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Medicine, Shanghai, China
“Dietary fiber” (DF) refers to a type of carbohydrate that cannot be digested fully.

DF is not an essential nutrient, but it plays an important part in enhancing

digestive capacity and maintaining intestinal health. Therefore, DF

supplementation in the daily diet is highly recommended. Inulin is a soluble

DF, and commonly added to foods. Recently, several studies have found that

dietary supplementation of inulin can improve metabolic function and regulate

intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a

series of metabolites is generated. Among these metabolites, short-chain fatty

acids provide energy to intestinal epithelial cells and participate in regulating the

differentiation of immune cells. Inulin and its intestinal metabolites contribute to

host immunity. This review summarizes the effect of inulin and its metabolites on

intestinal immunity, and the underlying mechanisms of inulin in preventing

diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic

kidney disease, and certain cancer types.
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Introduction

“Dietary fiber” (DF) is defined as carbohydrate polymers containing ≥ 10 monomeric

units that resist digestion by endogenous enzymes in the small intestine. DF includes edible

carbohydrate polymers that exist naturally in food, and carbohydrate polymers that are

synthesized by physical, chemical, or enzymatic methods (1). DF can be divided into

“soluble DF” (SDF) and “insoluble DF” (IDF) according to solubility, and “partially

fermentable fiber” and “completely fermentable fiber” by its fermentability (2). The

microfibrils formed by the inter- and intra-molecular hydrogen bonds can hinder the

degradation and utilization of partially fermentable fiber, which prevent its fermentation in

the intestine (3). The health benefits of DF are manifested mainly by altering gut

microbiota composition and microbial metabolites.

Inulin is one kind of SDF. It is a type of fructan derived mainly from plants such as

chicory, ginger, garlic, onion, and asparagus. “Inulin” is a generic term covering all b- (2, 1)
linear fructans, and inulin-type fructans must have b-(2,1) linkages, which give inulin
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unique structural and physiological properties, making it resistant

to enzymatic hydrolysis by human saliva and small intestinal

digestive enzymes (4). Most inulin-type fructans have an average

degree of polymerization of 10-12 and a chain length of 2-60 units

of molecular distribution (5). Oligofructose can be hydrolyzed from

inulin by inulinase into a chain length from 2 to 10. Therefore, the

sugar chain of inulin is longer compared with that of oligofructose,

resulting in slower fermentation and gas production. Inulin has

been used widely as a prebiotic, fat substitute, sugar substitute,

texture modifier, and in the development of functional foods (6).

The US Department of Agriculture recommends consuming 25-36

g of fiber daily (or 14 g for every 1000 calories per day) (7). In 2003,

the US Food and Drug Administration (FDA) categorized inulin as

“generally recognized as safe”. The daily effective intake is 5 g, and

the recommended maximum daily intake is 15-20 g (8). Nausea,

bloating, and flatulence are the most common adverse effects of

taking inulin. Inulin consumption under 40 g per day in healthy

adults is safe. However, inulin can cause serious side effects in

patients with inflammatory bowel disease (IBD) or allergies.

The intestine is the front-line of the body’s defense, and is

exposed to many pathogens and bacteria. As the largest immune

organ of the body, the intestinal immune system (also known as the

mucosal immune system) is composed mainly of intestinal

epithelial cells (IECs), lamina propria-lymphocytes, intraepithelial

lymphocytes, and the Peyer’s patch. An inulin-rich diet has been

reported to improve the function of the intestinal barrier and

modulate the immune system (9).

The aim of this review is to focus on the immunomodulatory

effects of inulin and its intestinal metabolites. In this way, we hope

to provide a comprehensive overview of the role of inulin and its

metabolites in different diseases.
Frontiers in Immunology 02
Intestinal metabolites of inulin

As mentioned above, the unique b-configuration in the

monomeric isomer C2 of fructose prevents inulin-type fructose

from being hydrolyzed by digestive enzymes (including a-
glucosidase, maltosidase, and sucrase) (10). Upon the

fermentation of intestinal bacteria, inulin produces lactate and

short-chain fatty acids (SCFAs), including acetate, butyrate and

propionate, as well as gases that are excreted from the body

eventually (11–15) (Table 1). Notably, lactate does not usually

accumulate in the healthy gut because microbes can convert it

further to propionate, butyrate, or acetate (25). The degree of

fermentation of DF is closely correlated with its composition.

SDFs such as inulin are usually more fermentable than IDFs and

produce more gas and SCFAs (16, 26). In addition, the fermentation

properties of inulin are related to the length of its sugar chain; short-

chain inulin is more soluble in water than long-chain inulin.

Muthyala and colleagues reported changes in fecal SCFA levels in

mice of different ages after inulin ingestion. They found butyric acid

to be the main metabolite in middle-aged mice, whereas the fecal

level of propionic acid showed an age-dependent decrease. Those

evidences suggest that age is an important factor influencing inulin

metabolism by the intestinal microbiota (27).

More interestingly, inulin and gut microbiota are mutually

interacted. Gut bacteria ferment inulin to produce the

corresponding metabolites. Likewise, the gut microbiome

responds to inulin treatment and exhibits significant structural

alterations. Inulin treatment promotes the growth of certain

beneficial bacteria as well as bacteria that promote the production

of SCFAs, such as Bifidobacterium spp (28). SCFAs can act locally in

the intestine and be used as energy sources by intestinal mucosal
TABLE 1 Metabolites induced by inulin fermentation.

Interventions Duration Models or subjects Metabolites with significantly upregulated
expression

References

Inulin (10 g/L) 24 h Fresh stool samples from 9
healthy humans (ex vivo system)

Acetate, propionate, and butyrate (14)

FOS (12 g/d)-enriched inulin
supplementation

0, 12, 24,
and 48 h

Fecal cultures from pigs (in vitro
fecal fermentation)

Succinate, lactate, propionate and butyrate (16)

Inulin (24 g) plus glucose (75 g)/
water (300 mL)

0-6 h 25 adults with BMI of 20-35 kg/
m2

Propionate and butyrate (15)

Inulin (24 g) plus high-fructose corn
syrup (56 g)/drinks (400 mL)

4-6 h 12 healthy humans Serum acetate, propionate, and butyrate (17)

U-13C-inulin (0.5 g)/inulin (24 g) in
a high-fat milkshake

7 h 14 healthy, overweight to obese
men

Plasma propionate, butyrate, acetate (18)

Inulin-type fructans 6 weeks 25 patients with type 2 diabetes
mellitus

Significantly increased fecal concentrations of total short-
chain fatty acids, acetic acid and propionic acid

(19, 20)

Water with 20% sucrose and 5%
inulin (w/w)

6 weeks Male Sprague–Dawley rats (6
weeks)

Propionate and butyrate; fecal contents of indole-3-acetic
acid and kynurenic acid

(21)

Basal diet containing 0.5% inulin 21 days 20 growing-pigs Acetate and butyrate concentrations in cecum (22)

Control diet with 20% inulin 3 weeks BALB/c mice (6–8 weeks) Fecal acetate, propionate and butyrate (23)

High-fat/high-sucrose diet
containing inulin (7.5% kcal)

12 weeks Male C57BL/6J mice (8 weeks) Acetic acid in jejunum; succinic acid, acetic acid and
propionic acid in the rectal feces and portal vein serum

(24)
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cells to promote barrier function and maintain mucosal immunity,

and provide energy substrate for colonic cells (29, 30). SCFAs can

also enter the circulation through the hepatic portal vein and act as

signaling molecules, thereby regulating systemic immune function

(31, 32). The G protein-coupled receptors (GPCRs) GPR43 and

GPR41 were the first GPCRs to be identified as activated by SCFAs,

and were subsequently renamed as the specific free fatty acid

receptors (FFARs) FFAR2 and FFAR3, respectively. Recently,

three additional GPCRs, GPR109A, Olfr78 and Olfr558, were

identified as receptors for SCFAs (33). SCFAs are involved in the

regulation of inflammatory responses because they interact with

these receptors expressed on innate immune cells (34). Notably,

FFAR2/3 has been found to be expressed mainly in enteroendocrine

cells and immune cells. Expression of FFARs on colonic regulatory

T (Treg) cells has been shown to be significantly higher than that on

other tissues (34, 35), suggesting a potential role of SCFAs in

maintaining intestinal immune homeostasis.
Effects of inulin and its metabolites on
intestinal microbiota

The human intestinal microbiota is divided into four major

phyla covering more than 90% of the total bacterial population, i.e.,

Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and other

minor phyla, including Warty microbes and Clostridium (36). The

phylum Firmicutes and Bacteroidetes are the two most abundant

microbial phyla in the human intestinal microbiota. The Firmicutes
Frontiers in Immunology 03
are low GC Gram-positive bacteria, and Clostridium spp. and

Lactobacillus spp. are the dominant component, while the leading

members of Bacteroidetes are Bacillus spp. and Prevotella spp.

Increased ratio of Phylum Firmicutes/Bacteroidetes is usually

considered to be associated with obesity-associated dysbiosis (37,

38). Inulin intake has been reported to significantly reduce the ratio

of Firmicutes and Bacteroidetes, as well as levels of several bacteria

associated with a pro-inflammatory state (27). Bastard and

colleagues also found that changes in intestinal microbiota after

inulin supplementation decreased the relative abundance of

Bacteroidetes, and increased levels of Bifidobacterium spp.,

Anaerostipes spp., Enterococcus faecalis, and Lactobacillus spp

(39).. Inulin also promotes an increase in the abundance of

bacteria of the genera Phascolarctobacterium , Blautia ,

Akkermansia, Ruminococcus, and the family Lachnospiraceae,

which are also responsible for SCFAs production (21, 40, 41). We

have summarized some major changes in intestinal microbiota after

at least 4 weeks or even 3 months of inulin supplementation in

different models or individuals, as shown in Table 2.

In addition to promoting SCFAs production, Bifidobacteria spp.

are also considered to be probiotics that inhibit the proliferation of

pathogenic bacteria. Dietary inulin supplementation increases the

relative abundance of Bifidobacteria spp. and consequently brings a

series of beneficial alterations defined as “bifidogenic effects” (28).

Thus, inulin use inhibits harmful bacteria or opportunistic

pathogens by promoting the proliferation of beneficial bacteria. In

addition, pathogenic bacteria tend to colonize in the intestine with

an alkaline environment. Inulin lowers intestinal pH after

enterobacterial fermentation, which also contributes to the
TABLE 2 Examples of microbiota modulation after inulin ingestion.

Treatment Duration Models or sub-
jects

Altered gut microbiota level Reference

Up-regulation Down-regulation

Diet of inulin (2.5 g or 5 g/100 g 4 weeks ob/ob mice Ruminococcaceae, Lachnospiraceae,
Bacteroides, and Bifidobacterium

– (42)

Inulin (16 g/d) 3 months Obese patients Bifidobacterium, Catenibacterium,
Erysipelotrichaceae incertae sedis,

Escherichia/Shigella, Lact-bacillus, and
Dorea

Desulfovibrio, Roseburia,
Butyricimonas, Clostridium

cluster XIVa, and Clostridium
sensu stricto

(43)

An inulin-containing semi-
purified, irradiated regular diet

6 weeks Male C57BL/6J mice Akkermansia, Roseburia, Bacteroides Lactococcus,
Ruminiclostridium_9,
Ruminococcaceae and

Streptococcaceae

(27)

Vilof™ soluble dietary fiber

powder (3 g/kg bodyweight/d)
containing 91% inulin-type
fructans

12 weeks Model of diabetes
mellitus in rat

Lactobacillus, Lachnospiraceae,
Bacteroides, and Phascolarctobacterium

Desulfovibrio (40)

Water with 20% sucrose and 5%
inulin (w/w)

6 weeks Male Sprague-Dawley
rats

Bifidobacterium, Actinobacteria,
Blautia and Phascolarctobacterium

Proteobacteria (21)

Lieber–DeCarli liquid diets
containing inulin (0.5 g/L)

6 weeks Female C57BL/6J
mice

Allobaculum, Lactobacillus and
Lactococcus

Parasutterella (44)

Inulin-propionate ester (20 g/d) 42 days Overweight or obese
adults not suffering

from diabetes
mellitus

Actinobacteria Clostridia (45)
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inhibition of pathogenic bacteria (26). Furthermore, treatment with

inulin has been shown to significantly reduce the abundance of

lipopolysaccharide (LPS)-producing Desulfovibrio spp. in rats and

obese patients (40, 43), which may protect the intestinal barrier

from endotoxin damage.

Inulin has been reported to be beneficial for a series of diseases

through modulating intestinal microbiota. A reduced abundance of

F. prausnitzii has been observed in patients with nonalcoholic fatty

liver disease (NAFLD). Inulin can provide carbon sources for the

transporter of the fructose phosphotransferase system. This action

enhances the fructose-absorption activity of F. prausnitzii and

increases the abundance of F. prausnitzii in the gut (46). In a

model of alcoholic fatty liver disease, chronic exposure to alcohol

resulted in decreased abundance of the genera Allobaculum,

Lactobacillus, and Lactococcus, but increased abundance of

Parasutterella species. Inulin could reverse these alterations and

reduce the number of macrophages (44). In addition, dietary

supplementation with inulin has been found to restore the

diversity of intestinal microbiota in a mouse model of obesity

based on high-fat-diet (HFD) consumption (47).
Effects of inulin and its metabolites
on IECs

Reduced intestinal mucosal tolerance promotes immune-

mediated inflammatory diseases. The most important part of the

intestinal mucosal barrier is the intestinal mucosal mechanical

barrier. The latter is a defense layer composed of intestinal

mucosal epithelial cells and tight junctions (TJs) that protects

against pathogens (48). IECs are differentiated from intestinal

stem cells and can be divided broadly into “absorptive

enterocytes” and “secretory enterocytes” (goblet cells that secrete

mucus, Paneth cells that secrete antimicrobial peptides and

immunomodulatory proteins, and enteroendocrine cells that

secrete hormone) (49, 50).

Inulin-type fructans extracted from different plants have been

shown to have direct immunomodulatory effects on IECs. For

example, inulin-type fructans from Platycodon grandiflorus have

been shown to stimulate transcription of the anti-inflammatory

factors interleukin (IL)-4 and IL-10 in a dose-dependent manner in

a porcine jejunum epithelial cell line (IPEC-J2) (51). The inulin

fractions from Codonopsis pilosula and Codonopsis tangshen are

natural sources of potential antioxidants, which can increase

intestinal levels of glutathione peroxidase, superoxide dismutase

and catalase, but reduce the levels of malondialdehyde and lactate

dehydrogenaseto enhance the antioxidant defense of IECs (52).

Moreover, Ruminococcus bromii-producing butyrate is a major

source of energy for colonocytes, which contributes to enterocyte

proliferation (53, 54).

In addition to promoting the function of IECs, inulin can

promote intestinal barrier function by regulating TJ proteins.

Dietary supplementation with inulin can restore the integrity and

function of the intestinal barrier by promoting the expression of

zonula occludens (ZO)-1, claudin-1 and occludin (21). Chen et al.
Frontiers in Immunology 04
found that long-chain inulin-type fructans enhanced expression of

the intestinal-barrier TJ proteins occludin and claudin-2,

antimicrobial peptides b-defensin-1, cathelicidin-related

antimicrobial peptide, and SCFAs production (55). In another

animal experiment, inulin supplementation increased villus height

and ZO-1 expression, reduced secretion of IL-6 and tumor necrosis

factor (TNF)-a, and increased IECs apoptosis in the ileum and

cecum (22). Mucin 2 (Muc2) is the main component of mucus.

Muc2 can constrain the immunogenicity of antigens by forming a

non-specific physical barrier. A previous study showed that Muc2

can be ingested by dendritic cells (DCs), and reduce the number of

inflammatory DCs by inhibiting gene transcription through nuclear

factor-kappa B (NF-kB). Therefore, Muc2 can increase the

tolerance of the intestine (56). Inulin has also been found to

promote the secretion of Muc2 and secretory immunoglobulin A

(sIgA) in the ileum (57). sIgA is involved in important mucosal

immune functions against external antigens on human mucosal

surfaces. Thus, inulin intake facilitates the protection of IECs from

luminal bacteria and food antigens, and enhances intestinal

homeostasis and tolerance to prevent inflammation. In addition,

the effect of inulin on host defense in Paneth cells may be mediated

(at least in part) by SCFAs produced by inulin fermentation.

Supplementation with inulin has been shown to induce

expression of a-defensin and matrix metalloproteinase (MMP)-7

from Paneth cells in an obese mouse model. Moreover, organoid

culture of small intestinal crypts revealed that the fermentation

products of inulin induced a-defensin expression from Paneth cells

(58). Butyrate has also been found to enhance the intestinal barrier

by activating adenosine monophosphate-activated protein kinase to

promote TJ assembly in monolayers of Caco-2 cells (59).

In general, consumption of an inulin-containing diet is

beneficial for intestinal health. However, some studies have

reported contradictory evidences. One study showed that a

moderate dose of inulin (50 mg per mouse) was beneficial against

food allergy, whereas high-dose inulin supplementation (80 mg per

mouse) increased serum levels of allergic inflammation-related

factors and an intestinal inflammatory response. Further profiling

indicated that the altered intestinal TJ proteins and T cell

homeostasis seen in hyperinulin-treated mice might be related to

the high production of SCFAs by bacteria of the family

Ruminococcaceae and Bifidobacterium spp (60). In addition, long-

term intake of inulin also exacerbated intestinal damage and

inflammatory responses in the progeny of rats in a dextran

sodium sulfate (DSS)-induced colitis model (61).
Effects of inulin and its metabolites on
intestinal immune cells

Many types of immune cell, such as T cells, innate lymphoid

cells (ILCs), and macrophages, are present in the lamina propria of

the intestine. Mucus and antimicrobial peptides secreted by goblet

cells, as well as immunomodulatory proteins secreted by Paneth

cells, can help to prevent the adhesion of pathogenic bacteria and

viruses in the intestinal lumen (62, 63). Several studies have shown
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that the role of inulin in regulation of immune cell activation and

cytokine secretion is largely dependent on its intestinal metabolites,

such as SCFAs. The latter can act directly on host T cells by

reprogramming their metabolic activity and epigenetic status to

control the differentiation of effector T (Teff) cells and Treg cells (64).

More importantly, SCFAs can also enter the circulation and

regulate the function of immune cells in other tissues (65). The

effects of inulin and its metabolites on immune cells is summarized

in Figure 1.
Teff and Treg cells

T cells are critical mediators of adaptive immunity. When T

cells recognize pathogens through T-cell receptors, together with

costimulatory signals provided by antigen-presenting cells, T cells

expand clonally and traffic to tissues, thereby triggering an adaptive

immune response. However, an excessive immune response usually

leads to severe tissue damage. In contrast, Treg cells can limit the

immune response from Teff cells to avoid overwhelming

inflammatory responses, a process known as “immune tolerance”
Frontiers in Immunology 05
(66). Several recent studies have shown SCFAs to be critical factors

in balancing adaptive immunity and immune tolerance (28, 67).

SCFAs produced by inulin fermentation maintain immune

homeostasis by suppressing excessive innate responses and

stimulating specific adaptive immunity.

The metabolic and functional changes of cluster of

differentiation (CD)8+ T cells are partially mediated by inulin and

SCFAs. Inulin treatment promotes the infiltration CD8+ T cells in

tumors of several mouse models, and induces a shift to a pro-

inflammatory tumor microenvironment (68–70). Furthermore,

SCFAs (e.g., butyrate) can regulate the metabolism of CD8+ T

cells by acting on FFAR3, thereby ensuring rapid and sustained

activation of Teff cells during viral infections (28). In contrast, the

mechanisms by which inulin and SCFAs limit autoimmune

responses by regulating Treg cells differentiation are more

complex. Butyrate promotes production of extra-thymic Treg cells

in an intronic enhancer CNS1-dependent manner if administered

systemically, but increases only intracolonic Treg cells production if

administered locally via an enema (71). Conversely, acetate and

propionate promote the accumulation of intracolonic Treg cells in

an FFAR2-dependent manner (66).
FIGURE 1

Effects of inulin on the mucosal immune system. The gut contains many immune cells. Inulin can regulate the differentiation and proliferation of
these immune cells (e.g., Treg) to limit intestinal inflammation. Inulin promotes expression of TJ proteins and induces secretion of sIgA and Muc2 by
plasma cells and goblet cells, which helps to maintain intestinal-barrier homeostasis. Inulin promotes IL-22 secretion by gd T cells and ILC3s, which
also helps to improve the intestinal barrier. However, inulin increases the circulating level of bile acids and triggers ILC2s to induce eosinophils,
thereby exacerbating airway allergic responses. Inulin provides carbon sources for histone acetylation, regulates epigenetics, and inhibits tumor
growth. In tumors, inulin can also promote the infiltration of CD8+ T cells and gd T cells to enhance the anti-tumor effect. SCFAs, short-chain fatty
acids; sIgA, secretory immunoglobulin A; FFARs, free fatty acid receptors; Muc2, mucin 2; TJ, tight junction; GLP-1, glucagon-like peptide 1; PYY,
peptide YY, FXR, farnesoid X receptor; HDAC, histone deacetylase; ILC, innate lymphoid cell.
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IL-10 is a key cytokine for Treg cells to exert anti-inflammatory

effects. IL-10 is secreted by Treg subsets that express the

transcription factor forkhead box P3 (Foxp3). Thus, Treg cells

expressing Foxp3 are crucial in limiting intestinal inflammatory

responses (34) . An independent s tudy showed that

supplementation with long-chain inulin-type fructans promoted

the proliferation of CD25+ Foxp3+ CD4+ Treg cells and reduced the

number of IL17A+ CD4+ T-helper (Th)17 cells, thereby modulating

T cell responses and suppressing intestinal inflammatory responses

(55). In addition, metabolites of inulin (e.g., propionate) regulate

the proliferation and differentiation of CD25+ Foxp3+ Treg cells (66,

72). Propionate also improves angiotensin II-induced inflammatory

responses by modulating Treg cells (73).

Histone acetyltransferase (HAT) and histone deacetylase

(HDAC) are important for regulating gene expression. Usually, a

high acetylation level indicates active transcriptional activity. A low

acetylation level is associated with transcriptional repression. In the

intestine, if HDAC is overexpressed, the balance of gene expression

is disrupted and cell proliferation is abnormal, which eventually

leads to tumorigenesis (74). In contrast, the gut microbiota can

inhibit HDAC activity by fermenting inulin into SCFAs, thereby

regulating the acetylation level of histones and affecting epigenetic

changes in immune cells (75, 76). An independent study showed

that inulin dietary treatment inhibited HDACs activity (including

HDAC2 and HDAC8), and induced protective epigenetic changes

in mouse mammary tumor cells (77). In another animal

experiment, consumption of an inulin diet increased the level of

SCFAs (especially butyrate), which enhanced the host antimicrobial

program by inhibiting HDAC3 (23). Similarly, Fernández et al.

found that administration of inulin-rich products reduced the

number of colon polyps in two animal models of colorectal

cancer (CRC), which may be related to HDACs regulation (78).
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Furthermore, a study using isotope tracing revealed inulin-derived

SCFAs to provide carbon sources for histone acetylation

(76).Notably, SCFAs are also involved in regulating epigenetic

changes and energy metabolism of B cells by suppressing the

activity of HDACs (79–82).

In particular, SCFAs contribute significantly in the fight against

intestinal inflammation by promoting Treg cells differentiation

through the inhibition of HDACs. Butyrate has also been found

to be a potent inhibitor of HDACs (83). Furusawa and colleagues

found that butyrate produced by obligate anaerobic bacteria

improved colitis by promoting histone H3 acetylation in the

promoter and conserved non-coding sequence regions of the

Foxp3 locus, thereby supporting differentiation of Treg cells and

enhancing intestinal immune tolerance (84). In addition to directly

promoting the differentiation of CD4+ T-cell precursors into Treg

cells, butyrate and propionate can induce the differentiation of

extrathymic Treg cells and reduce expression of pro-inflammatory

cytokines within DCs by inhibiting HDACs activity (71).

Propionate enhances histone acetylation in colonic Treg cells,

drives the proliferation and differentiation of Treg cells, and

enhances Treg cell-mediated inhibition of colitis. These effects of

propionate appear to be dependent on activation of FFAR2 (66).

Nevertheless, whether the inhibitory effect of SCFAs on HDACs is

dependent on expression of FFAR2 and FFAR3 is controversial,

because SCFAs seem to enter cells directly through membrane

transport proteins on the cell surface (85). Furthermore, although

butyrate and propionate can inhibit HDACs and promote the

proliferation and differentiation of Treg cells, acetate appears to

lack this inhibitory activity towards HDACs (71).

Immune cells and cytokines are crucial in the development and

regression of inflammatory responses. Inflammation is

characterized by excessive infiltration of immune cells (e.g.
FIGURE 2

Overview of the involvement of inulin in disease. Inulin and its metabolites regulate energy metabolism and immune function, thus ameliorating
various disease. However, inulin can also cause some side effects, such as nausea, bloating, flatulence, itching, and heartburn. In addition, people
with inflammatory bowel disease or allergies should be more cautious about inulin intake to avoid serious adverse events.
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macrophages, neutrophils), which subsequently release pro-

inflammatory cytokines. Simultaneously, regression of

inflammatory responses requires the release of anti-inflammatory

factors (e.g. IL-10) by immune cells. Inulin and its metabolites can

selectively support the development of Th1 and Th17 effector cells

and IL-10+ Treg cells, depending on the cytokine milieu and

immunological context. SCFAs promote the differentiation of IL-

10+ CD4+ T cells under a physiological state. Once the immune

response is initiated, SCFAs turns to support the proliferation of Teff

cells, such as Th1 and Th17 cells (85). Therefore, inulin and its

metabolites modulate the balance of the immune response, setting a

reasonable “immune tension” that allows T cells to clear harmful

substances but avoids exaggerating the level of tissue damage.
Innate lymphoid cells

ILCs are an important subpopulation of natural immune cells.

ILCs (like B cells and T cells) develop from common lymphoid

progenitor cells, and share some common characteristics with T

cells. However, ILCs do not express antigen-specific receptors (e.g.,

T-cell receptors, B-cell receptors). In addition, ILCs do not undergo

thymic selection, clonal selection, or clonal expansion. Therefore,

ILCs respond rapidly to tissue infection and pathogens, but the

effector molecules produced are the same as those in Th cells. ILCs

can be classified into four categories according to the cytokines they

secrete: ILC1s secrete interferon (IFN)-g; ILC2s secrete IL-5, IL-9,

and IL-13; ILC3s secrete IL-22, IL-17A/F, and granulocyte

macrophage-colony stimulating factor; regulatory ILC cells secrete

IL-10 (86, 87). Multiple GPCR receptors are expressed on the

surface of ILCs, and SCFAs have been found to activate GPCR

receptors on ILCs and promote tissue repair and host defense,

which contributes to regulating adaptive immunity (88–91).

Allergens lead to type-2 inflammatory responses, which are

mediated by Th2 cells, ILC2s, and their secreted cytokines. Type-2

inflammatory responses can stimulate B cell proliferation to

produce antibodies, mediate humoral immunity, participate in

barrier immunity at mucosal surfaces, and play a part in

counteracting parasitic infections and allergic diseases (92). An

inulin fiber diet promotes type-2 immune responses after spirochete

infection in an eosinophil-dependent manner (93). Furthermore, an

increased activity of ILC2s plays a key part in asthma development

(94), and inulin intervention has been reported to reduce the

number of airway eosinophils and improve asthma by

suppressing HDAC9 expression in people suffering from asthma

(95). Furthermore, direct supplementation with SCFAs can also

suppressed ILC2s and lung-related allergic reactions (96).

However, in contradiction to previous evidence, Arifuzzaman

and colleagues showed that inulin increased systemic levels of bile

acids (particularly cholic acid), which led to an increased IL-33 level

via activation of the farnesoid X receptor (FXR) pathway. IL-33

secretion caused subsequent activation of ILC2s and the production

of IL-5, leading to increased eosinophilia which exacerbated airway

allergic responses (93). SCFAs-mediated FFAR2 expression has

been shown to trigger phosphoinositide 3-kinase (PI3K), signal

transducer and activator of transcription (Stat)3, Stat5, and
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mammalian target of rapamycin pathways to promote ILC2s

proliferation. However, SCFAs also seem to inhibit the

proliferation of ILC2s through a non-FFAR2-mediated

mechanism (88). Thus, inulin may maintain optimal amounts of

ILC2s in peripheral tissues to modulate type-2 immune responses

during infections through multiple pathways. The immunological

outcomes of consuming an inulin fiber diet are dependent upon the

interactions between various microbiota-derived metabolites and

different immunomodulatory pathways (93).

As a member of the IL-10 family, IL-22 has an important role in

intestinal immune regulation. IL-22 has been reported to promote

epithelial cell proliferation and induce the production of Reg3g and
other antimicrobial peptides (97). ILC3s, gdT lymphocytes and

CD4+ T cells are the main cell types that secrete IL-22 in the gut

(98). Inulin has been reported to promote colon epithelial

remodeling by increasing gdT lymphocyte-induced IL-22

production (99). In addition, HFD consumption disrupts

enterocyte proliferation, leading to an impaired intestinal barrier,

low-grade inflammation, and metabolic syndrome. Conversely,

inulin supplementation in a HFD impacts microbiota and

promotes IL-22 expression in an ILC3s-dependent manner, which

fortifies the intestine, thereby resulting in reduced microbiota

encroachment and expression of pro-inflammatory genes (100).

Several studies have also shown that SCFAs, which are products of

the fermentation of DF (including inulin), promote the

proliferation of ILC3s and CD4+ T cells and subsequent

production of IL-22 through several mechanisms (101, 102).
Monocytes and macrophages

Toll-like receptors (TLRs) recognize different pathogen-

associated molecular patterns and trigger the production of pro-

inflammatory factors in macrophages (103). However, sustained

production of pro-inflammatory cytokines and chemokines can

lead to disruption of immune homeostasis. As a TLR4 ligand, inulin

activates TLR4 and regulates expression of inflammatory factors in

monocytes (104). Butyrate has been shown to reverse the abnormal

expression of ZO-1 and reduce LPS translocation as well as inhibit

macrophage activation, pro-inflammatory cytokine production, and

neutrophil infiltration, thereby reducing liver injury in rats (105).

Similarly, Qiao et al. found that butyrate inhibits the production of

TNF-a and IL-6 and myeloperoxidase activity by blocking NF-kB
activation in Kupffer cells (106). In ulcerative colitis (UC), butyrate

also inhibits NF-kB activation in macrophages and reduces mucosal

inflammation (107). In a Staphylococcus aureus-induced mastitis

model, intake of high-dose inulin was shown to inhibit HDAC3 by

promoting butyrate production in mice, thereby activating the

macrophage-mediated antimicrobial defense program (23).

Moreover, butyrate administration in influenza-infected mice

remodeled bone-marrow hematopoiesis, promoted production of

Ly6c- monocytes, and enhanced alternative macrophage activation,

thereby inhibiting CXCL1 production, neutrophil recruitment, and

the immune response during infection (28). Recently, the protective

effect of butyrate was also observed in a peripheral blood

mononuclear cell (PBMC) model of gout, in which butyrate
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downregulated the production of the pro-inflammatory cytokines

IL-1b, IL-6, and IL-8 by inhibiting HDACs (108). In conclusion,

these evidences suggest a protective role of inulin and SCFAs in

regulating monocyte-macrophage-mediated protection in

inflammatory responses and immune processes.
Regulation of inulin and its
metabolites of energy metabolism

DF can slow down the absorption of glucose as well as impede

the uptake of dietary lipids and cholesterol to enhance satiety and

improve insulin resistance. Due to these properties of DF, inulin

shows unique protective effects on the metabolism of glucose, lipids

and amino acids, involving multiple mechanisms and partly related

to the immune response (17, 19, 24).

First, inulin has been shown to increase the number of L cells

(which are responsible for secreting glucagon-like peptide 1 (GLP-

1)), suggesting a potential effect of inulin on glucose metabolism

(100). Second, maternal mice supplemented with inulin during

pregnancy and lactation improved glucose tolerance in their

offspring exposed to a maternal HFD by modulating DNA

methylation and gene expression of Wnt5a and Pi3k (109). Inulin

supplementation may alleviate hepatic steatosis by increasing

adipose triglyceride lipase activity on hepatic lipid droplets and

inhibiting expression of cannabinoid receptor-1 and patatin-like

phospholipase-3 in the liver (110, 111).

Beek et al. traced inulin-derived SCFAs using a stable isotope

tracer. They found that inulin intake increased plasma

concentrations of propionate, butyrate, and acetate. This

phenomenon may explain how inulin improves metabolism in

obese men because SCFAs regulate the balance between the

synthesis, oxidation and catabolism of fatty acids (18). Similarly,

Guo et al. found that inulin-induced remodeling of the intestinal

microbiota resulted in increased production of SCFAs that

promoted expression of angiopoietin-like protein 4, which

contributed to the improved metabolism of glucose and lipids

(42). Furthermore, Zhao et al. demonstrated that inulin-induced

SCFAs interact with FFARs expressed on L cells, promoting the

secretion of intestinal peptides (including GLP-1 and fasting

peptide YY (PYY)), thereby improving glucose metabolism and

insulin resistance (112, 113).

Tryptophan is one of the eight essential amino acids. It is the

only amino acid that contains an indole (bicyclic compound)

structure. Tryptophan can be obtained only from the diet. The

usual tryptophan metabolic pathways are kynurenine, indole, and

serotonin (114). Tryptophan metabolites and kynurenine inhibit

activated T cells, B cells and natural killer (NK) cells selectively

under physiological status, and promote immunomodulatory effects

by activating aryl hydrocarbon receptors (115). Indole-3-acetate can

activate ILC3s (116). Indole can upregulate the expression of TJ

protein mucin and anti-inflammatory factor protein IL-10 in IECs,

and downregulate expression of the pro-inflammatory factor IL-8

(117, 118). Dietary supplementation with inulin can increase levels

of alistipes and indole-3-acrylic acid, which are involved in
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tryptophan metabolism and improve obesity (47). Tryptophan

metabolism is one of the key metabolic pathways affected by

changes in intestinal microbiota and is closely related to intestinal

immune regulation (115, 119). A metabolomic analysis targeting

tryptophan metabolism showed that inulin intervention

upregulated fecal levels of indole-3-acetate and kynurenine in rats

with NAFLD, while downregulating levels of kynurenine and 5-

hydroxyindoleacetic acid (21). Thus, inulin can mitigate pro-

inflammatory effects.
Role of inulin in disease

Inulin can regulate the metabolism of glucose, lipids, and amino

acids in addition to intestinal immune and systemic

immunomodulatory effects. Its intestinal metabolites also exert

beneficial functions. Therefore, inulin can improve the symptoms

of many diseases, such as metabolic syndrome, IBD, and chronic

kidney disease(CKD), associated with intestinal inflammation and

intestinal dysbiosis, as well as allergic diseases and tumors related to

immune imbalance (Figure 2). In Table 3, we have summarized

some information about clinical trials on inulin use in different

diseases, and the adverse effects caused by inulin.
Metabolic syndrome

Metabolic syndrome is largely caused by physical inactivity and

excess caloric intake. Patients with metabolic syndrome often have

abdominal obesity, insulin resistance, hyperglycemia,

hyperlipidemia and hypertension. Growing evidence suggests that

obesity and metabolic disorders are associated with ecological

dysbiosis of the gut microbiota, and that increased intake of DF is

beneficial in improving ecological dysbiosis (131, 132). Thus,

dietary inulin is a potential agent for improving disorders of

glucose and lipid metabolism (20, 125, 128).

Studies have demonstrated that inulin intake modulates

ecological dysbiosis, reduces the level of fasting glucose, attenuates

insulin resistance, and improves lipid disorders (126, 127).

However, some patients may suffer from mild gastrointestinal

discomfort, including bloating and loose stools (45, 120, 121,

123). In a mouse model of a Western diet (42% of calories from

fat, 43% of calories from carbohydrates, and 15% of calories from

protein)-induced dysbiosis colonized with human vegan

microbiota, inulin supplementation rendered a shift from protein

hydrolysis to glycolytic fermentation of the gut microbiota. This

action resulted in fewer sulfur-containing compounds and more

SCFAs, which contributed to improved lipid denaturation and

glucose homeostasis (133). The same improvement in the

metabolism of glucose and lipids was also observed in ob/ob mice

upon inulin treatment (42). Inulin also shows a significant

improvement in type I diabetes mellitus (T1DM) in addition to

T2DM. Disruption of the gut barrier leads to activation of

pancreatic islet-reactive T cells and triggers autoimmune T1DM

(134, 135), and diet is one of the most important factors in affecting
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TABLE 3 Effects of inulin ingestion in human studies.

Treatment Duration Subjects Effects Adverse effects Reference

Inulin (10 g/d) 3 months Diabetes
n=27

Overall improvement in glycemic index, increased serum 10 g/d of
butyric acid and propionic acid

– (120)

Inulin (10 g/d) 6 weeks Adults at risk of
T2DM
n=24

Increased Bifidobacterium abundance in gut Mild gastrointestinal
side effects, including
bloating and loose

stools

(121)

10 g/d of inulin
or maltodextrin

8 weeks Women suffering
from obesity or
depression
n=45

No significant beneficial effects on depressive symptoms, gut
permeability, or inflammatory biomarkers

Gastrointestinal
complaints (flatulence,

soft stools)

(122)

Inulin (60.2%) in
20-g formula

5 weeks Healthy adults
n=8

Suppressed postprandial glycemic response – (123)

Inulin-type
fructans
(16 g/d)

6 weeks Patients with
T2DM
n=35

No significant effects on appetite hormones, subjective feeling of
appetite or energy intake

Gastrointestinal
symptoms (flatulence)

(124)

Inulin-type
fructans
(16 g/d)

6 weeks Patients with
T2DM
n=25

A significant bifidogenic effect and increased fecal concentration of
SCFAs

– (19)

Butyrate (600
mg/d) + high-
performance
inulin (10 g/d)

45 days Patients with
T2DM
n=60

A significant increase in expression of miR-146a and miR-9, and
antioxidant capacity

– (125)

45 g of milk
powder with
inulin and
resistant dextrin

12 weeks Older patients
with T2DM
n=99

Reduced systolic BP, diastolic BP, fasting and 2-h postprandial
plasma glucose level, serum level of glycosylated proteins, and
insulin resistance index; increased 2-h postprandial insulin level
and b-cell function index

No serious adverse
events

(126)

Inulin (1.7 g/d)
in enriched
seafood sticks (50
g/d)

12 weeks Abdominally
obese individuals
n=120

Reduced postprandial atherogenic triglyceride concentrations and
potential protection against T2DM

– (127)

Inulin (16 g/d) 3 months Obese
participants
n=61

BMI decrease, reduced liver stiffness and plasma levels of AST and
cholesterol, and improved glucose intolerance

Rumbling, cramps,
bloating and flatulence,

which could be
improved by physical

activity

(128)

16 g/d inulin 3 months Obese patients
n=106

Improved bodyweight, AST level and insulinemia, decreased
abundance of Desulfovibrio and Clostridium, and increased
abundance of Bifidobacterium, but without gut microbiota changes
or metabolic improvements after metformin treatment

Nausea, cramp, reflux
and rumbling

(43)

Inulin-propionate
ester (20 g/d)

42 days Overweight and
obese adults not
suffering from
diabetes mellitus
n=12

Improved insulin resistance, increased abundance of
Actinobacteria and decreased abundance of Clostridia

Stomach discomfort,
nausea, bloating,

flatulence, belching,
heartburn

(45)

10 g/d of a
mixture of inulin
and oligofructose

12 weeks Patients
undergoing
continuous
ambulatory
peritoneal dialysis
n=16

Changes in the composition of intestinal microbiota, reduction of
the serum levels of uric acid, and increase in fecal degradation of
uric acid

– (129)

Inulin-type
fructans (10 g/d)

3 months Patients
undergoing
continuous
ambulatory
peritoneal dialysis
n=22

Altered composition of intestinal microbiota No adverse effects (130)
F
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T2DM, type 2 diabetes mellitus; SCFAs, short-chain fatty acids; BP, blood pressure; BMI, body mass index; AST, aspartate transaminase.
rontiersin.org

https://doi.org/10.3389/fimmu.2023.1224092
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sheng et al. 10.3389/fimmu.2023.1224092
gut homeostasis. Several studies have shown that an inulin-rich diet

can promote a beneficial gut microbiota composition, and increase

expression of TJ proteins and mucins, thereby preventing and/or

treating T1DM (55, 136, 137). The improvement of T1DM by inulin

is dependent on its modulation of the intestinal metabolic profile

because the fermentation of inulin by gut microbiota promotes

SCFAs production and a subsequent increase in the number of

Foxp3+ Treg and IL-10+ Tr1 cells, which may limit activation of

pancreatic islet- reactive T cells (138).

Intriguingly, another study found that mice supplemented with

inulin undertook more locomotive activity than those

supplemented with cellulose. Those data suggested that inulin

intake intensified the willingness of mice to exercise and

promoted energy expenditure in obese mice (139). However, the

mechanisms behind these changes are largely unknown and may be

related to the regulation of the nervous system by inulin

metabolites. Guo et al. found that inulin could modulate

neurological disorders through the microbiome-gut-brain axis

(140). In addition, Shulman and colleagues reported that a HFD

induced an increase in acetate production in the intestine of mice,

and then the increased acetate level led to activation of the

parasympathetic nervous system and promoted secretion of

growth hormone-releasing peptide and glucose-stimulated insulin.

In that study, direct stimulation of isolated pancreatic islets with

acetate failed to promote insulin secretion. However, these changes

were not observed when the parasympathetic nerves were cut off,

which indicated that parasympathetic nerves in the gut-brain-

pancreatic-b-cell axis might be involved in the regulation of

inulin or its metabolites (141). However, other researchers have

reported no significant effect on appetite after inulin intake
Inflammatory bowel disease

IBD includes Crohn’s disease and UC. Chronic intestinal

inflammation is the typical feature of IBD. IBD development is

associated with environmental factors, genetic conditions, faults in

the immune system, and changes in the microbiota (142). Inulin has

been reported to limit intestinal inflammation, modulate the

intestinal microbiome, and improve intestinal barrier function. A

randomized controlled trial supported the notion that

oligofructose-enriched inulin can improve gastrointestinal

symptoms in patients with active UC without significant side

effects (143). Therefore, inulin is also being used increasingly for

IBD treatment (144, 145).

The ameliorative effect of inulin on IBD is related mainly to its:

reshaping of intestinal microbiota structure; promoting the growth

of beneficial bacteria; inhibiting expression of inflammatory factors;

improving the intestinal mucosal barrier. As mentioned above,

inulin significantly increased the abundance of beneficial bacteria

such as Bifidobacterium rhamnosus. In an animal model induced by

DSS, inulin combined with Lactobacillus rhamnosus increased the

abundance and diversity of intestinal microbiota, decreased

expression of pro-inflammatory cytokines, and relieved UC (146).
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In a study comparing the differences between inulin and another

type of DF, the authors found that inulin had a modulatory effect on

the microbiota of mice with DSS-induced colitis, reduced

expression of pro-inflammatory cytokines significantly, and

improved intestinal barrier function (147). Those results support

that the notion that DFs (especially inulin) are promising dietary

supplements to alleviate intestinal inflammation. In addition, inulin

can be used as an immune- system modulator for the treatment and

management of IBD, and its mechanism is related to the promotion

of secretion of antimicrobial peptides and improvement of

intestinal mucosal immunity (148).

Results in animal IBD models and humans suggest that inulin

intake can help to improve the intestinal mucosal barrier and

suppress intestinal inflammation (149), but some research teams

have reached opposite conclusions. For example, Armstrong and

colleagues found that unfermented inulin induced secretion of pro-

inflammatory cytokines in a subset of IBD intestinal biopsies cultured

ex vivo (150). In several other animal studies, researchers have found

that dietary supplementation with inulin may be beneficial for low-

grade inflammation and associated metabolic disease, but that it also

exacerbates the severity of DSS-induced acute colitis (151–153).

Furthermore, treatment with an “antibiotic cocktail” led to

intestinal ecological dysregulation and induced colitis in mice,

whereas supplementation with inulin-type fructans delayed the

recovery of this antibiotic-induced intestinal inflammation and

decreased the recovery of Treg and B cells in the lamina propria.

Moreover, although supplementation with inulin-type fructans

inhibited expression of certain pro-inflammatory genes in the colon

(e.g., inducible nitric oxide synthase, TNF-a), it also reduced sIgA

secretion in the colon. Inulin also increased the serum level of LPS,

reduced secretion of the anti-inflammatory mediator transforming

growth factor-b1, and promoted secretion of the pro-inflammatory

cytokine IL-17A (154). In a study on the anti-tumor effect of inulin,

inulin promoted the infiltration of gd T cells and production of IFN-g
in tumors, but also led to expression of several inflammation-related

genes in IECs, including TNF-a, cyclooxygenase-9, and MMP-9,

thereby exacerbating inflammation in the intestine, but this seems to

be associated with immune surveillance. Inulin also triggered the

expression of macrophage inflammatory protein-2, IL-22 and the

transcription factor Foxp3 in CD45+ cells in the lamina propria, and

these were beneficial in suppressing inflammation. Those results

suggest that an inulin diet triggers activation of gd T cells in

epithelial lymphocytes and immune surveillance in IECs, as well as

induction of tissue repair signals and tolerance in cells of the lamina

propria (69).

Overall, inulin is beneficial for IBD because it reshapes the

intestinal microbiota structure, suppresses intestinal inflammation,

and improves intestinal cellular and mucosal immunity. However,

the gas produced by fermentation of inulin may aggravate the

gastrointestinal symptoms of patients, thus limiting its beneficial

effects (155). In two randomized controlled clinical trials, inulin

ingestion did not change appetite, intestinal permeability, or levels

of inflammatory biomarkers, but caused flatulence and soft stools

(122, 124).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1224092
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sheng et al. 10.3389/fimmu.2023.1224092
Chronic kidney disease

Urea accumulation associated with CKD can affect the

composition of the gut microbiome and increase the permeability

of the intestinal epithelial barrier. If the intestinal barrier is

breached, uremic substances, including indole sulfate, para-cresol

sulfate, and trimethylamine N-oxide (TMAO), can lead to

endotoxemia and systemic inflammation (156, 157). Recently,

modification of the gut flora by supplementation with prebiotics

has been considered to be a potential therapeutic strategy to reduce

uremic toxins of intestinal origin and inflammation. For example,

inulin supplementation changed the composition of intestinal

microbiota, reduced serum levels of uric acid, and increased

degradation of fecal uric acid in patients with renal failure (129).

Moreover, intake of inulin-type fructans limited the production of

indoles (precursors of indoxyl sulfate) in patients undergoing

peritoneal dialysis (158). Similar results were observed by

Mitrović et al. They found that inulin treatment reduced the

serum level of indoxyl sulfate, improved the glomerular filtration

rate, and reduced the level of high sensitivity C-reactive protein

levels by altering the gut microbiota composition in patients with

CKD (159). In addition, long-term consumption of inulin-

containing fructan water reduced serum levels of glucose, total

cholesterol, uric acid and creatine kinase in mouse offspring,

suggesting that inulin-type fructans contribute to a reduced risk

of kidney disease (160).

However, in another study, intervention with inulin-type

fructans (10 g/day) for 3 months altered composition of gut

microbiome, but did not reduce the plasma TMAO level in

patients undergoing peritoneal dialysis (130). This observation

may be related to the duration and dose of the intervention.

Furthermore, according to the results of a prospective cohort

study, higher dietary inulin intake also failed to reduce the

incidence of CKD and cardiovascular disease in the population,

but prevented hypertension and T2DM, which are major risk

factors for cardiovascular and renal events (161). Therefore, given

that inulin showed an overall benefit or a neutral effect, inulin is

considered to be a safe and reliable strategy to improve the uremic

toxin and micro-inflammatory state in patients with CKD (159).
Allergic diseases

ILC2s and Th2 cells are among the key effector cells in allergic

diseases, and the cytokines they secrete (IL-4, IL-5, IL-13) mediate

the allergic immune response (162). Inulin and its intestinal

metabolites (SCFAs) may be involved in mediating the

amelioration of allergic diseases by regulating ILC2s and Th2 cells.

Several studies have shown that inulin supplementation in mice

during gestation or lactation induced the growth of beneficial

bacteria in the intestine of maternal mice. These beneficial

bacteria could also be transferred to their offspring, enhance their

intestinal barrier function, and increase the number of B-cell and

Treg subpopulations in lymph nodes. These actions shaped a more

tolerogenic immune environment that suppressed Th2 responses to

alleviate food allergy (163, 164). Furthermore, in airway allergic
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responses, propionate ameliorates inflammation by altering bone-

marrow hematopoiesis in mice via FFAR3, promotes the

production of DC precursors, and inhibits the differentiation

capacity of Th2 cells (72). Several studies have demonstrated that

inulin diets exhibit benefits for allergic diseases (including asthma),

but inulin itself can cause rare allergic reactions (e.g., itching, rash,

swelling, wheezing, difficulty in breathing, unconsciousness)

(165–167).

In addition, inulin (especially delta inulin) has been used as an

adjuvant to enhance the immune response (168). Venom

immunotherapy is effective in improving anaphylactic reactions

to stings from Hymenoptera spp, but it can also cause severe (and

even life-threatening) immune reactions. Plant-based

polysaccharide delta inulin is a new adjuvant with low

reactogenicity that can enhance vaccine immunogenicity and

antigen-sparing. A randomized controlled trial reported the

benefit of delta inulin as an immune adjuvant in patients with

bee-venom allergy, and found that delta inulin increased the levels

of specific IgG4 significantly during the early induction phase (169).

In conclusion, even though inulin may cause allergic reactions, the

function of inulin as a dietary supplement to alleviate allergic

diseases (e.g., food allergies, asthma) or as an adjuvant to enhance

vaccine efficacy has been demonstrated widely and utilized.
Cancer

Dietary supplementation with whole grains and DF usually

reduces the incidence of tumors as well as the risk of postoperative

oncologic complications and tumor-related mortality (170, 171).

Studies have observed the tumor growth inhibitory effects of inulin,

though the mechanisms remain largely unexplored (172, 173).

Nevertheless, several mechanisms pertaining to the activity and

regulation of inulin in anti-tumor immunity have been elucidated in

recent years.

Perhaps the anti-tumor effects of inulin rely largely on its ability

to promote immune ce l l r ecru i tment to the tumor

microenvironment. Two studies found increased infiltration of

immune cells in the tumor bed after supplementation with an

inulin-rich diet (69, 70). Upon subcutaneous injection of a

syngeneic B16- ovalbumin melanoma tumor, inulin uptake

promoted infiltration of CD4+ and CD8+ T cells and increased

IFN-g production, thereby triggering an effective Th1 anti-tumor

response and inhibiting tumor growth. Meanwhile, inulin treatment

increased expression of chemokines (CCL4, CCL8), inflammatory

vesicle-related genes (TLR3, TLR7) and antigen presentation-

related genes (CD40, Stat1, ICOS), induced anti-tumor immunity,

and inhibited the growth of colon tumors. Moreover, either alone or

in combination with SCFAs, inulin affected tumor growth,

indicating that the anti-tumor effects of inulin were not

dependent on SCFAs (70). Notably, in addition to B16-OVA

melanoma tumors, the anti-tumor effects of inulin were also

confirmed in tumor models of MCA205 fibrosarcoma and MC38

colorectal cancer (CRC) cell lines, and such effects were associated

with the response of Th1 cells (69). In addition, gd T cells are

unconventional T cells that recognize metabolism-related molecules
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and have potent anti-tumor activity. Inulin can activate gd T cells

via gd T cell receptor signaling, and promote IFN-g production

(174). In mice with 1,2-dimethylhydrazine-induced colon cancer,

the amelioration of colon cancer in mice by inulin involved

modulation of Janus kinase-1/b-catenin signaling (175).

In liver-associated tumors, the anti-tumor effect of inulin is

associated with its metabolites and subsequent immunomodulation.

In mice with hepatocellular carcinoma (HCC), an increased acetate

level by fecal-bacterial transplantation or direct administration of

acetate inhibited the activity of HDACs, increased acetylation of

sex-determining region Y-box transcription factor 13 (Sox13) at site

K30, and decreased expression of Sox13, thereby reducing IL-17A

production by ILC3s and retarding tumor growth. In addition, a

combination of acetate with blockade of programmed death (PD)-

1/PD-1 ligand promoted anti-tumor immunity significantly and

enhanced the treatment efficacy of PD-1 (176).

Inulin has shown protective and tumor-suppressive effects in

most CRC studies, but other reports have indicated that inulin intake

promotes CRC development. The reason for this discrepancy may be

due to differences in gut microbial composition. Inulin

supplementation led to increased colonization of polyketide

synthase-positive (pks+) E. coli strain NC101, whereas pks+

Escherichia coli can promote carcinogenesis and facilitate CRC

progression through the production of colistin (a genotoxin that

induces double-stranded DNA breaks) (177). Therefore, given the

prevalence of pks+ E. coli in healthy and CRC populations, individuals

colonized with pks+ bacteria should use inulin with caution (178).

Furthermore, supplementation of inulin can induce cholestasis and

HCC, which may be due to inulin fermentation (179).
Conclusions

DFs are indispensable supplements in daily life. Inulin and its

metabolites (SCFAs) have key roles in lowering blood glucose,

reducing bodyweight, and improving insulin resistance. The

fermentation of inulin by intestinal microbiota can promote the

proliferation of beneficial flora, regulate intestinal pH and maintain
Frontiers in Immunology 12
the homeostasis of the intestinal ecological environment. Therefore,

dietary intake of inulin may serve as a simple but effective way to

improve intestinal and systemic immune function and prevent

diseases, and sufficient intake of inulin fiber is recommended.

However, inulin ingestion may cause gastrointestinal symptoms,

allergies or even more serious adverse effects, so it should be

consumed under the supervision of healthcare professionals.
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