in hepatocellular carcinoma (HCC). (A)
Differential tumor microenvironment (TME) between the high-risk and low-risk groups; (B) Comparative analysis of immune cell infiltration status
between the high-risk and low-risk groups; (C–F) The correlation of risk scores with memory B cells (C), M0 macrophages (D), M1 macrophages (E),
and monocytes (F); (G) Differential expression of immune checkpoint molecules between the high-risk and low-risk groups; (H–K) Comparative
analysis of tumor immune dysfunction and exclusion (TIDE) (H), dysfunction (I), exclusion (J), and microsatellite instability (MSI) scores (K) between
the high-risk and low-risk groups; (L) Analysis of the correlation of risk scores with complete response (CR)/partial response (PR) and stable disease
(SD)/progressive disease (PD) in the IMvigor210 cohort; (M) Comparison of overall survival (OS) between the high-risk and low-risk group in the
IMvigor210 cohort; (N, O) The predictive value of the expression of the signature genes LPCAT1 (N) and CBX2 (O) for immunotherapy response; (P)
Effect of LPCAT1 expression levels on the OS of patients with bladder cancer; (Q) Distribution of tumor mutational burden (TMB) in different risk
groups; (R) Differential expression of human leukocyte antigen (HLA) molecules in different risk groups. *p < 0.05, **p < 0.01, and ***p < 0.001.
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apoptosis, and necroptosis and identify potential biomarkers (61–

66). The three PCD pathways can complement each other during

PANoptosis, responding to specific stimuli in the surrounding

TME. Therefore, these pathways function cooperatively to achieve

immunogenic PCD (19). For example, in patients undergoing

immunotherapy, PANoptosis kills cancer cells by activating

alternative PCD pathways, such as pyroptosis or necroptosis if

cancer cells inhibit apoptosis. Treatment with the combination of

PANoptosis inducers and ICIs exerted potent growth-inhibitory

effects even against ICI-resistant tumors (67). As HCC is associated

with drug resistance, this study developed a prognostic signature

based on the molecular subtype of PANoptosis for patients with

HCC. This study demonstrated that this signature can predict the

prognosis and immunotherapy response of patients with HCC,

providing a new direction for precise individualized therapy.

This study identified three PANoptosisClusters for HCC.

Compared with those in PANoptosisClusters B and C, the OS

was lower and the levels of infiltrating immune cells were higher in

PANoptosisCluster A. Moreover, PANoptosisCluster A was

enriched in Fc g receptor (Fc-gR)-mediated phagocytosis when

compared with PANoptosisClusters B and C. Monoclonal

antibodies (Mabs) are one of the most well-known targeted

therapies for various types of malignant tumors. IgG Fc can help

clinically approved Mabs achieve optimal efficacy through

interaction with Fc-gR. The phagocytosis of antibody-bound

tumor cells by macrophages via antibody-dependent cellular

phagocytosis (ADCP) is one of the major mechanisms underlying

Fc-gR-mediated tumor immune response (68). This indicates that
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PANoptosisCluster A with high levels of infiltrating immune cells is

more likely to elicit tumor immune response through ADCP than

other subtypes, contributing to enhanced immunotherapeutic

effects. However, the upregulation of FC-gRIIB (single inhibitory

FC-gR) under hypoxic conditions may confer resistance to this

therapy (69).

To facilitate prognosis prediction in patients with HCC, DEGs

between three PANoptosisClusters were screened. These DEGs

were associated with prognosis. Subsequently, a PANRS was

constructed for the training cohort. The predictive accuracy,

independent predictability, and population suitability of PANRS

were validated using TCGA-LIHC and ICGC-LIRI-JP cohorts. To

further determine the clinical application value of PANRS, a

nomogram was generated for patients with HCC to predict their

specific survival probability by combining risk scores with age,

gender, and tumor stage. The calibration curves and C-index maps

confirmed the high accuracy of this comprehensive risk score for

predicting the survival probabilities of patients with HCC in both

TCGA-LIHC and ICGC-LIRI-JP cohorts. Thus, PANRS is a reliable

and effective tool for predicting HCC prognosis.

Next, the efficacy of PANRS in predicting the immune

landscape and immunotherapy response of HCC was examined.

Patients in the high-risk group exhibited increased levels of

infiltrating memory B cells and M0 macrophages, which promote

HCC progression and immunosuppression (70). For example, M0

macrophages can be polarized into immunosuppressive M2

macrophages upon stimulation with tumor-derived alpha

fetoprotein and inhibit M1 macrophages from phagocytosing
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FIGURE 9

PANoptosis-related signature (PANRS) predicts the sensitivity of hepatocellular carcinoma to common chemotherapy drugs. (A–J) Chemotherapy
drugs to which the high-risk group is sensitive relative to the low-risk group; (K–O) Chemotherapy drugs to which the low-risk group is sensitive
relative to the high-risk group.
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HCC cells (71). Immune checkpoint molecules prevent aberrant

activation of immune responses and maintain homeostasis.

However, tumor cells use this characteristic of immune

checkpoint molecules to escape the immune response. Therefore,

ICIs, which mitigate immune evasion, are the fourth most frequent
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treatment modality for cancer after surgical interventions,

chemotherapy, and radiotherapy (72). This study suggested that

the high-risk group with increased expression of immune

checkpoint genes may have a favorable response to ICI therapy.

To verify this, the TIDE score, IMvigor210 immunotherapy cohort
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FIGURE 10

LPCAT1 knockdown inhibits hepatocellular carcinoma (HCC) cell proliferation and migration and promotes PANoptosis. (A) Quantitative real-time
polymerase chain reaction analysis of LPCAT1 mRNA expression in healthy liver cell lines (THLE-2) and HCC cell lines (HCCLM3, MHCC97-H, and
HepG2); (B) Western blotting analysis of LPCAT1 protein expression levels in healthy liver cell lines (THLE-2) and HCC cell lines (HCCLM3, MHCC97-
H, and HepG2); GAPDH was used as an internal control; (C, D) The knockdown efficiency of different siRNA-LPCAT1 constructs in HepG2 and
HCCLM3 cells was evaluated using western blotting; (E–H) Effects of transfection with siRNA–LPCAT1#1, siRNA–LPCAT1#2 or negative control (si-
NC) on cell proliferation were assessed using ethynyl-deoxyuridine (EdU) and cell counting kit (CCK)-8 assays; (E, G) Representative images of the
changes in the number of proliferating HepG2 and HCCLM3 cells in different groups after transfection and quantitative analysis of EdU-positive rate
(original magnification, ×200; scale bar, 50 mm); (F, H) The line graphs show the changes in the viability of HepG2 and HCCLM3 cells in different
groups at 0, 24, 48, and 72 h post-transfection; (I, J) Cell migration was examined using the wound-healing assay. Representative images and
quantitative analysis of wound closure area in different groups at 0 and 36 h post-scratching are presented (original magnification, ×40; scale bar,
200 mm); (K) Transwell assay was used to evaluate the migration ability of transfected HCC cells. The upper panel shows representative images
(original magnification, ×200; scale bar, 200 mm), while the lower panel (histogram) shows the number of migrated cells in different groups; (L-N)
Immunoblotting analysis of (L) pro-CASP1 (P45) and activated (P20) CASP1, pro-GSDMD (-FL), and activated GSDMD (-N); and pro-GSDME (-FL) and
activated (-N) GSDME; (M) pro-CASP3 (P35) and cleaved (P17) CASP3, pro-CASP7 (P35) and cleaved (P20) CASP7, and pro-CASP8 (P55) and cleaved
(P18) CASP8; and (N) phosphorylated MLKL (pMLKL), and total MLKL (tMLKL) in HCCLM3 cells transfected with si-NC, si-LPCAT1#1, and si-
LPCAT1#2. GAPDH was used as the internal control. Data are representative of at least three independent experiments.*p < 0.05, **p < 0.01, and
***p < 0.001.
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data, TMB, and HLA molecules were analyzed. The high-risk

group exhibited upregulated levels of TMB and HLA molecules,

increased incidence of complete response/partial response, and

decreased TIDE score. A high TMB is strongly correlated with

improved clinical outcomes in patients with HCC undergoing

immunotherapy (73). The expression levels of MHC type I

molecules (HLA-A, HLA-B, and HLA-C) determine the

effectiveness of immunotherapy (74). A high TIDE score suggests

an increased probability of tumor immune evasion (75). The

predictive power of TIDE is higher than that of TMB and CD274

in anti-PDCD1 or anti-CTLA4 therapy (75, 76). These findings

suggest that patients in the high-risk group are favorably responsive

to immunotherapy.

PANRS developed in this study comprised LPCAT1 and CBX2.

The findings of bioinformatics analysis of LPCAT1, which

contributed the most to PANRS, were verified using in vitro

experiments. LPCAT1 expression in three HCC cell lines was

significantly upregulated when compared with that in healthy

liver cells. Additionally, LPCAT1 knockdown significantly

suppressed the proliferation and migration of HCC cells,

indicating that LPCAT1 exerts oncogenic effects in HCC and

adversely affects patient prognosis. These observations are

consistent with those of previous studies (77–79). The correlation

between LPCAT1 and PANoptosis has not been completely

elucidated. However, LPCAT1 is reported to be involved in

pyroptosis and apoptosis in various cancers, including HCC,

cervical cancer, endometrial cancer, and squamous cell carcinoma

of the skin (80–83). CBX2 expression is associated with cancer cell

apoptosis. For example, CBX2 suppresses apoptosis in high-grade

serous ovarian cancer (HGSOC) cells (84). Consistently, the

downregulation of CBX2 significantly upregulated apoptosis in

HCC, HGSOC, acute myeloid leukemia, and colorectal cancer

cells (85–88). Furthermore, the research team of Ding reported

that CBX2 is involved in the formation of pyroptosis-related

signature (80).

This study has some limitations. The ability of PANRS to

predict HCC prognosis and ICI treatment response was

determined in this study. However, the samples included in this

study were retrospectively analyzed. Thus, large-scale clinical trials

must be performed and prospective samples must be collected to

further confirm that PANRS is an excellent and practical clinical

prognostic tool. Additionally, the risk score in this study was

dependent on the expression level of the signature gene but did

not consider the impact of other factors, including gene mutations,

on the prognosis of patients with HCC.
5 Conclusions

This study identified three molecular subtypes of PANoptosis in

patients withHCC.The PANRS, whichwas constructed based on these

subtypes, was demonstrated to be a reliable and independent tool for

accurately predicting the prognosis and immunotherapy response of

patients with HCC. Thus, the PANRS can contribute to the risk

stratification of HCC and facilitate individualized immunotherapy.
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