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1Department of Nephrology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing,
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Background:While targeted systemic inflammatory modulators show promise in

preventing chronic kidney disease (CKD) progression, the causal link between

specific inflammatory factors and CKD remains uncertain.

Methods: Using a genome-wide association study of 41 serum cytokines from

8,293 Finnish individuals, we conducted a bidirectional two-sample Mendelian

randomization (MR) analysis. In addition, we genetically predicted causal

associations between inflammatory factors and 5 phenotypes, including CKD,

estimated glomerular filtration rate (eGFR), dialysis, rapid progression of CKD,

and rapid decline in eGFR. Inverse variance weighting (IVW) served as the primary

MRmethod, while MR-Egger, weighted median, and MR-pleiotropy residual sum

and outlier (MR-PRESSO) were utilized for sensitivity analysis. Cochrane’s Q test

for heterogeneity. Leave-one-out method ensured stability of MR results, and

Bonferroni correction assessed causal relationship strength.

Results: Seventeen cytokines were associated with diverse renal outcomes.

Among them, after Bonferroni correction test, higher tumor necrosis factor

alpha levels were associated with a rapid decrease in eGFR (OR = 1.064, 95% CI

1.028 – 1.103, P = 0.001), higher interleukin-4 levels were associated with an

increase in eGFR (b= 0.003, 95%CI 0.001– 0.005, P= 0.002), and higher growth

regulated oncogene alpha (GROa) levels were associated with an increased risk

of CKD (OR=1.035, 95% CI 1.012 - 1.058, P = 0.003). In contrast, genetic

susceptibility to CKD was associated with an increase in GROa, and a decrease

in eGFR may lead to an increase in stem cell factor. We did not find the presence

of horizontal pleiotropy during the analysis.

Conclusion:We discovered causally related inflammatory factors that contribute

to the initiation and progression of CKD at the genetic prediction level.

KEYWORDS

chronic kidney disease, systemic inflammation, inflammatory modulators, Mendelian
randomization, genetic causal association
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1 Introduction

Chronic kidney disease (CKD) is a growing global health

burden with increasing prevalence and incidence. According to a

systematic analysis of the Global Burden of Disease Study, the

global mortality rate from CKD has increased by 41.5% between

1990 and 2017, resulting in approximately 1.23 million deaths in

2017 (1). Moreover, CKD imposes a substantial economic burden,

with the cost of CKD and ESRD representing 24% of total annual

Medicare expenditures in the United States (2). In low- and middle-

income countries, more than half of ESDR patients are unable to

continue dialysis due to the high cost of treatment (3–5). Despite

the high prevalence and economic burden of CKD, there is a lack of

effective treatments to slow the progressive loss of renal function

and the development of ESRD (6). Therefore, a better

understanding of the pathogenesis of CKD is essential to identify

new treatment options.

Inflammation may be a promising target for intervention in CKD

(7). Regardless of the etiology of CKD, chronic inflammation may be

present as a cause and consequence of glomerular and

tubulointerstitial pathology (8–11), as a microinflammatory state

significantly different from that of the normal renal function

population is observed in patients with many forms of CKD with

asymptomatic proteinuria (12, 13). Although there are several

mechanisms that contribute to the pathological alterations of

glomeruli and tubules, inflammation is the key link between them.

Transcription factors induce chronic hypoxia in the tubular

mesenchyme, leading to peripheral capillary sparing, which triggers

adverse phenotypes such as apoptosis. Consequently, mediators

mediate inflammatory cell infiltration and fibrosis, impairing local

oxygenation and causing aseptic inflammation (14–16). Persistent

microinflammation aggravates reactive oxygen species (ROS) loss,

exacerbating progressive renal function decline in a mutually

reinforcing manner throughout CKD progression (17–19).

Oxidative stress induces inflammation through the activation of

nuclear factor kappa-B (NF-kB) (20), and the subsequent

production of inflammatory factors is associated with a progressive

decrease in estimated glomerular filtration rate (eGFR) (21, 22).

Observational studies have shown that inflammation is one of the

most important pathways for the decline in renal function in

European patients with nine different types of CKD (23). These

evidences suggest that inflammation is directly associated with CKD

and its complications and that inflammation is both the initiator and

the outcome of a vicious cycle. Current population-based clinical

studies have not yet demonstrated a direct causal association between

inflammation and CKD.

Mendelian randomization (MR) uses genetic variants to

establish causal links, overcoming biases, resembling nature’s own

large-scale randomized controlled trial (RCT) (24). A recent MR

analysis has shed new light on the potential therapeutic role of

inflammatory modulators in CKD by identifying a causal

association between elevated C-reactive protein levels and diabetic

nephropathy (25). Bidirectional MR analysis, an extension of

conventional MR, has been instrumental in untangling intricate

relationships in biological systems, including feedback loops

between exposure and outcome variables (26).
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To comprehensively evaluate the causal association between

systemic inflammatory regulators and CKD, we conducted a

bidirectional MR study. Given the prolonged progression of CKD,

we included multiple endpoints in our analysis, including eGFR,

rapid decline in renal function (Rapid3, defined as a decline in eGFR

exceeding 3 mL/min/1.73 m2 per year), rapid progression to CKD

(CKDi25, defined as a decline in eGFR ≥25% of baseline while

progressing from no CKD to CKD), and dialysis. By utilizing a

bidirectional MR approach, we aimed to provide a more

comprehensive understanding of the complex relationships

between inflammatory factors and dynamic changes in

renal function.
2 Method

2.1 Data source of inflammatory markers

We obtained genome-wide association analysis (GWAS) data for

circulating concentrations of 41 inflammatory factors from meta-

analyses involving 8293 individuals from three independent

population cohorts: the Cardiovascular Risk in Young Finns Study

(YFS), FINRISK1997, and FINRISK2002 (27). A total of 48 cytokines

were measured in YFS and FINRISK2002, following the instructions

of the Pro Human Cytokine assay kit (Bio-Rad, Hercules, California,

USA). Seven cytokines with missing values exceeding 90% were

removed, and 17 cytokines that overlapped with those in

FINRISK2002 and YFS were searched for in FINRISK1997.

Cytokines were quantified from EDTA plasma in FINRISK1997,

from heparin plasma in FINRISK2002, and from serum in YFS. In

the original study, a series of rigorous interventions were employed

to standardize the expression of cytokine effect sizes, ensuring robust

and reliable results. To begin with, cytokine distributions were

meticulously normalized through an inverse transformation

process. Subsequently, the transformed phenotypes underwent

meticulous adjustments for significant genetic principal

components, such as age, sex, and body mass index. To ensure the

adherence to normal distribution assumptions, another round of

meticulous inverse transformation was performed on the model

residuals. Subsequently, genome-wide association testing was

conducted with the Snptest2 software v.2.5beta. Meta-analyses

were performed using METAL software (v.2011-03-25). We have

placed these cytokine source details in the Supplementary Table.
2.2 Data source of CKD
and kidney function

We utilized data from the CKDGen Consortium for

instrumental variables associated with CKD and eGFR, which

were the primary outcomes. CKD was defined as eGFR < 60 ml/

min/1.73m2, and the GWAS data for CKD were obtained from a

meta-analysis involving 23 cohorts of European origin comprising

41,395 patients and 439,303 controls (28). eGFR GWAS data were

obtained from meta-analyses conducted in the UK Biobank (n =

436,581, European origin) and the CKDGen consortium (n =
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765,348, predominantly European origin) (29). In the UK Biobank,

serum creatinine was measured using a Beckman Coulter AU5800

analysis and substituted into the Chronic Kidney Disease

Epidemiology Collaboration (CKD-EPI) formula to calculate

eGFR (30, 31). For individuals aged less than 18 years, the

Schwartz formula was used instead (32). Additionally, to assess

the relationship between inflammatory factors and dynamic

changes in renal function, we included three cohort studies as

endpoints. Rapid3 (34,874 cases and 107,090 controls) and CKDi25

(19,901 cases and 175,244 controls) data were obtained from the

CKDGen Consortium and a GWAS meta-analysis of 42 studies

primarily conducted in UK Biobank with European ancestry (33).

Dialysis data were obtained from the Finngen database (r8) of

Finns, including 954 cases and 330,300 controls (34).
2.3 Filtering of single nucleotide
polymorphisms (SNPs)

Selection of appropriate SNPs is critical for the success of MR

analysis. The fundamental assumption of MR requires that all SNPs

strongly and independently predict exposure at the genome-wide

significance level. In our study, we used 41 inflammatory factor-

associated SNPs as instrumental variables for exposure. However, a

strict threshold of 5 × 10-8 would have excluded the majority of

SNPs. Therefore, we set a relatively lenient but still strongly

significant threshold of 5 × 10-6, based on previous studies (35),

to include most inflammatory modulator-associated SNPs with an

R2 < 0.001 and kb = 10,000 to eliminate chain imbalance. For CKD

and renal function-related phenotypes, we used a threshold of 5 ×

10-8 for all instrumental variables except for Rapid3, for which we

used a threshold of 5 × 10-6 due to fewer eligible SNPs, and we

similarly set R2 < 0.001 and kb = 10,000 to eliminate linkage

disequilibrium. Additionally, we removed weakly validated SNPs

with F values less than 10 (equation: F = b2 exposure/SE
2
exposure) to

ensure the strength of association between instrumental variables

and exposure factors. These screening conditions ensure the

credibility of the results of our study.
2.4 Two-sample MR

We used two-sample MR analysis to assess the causal effect of

systemic inflammatory modifiers on CKD and renal function.

Instrumental estimates of MR for individual SNPs were derived

using instrumental variable ratios. Assuming valid instruments

without pleiotropy, we performed inverse variance-weighted fixed

effects (IVW-FE) MR between instrumental estimates and standard

errors (36), following the three main assumptions of MR (see

Figure 1). To address horizontal pleiotropy, caused by genetic

variation influencing outcomes through pathways other than the

exposure, we used multiple methods: inverse variance-weighted

random effects (IVW-RE), weighted median (WM), and MR-Egger

approaches (37, 38). Moreover, we performed a comprehensive

sensitivity analysis employing multiple methods to ensure the
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robustness of our findings. These methods included the

heterogeneity test, horizontal pleiotropy assessment, funnel plot

analysis, and leave-one-out analysis of IVW-RE. In the leave-one-

out analysis, we systematically excluded one variant at a time to

examine its impact on the results. To assess the individual

instrumental variables, we employed the instrumental variable

ratio (Wald) estimator. This estimator allowed us to evaluate the

strength and validity of each instrument used in our instrumental

variable analysis. To assess heterogeneity in individual causal

effects, we calculated Q-statistics, with p-values < 0.05 indicating

heterogeneity (39). In addition to the aforementioned approaches,

we also employed a complementary WM method. This method

ensures a reliable MR estimate by validating at least 50% of the

inverse-variance and ranking its weighted variance. To tackle

horizontal pleiotropy, we employed MR pleiotropy residual sum

and outlier (MR-PRESSO) test for correction (40). When multiple

sets of data are processed and compared simultaneously, there is a

risk of encountering false positive results due to random effects. To

mitigate this potential issue, we employed the Bonferroni correction

test to assess the strength of the causal relationship between the

exposure and outcome variables. A significance level of P < 0.05 was

considered as suggestive evidence for a causal relationship. We used

a significance threshold of 0.0045 for chemokines (11 factors),

0.0056 for growth factors (9 factors), 0.003125 for interleukins

(16 factors), and 0.01 for other types (5 factors).
3 Results

3.1 Selection of instrumental variables

In our study, we initially screened 41 inflammatory factors for

instrumental variables separately, resulting in a total of 452 SNPs

that met our set screening criteria, all of which exhibited strong

association strength (F-statistics range of 11-789). In the reverse

MR analysis, we screened 5 instrumental variables related to CKD,

resulting in 60390 SNPs meeting the significance range. After

removing chain imbalance, we retained 514 SNPs. Further

calculation of the F-statistics of these SNPs revealed that only 1

SNP, namely rs13329952, was strongly correlated with the exposure

factor for Rapid3 with an F-statistic of 14, and rs12922822 was

identified as an instrumental variable for CKDi25 with an F-statistic

of 27. Additionally, we identified 23, 340, and 5 instrumental

variables that exhibited strong association with CKD, eGFR, and

dialysis, with F-statistics ranging from 25-693. The details of these

SNPs are shown in the Supplementary Table.
3.2 Causal link between inflammatory
factors and CKD

The study found evidence of a causal link between 10

inflammatory factors and an increased risk of developing CKD

(as shown in Figure 2). The IVW-RE method for genetic prediction

revealed that higher levels of cutaneous T-cell attracting (CRACK)
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(OR=1.128, 95% CI 1.014 - 1.255, P = 0.027), growth regulated

oncogene alpha (GROa) (OR=1.035, 95% CI 1.012 - 1.058, P =

0.003), beta-nerve growth factor (NGF-b) (OR=1.074, 95% CI 1.005

- 1.148, P = 0.036), stem cell growth factor beta (SCGF-b)
(OR=1.053, 95% CI 1.008 - 1.100, P = 0.021), interleukin-8 (IL-8)

(OR=1.025, 95% CI 1.006 - 1.046, P = 0.011), and interleukin-7 (IL-

7) (OR=1.044, 95% CI 1.011 - 1.077, P = 0.008) were associated with

an increased risk of CKD, and the results were similar with the

IVW-FE, MR-Egger and weighted median analyses. The results

from IVW-FE showed that higher levels of IL-13 were associated

with a higher risk of CKD (OR=1.035, 95% CI 1.001 - 1.071, P =

0.049). We identified 2 of 5 SNPs for TNF-b and 2 of 10 SNPs for

stromal-cell-derived factor 1 alpha (SDF-1a) associated with CKD.

The study found that higher levels of SDF-1a (OR=1.211, 95% CI

1.018 - 1.442, P = 0.033) and TNF-b (OR=1.114, 95% CI 1.022 -

1.215, P = 0.011) were associated with an increased risk of CKD

using Wald analysis. However, the IVW-FE analysis revealed that

lower levels of TNF-related apoptosis inducing ligand (TRAIL)

were associated with a higher risk of CKD (OR=0.968, 95% CI 0.938

- 0.999, P = 0.047), which was observed in the IVW-RE, MR-Egger

and weighted median analyses that were consistent. Although there

was some evidence of heterogeneity based on Q-statistics in the IL-

13 analysis, no evidence of heterogeneity was found in the analysis

of other inflammatory factors. Supplementary eFigure 1 displays a

scatter plot depicting the association between genetically predicted

inflammatory regulators and CKD. Horizontal pleiotropy was not

detected through MR-Egger and MR-PRESSO tests (P >0.05).

Additionally, the leave-one-out test did not identify any variants

that significantly influenced the overall outcome (Supplementary

eFigure 2). The funnel plot displayed a symmetrical distribution

(Supplementary eFigure 3). Results of the Bonferroni correction test
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demonstrated that higher levels of GROa remained significantly

associated with an increased risk of CKD.
3.3 Causal link between inflammatory
factors and eGFR

The study found evidence of a causal link between 10

inflammatory factors and an increased risk of declined eGFR (as

shown in Figure 3). The IVW method for genetic prediction

revealed that 1 SD-increase in SDF-1a(b = -0.005, 95% CI -0.007

- -0.003, P = 0.000), NGF-b (b = -0.003, 95% CI -0.005 - -0.001, P =

0.001), SCGF-b (b = -0.002, 95% CI -0.003 - -0.001, P = 0.001) and

stem cell factor (SCF)(b = -0.004, 95% CI -0.005 - -0.002, P = 0.000)

by the allele were associated with decreased eGFR. The difference is

that a genetically predicted 1 SD-increase in platelet-derived growth

factor BB (PDGF) (b = 0.001, 95% CI 0.000 – 0.002, P = 0.019), IL-4

(b = 0.003, 95% CI 0.001 – 0.005, P = 0.002) and IL-2ra (b = 0.001,

95% CI 0.000 - 0.002, P = 0.032) by the allele were associated with

increased eGFR. The analysis of SDF-1a, NGF-b, SCGF-b and SCF

showed some evidence of heterogeneity based on Q-statistics, while

no evidence of heterogeneity was found in the analysis of other

inflammatory factors. Supplementary eFigure 4 provided scatter

plots showing the relationship between these inflammatory

regulators and eGFR. MR-Egger and MR-PRESSO tests did not

show evidence of horizontal pleiotropy (P >0.05). The leave-one-

out test did not identify any associated variants that strongly

influenced the overall results (Supplementary eFigure 5), and the

funnel plot showed overall symmetry (Supplementary eFigure 6).

According to the Bonferroni correction test, higher levels of IL-4

maintained a strong causal relationship with elevated eGFR.
FIGURE 1

Assumptions of a mendelian randomization analysis for inflammatory regulators and risk of CKD. Broken lines represent potential pleiotropic or
direct causal effects between variables that would violate Mendelian randomization assumptions. eGFR, estimated glomerular filtration rate.
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3.4 Causal link between inflammatory
factors and dynamic changes
in renal function

Results has revealed a causal relationship between seven

inflammatory factors and changes in renal function, with five

factors associated with Rapid3 risk, two with CKDi25 risk, and

two with dialysis risk (see Figure 4). A genetically predicted 1 SD-

increase in IL-13 (OR = 1.011, 95% CI 1.001 - 1.021, P = 0.029),

IL-8 (OR = 1.030, 95% CI 1.006 - 1.053, P = 0.013) and IL-7 (OR =

1.017, 95% CI 1.002 - 1.032, P = 0.031) by the allele was associated

with a higher risk of Rapid3. Macrophage inflammatory protein 1

beta (MIP1b) was associated with an elevated risk of CKDi25 (OR

= 1.029, 95% CI 1.002 - 1.056, P = 0.036) and SCF was associated
Frontiers in Immunology 05
with an elevated risk of dialysis (OR = 1.596, 95% CI 1.076 – 2.368,

P = 0.020). TNF-a was associated with an elevated risk of CKDi25

(OR = 1.034, 95% CI 1.006 - 1.063, P = 0.018) and Rapid3 (OR =

1.064, 95% CI 1.028 – 1.103, P = 0.001). Interferon gamma (IFN-g)
was associated with an increased risk of dialysis (OR = 1.692, 95%

CI 1.124 – 2.458, P = 0.012) and Rapid3 (OR = 1.029, 95% CI 1.002

– 1.056, P = 0.036). We found no evidence of heterogeneity in the

course of our analysis. Scatter plots of the relationships between

these inflammatory regulators and Rapid3, CKDi25, and dialysis

are provided in Supplementary eFigures 7, 10, 13, respectively.

MR-Egger and MR-PRESSO tests did not show evidence of

horizontal pleiotropy (P >0.05). The leave-one-out test did not

identify any associated variants that strongly influenced the

overall results (Supplementary eFigures 8, 11, 14), and the
FIGURE 2

Odds ratio for association of genetically predicted systemic inflammatory regulators with chronic kidney disease. CTACK, cutaneous T-cell
attracting; GROa, growth regulated oncogene alpha; SDF-1a, stromal-cell-derived factor 1 alpha; NGF-B, beta-nerve growth factor; SCGF-B, stem
cell growth factor beta; IL, interleukin; TNF-b, tumor necrosis factor beta; TRAIL, TNF-related apoptosis inducing ligand; MR, mendelian
randomization; CI, confidence internal; OR, odds ratio; IVW-FE, inverse-variance weighted fixed-effects MR; IVW-RE, inverse-variance weighted
random-effects MR; WM, weighted median; IVR, instrumental variable ratio (Wald) estimator; SNP, single nucleotide polymorphism. P value for
heterogeneity based on Cochran's Q statistic for IVW, and Rücker's Q for MR-Egger.
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funnel plot showed overall symmetry (Supplementary eFigures 9,

12, 15). The results of the Bonferroni correction test showed that

higher levels of TNF-a maintained a strong causal relationship

with higher risk of Rapid3.
3.5 Reverse analysis

In this study, we identified causal associations between 17

inflammatory factors and various CKD outcomes through

forward analyses. We also conducted a reverse study to determine

the genetic association between CKD and these 17 inflammatory

factors. The ivw-RE analysis revealed that CKD may lead to higher

levels of GROa (b = 0.144, 95% CI 0.010 - 0.278, P = 0.036), and

reduced eGFR may lead to elevated levels of SCF (b = -1.998, 95%

CI -2.773 - -1.223, P = 0.000). However, we did not observe clear

associations of other inflammatory factors with Rapid3,

CKDi25, and dialysis risk (Supplementary eFigures 16–18).

Figure 5 illustrates a bidirectional causal relationship between

inflammatory factors and CKD. During the analysis, we found no

evidence of horizontal pleiotropy (P >0.05).
Frontiers in Immunology 06
4 Discussion

To our knowledge, our study represents the first large-scale and

comprehensive MR investigation to explore the genetic causal

relationship between systemic inflammatory regulators and CKD.

Previous studies have mainly focused on the cellular or animal level,

examining local inflammation in renal tissues or cells rather than

the systemic inflammatory response of the organism (41, 42).

Observational studies based on clinical settings are often limited

by confounding factors and reverse causation bias, leading to

distorted causal relationships between variables. By integrating

GWAS data from multiple large populations, our study identified

17 inflammatory factors that are genetically associated with various

renal outcomes. Specifically, we found strong causal associations

between GROa and CKD, IL4 and eGFR, and TNF-a and Rapid3.

Subsequent analysis revealed that genetic susceptibility to CKD

resulted in an increase in GROa and SCF. These findings highlight

the genetic regulation of systemic inflammatory factors by chronic

kidney injury.

In this study, we established links between inflammatory factors

and multiple outcomes related to CKD, with some inflammatory
FIGURE 3

Effect for association of genetically predicted systemic inflammatory regulators with estimated glomerular filtration rate. SCGF-B, stem cell growth
factor beta; NGF-b, beta-nerve growth factor; IL, interleukin; SDF-1a, stromal-cell-derived factor 1 alpha; SCF, stem cell factor; PDGF, platelet-
derived growth factor BB; MR, mendelian randomization; CI, confidence internal; OR, odds ratio; IVW-FE, inverse-variance weighted fixed-effects
MR; IVW-RE, inverse-variance weighted random-effects MR; WM, weighted median; SNP, single nucleotide polymorphism. P value for heterogeneity
based on Cochran's Q statistic for IVW, and Rücker's Q for MR-Egger.
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FIGURE 5

Bidirectional causal link between systemic inflammatory factors and chronic kidney disease. CKD, chronic kidney disease; eGFR, estimated
glomerular filtration rate; CKDI25, rapid progression to CKD, i.e., a decrease in eGFR ≥ 25% of baseline, along with progression from no CKD to CKD;
Rapid3, rapid decline in renal function, i.e., a decline in eGFR of more than 3 mL/min/1.73 m2 per year.
FIGURE 4

Odds ratio for association of genetically predicted systemic inflammatory regulators with Rapid3, CKDI25 and dialysis. IL, interleukin; TNF-a, tumor
necrosis factor alpha; IFN-y, interferon gamma; MIP1bb, macrophage inflammatory protein 1 beta; SCF, stem cell factor; MR, mendelian
randomization; CI, confidence internal; OR, odds ratio; IVW-RE, inverse-variance weighted random- effects MR; SNP, single nucleotide
polymorphism; Rapid3, rapid decline in renal function, i.e., a decline in eGFR of more than 3 mL/min/1.73 m2 per year; CKDI25, rapid progression to
chronic kidney disease (CKD), i.e., a decrease in eGFR ≥ 25% of baseline, along with progression from no CKD to CKD. P value for heterogeneity
based on Cochran's Q statistic for IVW, and Rücker's Q for MR- Egger.
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factors playing important regulatory roles in various outcomes,

consistent with previous research. For instance, elevated NGF-b,
SDF-1a, and SCGFb were not only associated with a higher risk of

CKD, but also had the potential to decrease eGFR; increased IL7,

IL8, and IL13 not only contributed to the likelihood of CKD, but

also may have contributed to Rapid3; TNF was associated with both

CKD and CKDi25; increased IFN-g not only contributed to a higher
risk of Rapid3, but also may be causally associated with dialysis.

There is ample evidence to suggest that unresolved inflammatory

processes can lead to renal fibrosis and eventual ESKD, as seen in

conditions such as Alport syndrome, autosomal dominant

polycystic kidney disease (ADPKD), IgA nephropathy, and focal

segmental glomerulosclerosis (43). Our results further validate the

direct causal association between systemic inflammation and

renal function.

IL are the most diverse and extensively studied family of

cytokines with a complex impact on renal function (44). Within

this family, IL-8 is a multifunctional factor that specifically attracts

neutrophils to inflamed tissues, triggering degranulation,

superoxide anion production, respiratory burst, and promoting

the release of inflammatory mediators. IL-8 has been established

as a critical factor in inducing CKD (45). Studies have demonstrated

that not only is IL-8 elevated in adult CKD patients (46), but also in

pre-dialysis CKD children compared to healthy controls (47, 48).

Meanwhile, IL8 has emerged as an independent risk predictor of

CKD and its associated vascular damage. For instance, in patients

with type 2 diabetes mellitus, abnormally elevated IL8 levels were

found to be associated with a 1.41-fold increased risk of urinary

protein (49). Moreover, in patients on hemodialysis, proteomics-

detected IL8 was found to predict all-cause mortality risk ratios of

up to 1.17, with an elevated cardiovascular all-cause mortality risk

ratio of up to 1.34 (50). These predicted risk values align closely

with the findings from our study. Previous investigations have

demonstrated that chemokines with a sequence similar to IL-8

were highly expressed in rodent models with renal cysts (51). In two

different ADPKD cell lines (WT9-7 and WT9-12), IL-8 secretion

and expression were found to be significantly increased compared

to normal human renal cortical epithelial cell lines. Cell

proliferation, mediated by IL-8 signaling, was inhibited by

antagonists or siRNAs targeting the IL-8 receptor, and in vitro

cystogenesis was attenuated after blocking IL-8 receptor signaling,

thus confirming the promoting effect of IL-8 on CKD development

(52). However, a recent study further elucidated the effects of

different types of IL-8 release on renal structure. In

glomerulonephritis specimens, the expression of 72-AA type IL-8

was found to increase in podocytes, whereas 77-A type IL-8 was

predominantly expressed in podocytes and interstitial vascular

endothelial cells from healthy kidneys and may be associated with

preserving glomerular structure (53). Thymocyte differentiation

antigen 1 (Thy-1) regulates several fundamental fibroblast

functions associated with fibrogenesis and is detectable in serum

and urine as soluble Thy-1 (sThy-1). Serum creatinine is a

significant and independent predictor of sThy-1 levels. Pro-

fibrotic cytokines, including IL-7, IL-13, and IL-8, promote the

expression of Thy-1 genes and sThy-1 release from renal interstitial

fibroblasts, leading to renal fibrosis and ultimately the development
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of CKD (54). Our findings highlight the detrimental effects of

elevated levels of IL-13, IL-8, and IL-7 on renal function, further

supporting the causal link between pro-fibrotic mediators

and CKD.

While NGF is traditionally known for its involvement in

neuronal injury, recent studies have identified its potential

association with kidney function. For instance, single-cell RNA

sequencing in a mouse model of renal fibrosis demonstrated an

unexpected upregulation of NGF (55). SDF-1a, a CXC-type

chemokine, is a known biomarker for angiogenesis, and the SDF-

1/CXCR4 pathway plays a crucial role in the development of renal

vasculature. Prior research has demonstrated increased renal

expression of SDF-1 in rats with subtotal nephrectomy treated

with angiotensin-converting enzyme inhibitors (56). Additionally,

in a CKD rat model, therapy with peripheral blood-derived

endothelial progenitor cells elevated SDF-1a expression at the

protein level, suggesting a role for local SDF-1/CXCR4 signaling

in preserving microvascular integrity and preventing renal fibrosis

(57). However, systemic SDF-1 expression in CKD patients differs

from in vivo models, with one study showing higher serum and

SDF-1 levels in dialysis patients with chronic renal failure than in

healthy controls (58), which aligns with our findings. Activation of

CD56bright natural killer cells produced by IFN-g can play a critical

role in the fibrotic process and progression to CKD (59). Clinical

evidence suggests that serum IFN-g levels are often elevated in

individuals with CKD and uremia compared to healthy individuals

(60, 61). Control of inflammatory factors may decrease body IFN-g
levels and thus regulate renal depletion and CKD-related plaque

vulnerability (62, 63). Our findings are consistent with this,

suggesting that controlling the body’s inflammatory response is

not only protective against chronic renal impairment but also has

additional benefits for other pathological responses such as vascular

damage and nerve damage associated with CKD (64).

Our study has provided a noteworthy contribution to the

understanding of the bidirectional association between systemic

inflammation and CKD. The systemic inflammatory response is not

only the initiating factor of CKD but is also a consequence of renal

impairment. Previous research has primarily focused on the causes

of CKD formation, neglecting the contribution of renal disease to

the systemic inflammatory state (65–67). Renal disease is a potent

modulator of normal gut microbiota composition and metabolism,

which can lead to the production of toxins and inflammatory

factors. In CKD, factors like gut dysbiosis, slow intestinal transit,

low fiber intake, metabolic acidosis, intestinal ischemic edema, iron

therapy, and frequent antibiotics exposure can promote the leakage

of gut-derived factors (e.g., bacterial components, endotoxins, and

intestinal metabolites) into circulation. This triggers immune

activation and pro-inflammatory signaling (68, 69). CKD-

associated impaired intestinal integrity can promote the leakage

of intestinal metabolites, such as trimethylamine N-oxide, p-cresol,

and indolol sulfate, as well as lipid peroxidation products, which can

directly disrupt cholesterol metabolism, increase scavenger receptor

expression, and promote foam cell formation. Moreover, renal

disease leads to increased production of these potentially harmful

compounds, which can pose a threat to systemic homeostasis,

resulting in a range of cardiovascular complications closely linked
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to the inflammatory response (70). Oxidative stress and metabolic

acidosis, which develop as glomerular filtration rate decreases,

contribute to the proinflammatory state associated with CKD

(71). The impaired nuclear factor erythroid 2-related factor 2

(Nrf2) system plays a pivotal role in this intricate process. Its

activity is influenced by factors such as the etiology of renal

disease, comorbidities, CKD stage, and the severity of uremic

toxin accumulation and inflammation. Notably, early stages of

CKD and rapid disease progression are associated with

heightened Nrf2 system activation, while in later stages, a

stronger inhibition of the Nrf2 system is observed (72). Therefore,

systemic inflammation in CKD is not only a well-established risk

factor for mortality, but also a potent catalyst for other

complications. In the context of renal function decline, coupled

with systemic inflammation, there exists a notable escalation in the

susceptibility to disturbances in homeostasis. This heightened risk

stems from the dual impact of reducing both the functional and

structural tissue reserves within the body, while concurrently

hampering the intricate interplay between organs that aids in

recovery from both internal and external stressors (73).

Currently, there are ongoing drug investigations targeting

inflammatory factors in CKD. An earlier proof-of-concept trial in

lupus nephritis patients failed to establish the effectiveness of IL-6

inhibition alongside conventional therapy (74). Nevertheless,

Pergola and colleagues conducted a RCT assessing the impact of

ziltivekimab, a novel anti-IL-6 ligand antibody, in hemodialysis

patients harboring polymorphisms predisposing them to IL-6-

induced inflammation. Their findings revealed that treated

patients exhibited not only improvements in inflammatory

markers but also elevated serum albumin levels (75). Additionally,

a case report demonstrated the protective effects of tocilizumab,

utilized in patients with rheumatoid arthritis accompanied by AA

amyloidosis and CKD, manifesting as diminishing proteinuria (76).

Ongoing investigations are delving into the role of IL-1 inhibition in

renal function. Buckley et al. observed a reduction in serum

inflammatory markers following administration of recombinant

human IL-1 receptor antagonists in individuals with cardiorenal

syndrome (77). Conversely, Nowak et al. did not find enhancements

in CKD-associated mineral and bone disorders or physical function

after 12 weeks of rilonacept treatment, an IL-1 inhibitor (78).

However, their subsequent study addressing vascular function

demonstrated that the use of lixonacept in CKD was linked to

improved brachial artery flow-mediated dilation and diminished

systemic inflammation (79). Moreover, in the CANTOS trial, a

human monoclonal antibody targeting IL-1b was employed in CKD

patients, resulting in a reduction of major cardiovascular events

(80). IL-8 exhibits a heightened specificity within renal

pathophysiology, particularly in the context of diabetic

nephropathy, and its expression inhibition could hold promise as

a potential therapeutic target (81). IL-17A, a constituent of the IL-

17 family, contributes to countering bacterial and fungal infections

of the skin. It is also implicated in autoimmune and inflammatory

disorders, along with its involvement in the pathogenesis of CKD

(82, 83). A murine study demonstrated that blocking TNF-a in

diabetic nephropathy led to reductions in albuminuria, serum

creatinine, histopathological changes, and macrophage infiltration
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into the kidneys (84). Interferon, often employed as a non-

renal therapeutic modality, has recently shown an emerging

link to renal pathology. Notably, a case report highlighted

a patient with hypereosinophilic syndrome who developed

progressive renal failure and nephrotic-range proteinuria after a

year of recombinant IFN-a-2b therapy. Renal injury reversed upon

cessation of cytokine treatment (85). A similar nephrotic syndrome

induced by IFN-b treatment was observed in a multiple sclerosis

patient (86). These insights find partial clarification in Migliorini

et al.’s investigation, which delineated distinct yet synergistic effects

of INF-a and IFN-b on podocytes and parietal epithelial cells,

ultimately culminating in glomerulosclerosis (87).

It is worth noting that the Bonferroni correction test may

yield false negatives (88). Our study revealed that several systemic

inflammatory factors were correlated with various phenotypes, but

many of these correlations did not survive the Bonferroni correction

test. This could be attributed to the intricate interplay between

inflammatory mediators and the kidney, which is usually

orchestrated by multiple factors. The pathogenesis of a single

inflammatory factor may not be as significant as previously

believed, and clusters of inflammatory factors may collaborate

with each other to induce disease. By comprehending the

pathophysiology of the combined response of these clusters of

inflammatory factors in the body and their interaction with renal

disease, we may gain a better understanding of the intricate

mechanisms involved and develop targeted multi-inflammatory

modulators in the future.

This pioneering MR study, utilizing recent pooled data, is the

first to examine the causal connection between CKD and systemic

inflammatory regulators. Unlike traditional observational studies,

which are vulnerable to reverse causality bias due to the

involvement of non-renal metabolic pathways in the systemic

inflammatory response, this MR analysis minimizes confounding

factors and reverse causality, providing a robust estimate of

causality. Secondly, our study not only includes a GWAS cohort

of CKD events alone but also incorporates multiple dynamic renal

function indicators and phenotypes to synthesize the association

between renal disease and inflammatory factors, which is more

clinically relevant and informative. Finally, serum is one of the most

readily accessible biological specimens in clinical practice, and the

evidence from this study has broad implications for conducting

future relevant clinical research.

It is equally important to acknowledge certain limitations in our

study. First and foremost, the genetic data used for this analysis

primarily came from individuals of European descent. As a result,

the findings may not be applicable or generalizable to other ethnic

groups, and caution should be exercised when extrapolating the

results to diverse populations. Secondly, despite our best efforts to

exclude SNPs that could be associated with potential confounders

and conducting various sensitivity analyses under different

assumptions, it is still possible that there are complex and

multidirectional effects that might not be fully detected.

Additionally, the use of instrumental variables from the GWAS

meta-analysis prevented us from exploring potential stratification

effects and nonlinear relationships, leaving room for further

investigation into these aspects. We employed strict Bonferroni
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correction thresholds and other criteria, such as checking for

evidence of pleiotropy, to identify the most reliable MR results.

However, this strategy might lead to some false-negative results,

although it minimizes the likelihood of identifying false-positive

associations. Lastly, while MR analysis is a robust method for

estimating causality, it should not be considered a substitute for

RCTs. Therefore, the causality inferred from this study may not

necessarily align with the results observed in RCTs. It is essential to

conduct individual-based genetic observations and potentially

incorporate RCTs in future research to further validate the causal

relationships identified here.

In summary, our study using publicly available GWAS

summary data and MR analysis has identified causal associations

between 17 systemic inflammatory modulators and CKD outcomes,

including bidirectional associations between GROa and SCF levels

and renal function impairment. These findings offer promising

genetic evidence for the development of targeted treatments for

CKD across different stages.
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