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T lymphocytes (T cells) are an important sub-group of cells in our immune

system responsible for cell-mediated adaptive responses and maintaining

immune homeostasis. Abnormalities in T cell function, lead the way to the

persistence of infection, impaired immunosurveillance, lack of suppression of

cancer growth, and autoimmune diseases. Ion channels play a critical role in the

regulation of T cell signaling and cellular function and are often overlooked and

understudied. Little is known about the ion “channelome” and the interaction of

ion channels in immune cells. This review aims to summarize the published data

on the impact of ion channels on T cell function and disease. The importance of

ion channels in health and disease plus the fact they are easily accessible by virtue

of being expressed on the surface of plasma membranes makes them excellent

drug targets.
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Introduction

All cells of the human body have and need membrane ion channels to allow anions and

cations to move across the lipid membranes, provide homeostasis, cellular activation, and

function (1). Ions are crucial for maintaining the integrity, identity, and stability of cells and

supporting electrical potential across membranes. This is particularly important for cells

such as muscle and neurons, which have the added function of being able to regulate

membrane voltage between the extracellular and intracellular compartments allowing the

cells to transmit electrical signals necessary for cardiac rhythm and nerve impulses,

respectively. Within the last few decades, there has been increased awareness and

recognition of the critical role played by ion channels and transporters in immunity (2).

Foremost, much of this attention has arisen from T cell studies identifying a functional

network of at least five major ion channels that include calcium (Ca2+) release-activated

Ca2+ (CRAC) channels, purinoreceptor (P2X) receptors, transient receptor potential (TRP)

channels, potassium (K+), and chloride (Cl-) channels. These ion channels have been

extensively studied (3) and the field is evolving as new studies continue to identify novel

channels (4), assembly intermediates, binding sites, and functions (5) in T cells. Although
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there are significant differences in ion channel expression and usage

between mice and humans this review does not critically distinguish

between the two but tries to give an overview of their importance

in both.
Ion channels expressed on T cells

Themajor ion channels and transporters that modulate the influx

of Ca2+, K+, sodium (Na+), magnesium (Mg2+), and zinc (Zn2+)

which maintain electrical gradients and contribute to cell survival are

outlined in Figure 1. Anions such as Cl- are regulated by the cystic

fibrosis transmembrane conductance regulator (CFTR) and the g-
aminobutyric acid type A (GABAA) receptors, which play a role in

the movement and acidification of organelles (6). The volume and

size of cells are regulated by the volume-regulated Cl- or anion

current (VRAC or Clswell) channels that open upon swelling of T cells

in a hypotonic environment, resulting in the efflux of Cl-, and

ultimately water from the cell, returning the cell volume to normal.

The function of this network of ion channels is not stagnant and can

adapt depending on the state of cellular activation and differentiation

to allow different types of immune responses to occur (7). The known

and most studied ion channels on T cells are described below.
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Calcium channels

Ca2+ plays a critical role in many intracellular events. Ca2+ cannot

diffuse across plasma membranes and has to enter cells via Ca2+ pores

or be released from intracellular stores found at the endoplasmic

reticulum (ER) and mitochondria. Ca2+ ions are released from the

ER stores by a process known as store-operated Ca2+ entry (SOCE) (8).

Depletion of luminal ER Ca2+ stores is sensed by the stromal

interaction molecule (STIM) 1 localized in the ER, which then

translocates, binds, and oligomerises with another protein Orai1, a

Ca2+ selective ion channel protein on the cell surface membrane,

conveying the signal from the ER to the plasma membrane to

activate CRAC channels. CRAC channels are composed of three

proteins, Orai1, Orai2, and Orai3 (3, 8–12). The Orai-STIM complex

is a channel, present in most immune cells, with high Ca2+ selectivity

that can generate a sustained Ca2+ signal to increase intracellular Ca2+,

critical to the activation of calcineurin and the transcription factor,

nuclear factor of activated T cells (NFAT), which activates the

expression of cytokine genes encoding tumor necrosis factor (TNF),

interleukin-2 (IL-2), and IL-6 (13). Calcium signalling and the

re lat ionship between SOCE and CRAC channels are

comprehensively reviewed by Prakriya and Lewis (14), and Trebak

and Kinet (15), respectively. To maintain Ca2+ balance in T cells,
FIGURE 1

Ion channels and transporters showing the flow of cations and anions in T cells. Abbreviations. CFTR—cystic fibrosis transmembrane conductance
regulator, CRAC—Ca2+ release-activated channel, GABA—g-amino butyric acid, P2X—purinergic receptor, T—T cell, TRP—transient receptor
potential family, leucine-rich repeat-containing 8 protein (LRRC8) receptors eg LRRCBA. N-methyl-D- aspartate (NMDA); Magnesium transporter
protein 1 (MAGT1); Voltage-gated proton channels (Hvcn1); TRP mulcolipin (TRPM), ZIP 6, zinc transporter.
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transport of calcium out of the cell is necessary and regulated by plasma

membrane Ca2+ ATPase (PMCA).

Voltage-gated calcium (Cav1) channels are expressed by T

lymphocytes and function in a T cell receptor (TCR) stimulation-

dependent and voltage-independent manner (16). There are two types

of channels, the high voltage-activated (L-type) and the transient, low

voltage-activated (T-type) Ca2+ channels which are thought to fine-

tune TCR-mediated Ca2+ signals (15). Recently, Erdogmus et al. (5)

have demonstrated that Cavb1 regulates T cell expansion and apoptosis

independently of voltage-gated Ca2+ channel function.
Potassium channels

A critical feature that allows Ca2+ to influx into the cell is the

ability to maintain electrochemical stability by effluxing a similarly

charged molecule. Potassium channels modulate cellular

homeostasis by controlling the efflux of K+ leading to

hyperpolarization of the cell and inhibiting membrane

depolarization induced by the influx of ions such as Ca2+ and

Mg2+. With the increased influx of Ca2+, the cell membrane

potential becomes more positive, a term called “depolarization”,

which causes a significant electrochemical variance between the

extracellular and intracellular compartments. As a result, K+ ions

move out of the cell through the lymphocyte K+ channel identified

as Kv1.3. This channel is voltage-dependent and changes

conformation when the cell is depolarized leading to an open

channel discriminatory for K+ ions (17). A second type of K+

channel exists to efflux K+ termed KCa3.1 (Ca
2+-activated potassium

channel), which is not dependent on voltage change, but a rise in

cytosolic Ca2+. KCa3.1 is closed under resting conditions but opens

rapidly if the intracellular Ca2+ concentration rises. Both cation

channels modulate cellular homeostasis by controlling the efflux of

K+ leading to hyperpolarization of the plasma membrane and

inhibiting membrane depolarization induced by the influx of ions

such as Ca2+and Mg2+. Kv1.3 and KCa3.1 are similar in structure but

differ in the mechanism of activation (18). Kv1.3 is activated by

membrane depolarization leading to K+ efflux, whereas KCa3.1

activation requires the release of Ca2+ and calmodulin

before activation.
Purinoreceptor (P2X) channels

The P2X receptor-channel is a family of proteins that include

seven subunits (P2X1-7), which are located on the cell surface and

are ligand (ATP)-gated ion channels that allow the influx of Na+,

Ca2+, and other cations (19). In humans, at least three different

ionotropic P2X receptors (P2X1, P2X4, and P2X7) have been linked

to Ca2+ influx (20, 21). P2X7 causes Ca2+ influx and activation of

calcineurin, resulting in the activation, proliferation, and IL-2

production of T cells. It has been suggested that P2X receptors

regulate T cell immune responses via autocrine ATP signaling to

amplify weak TCR signals, gene expression and T cell effector

function (22). In the presence of high levels of extracellular ATP,

the activity of P2X7 receptors results in cellular apoptosis (23).
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Another family of receptors called metabotropic receptors are

largely monomeric proteins with an extracellular domain that

contains a binding site and an intracellular domain that binds to

existing G protein-coupled receptors (GPCRs) and second

messengers, to indirectly modulate ion channel activity.

Metabotropic purinoceptors (P2Y) comprise eight subtypes

(P2Y1/2/4/6/11/12/13/14) and are expressed on T cells. T cell

activation with the P2Y6 receptor ligand, uridine diphosphate

(UDP), leads to TCR-dependent elevation of intracellular Ca2+

concentration whereas inhibition of P2Y6 receptors by the

selective antagonist MRS 2578, inhibits CD25 expression, IL-2

production, and cytoplasmic Ca2+ levels in T cells (reviewed by

Wang (24)). A variety of GPCRs and their signalling mediators (G

protein coupled receptor kinases, regulators of G protein signalling,

and b-arrestin), are expressed in T cell and involved in T cell-

mediated immunity. Although not ion channels per se, GPCRs

couple to ion channels and receptors such as purinergic P2Y6, to

mobilize and raise the intracellular Ca2+ concentration (24).
Transient receptor potential channels

This family of six subtypes with twenty eight members of

channels are non-selective and permeable to Ca2+, nickel (Ni2+),

Zn2+, Mg2+, and Na+ (25). In humans, six subfamilies include TRP

canonical (TRPC), TRP melastatin (TRPM), TRP ankyrin (TRPA),

TRP vanilloid (TRPV), TRP mulcolipin (TRPM), and TRP

polycystic (TRPP) (25, 26). In addition to the CRAC channel

these ion channels also mediate Ca2+ signals in T cells. TRP

channels are activated by increases in intracellular Ca2+ that

negatively modulate SOCE and promotes Na+ influx, membrane

depolarization, and a reduction in the electrical driving force for

Ca2+ influx, thus providing a negative feedback mechanism to

prevent Ca2+ overload in cells (27–29). TRPM8 has been

associated with T cell activation, increased CD25 and CD69

expression, TNF-a secretion, and T cell proliferation (29).

TRPM4 channels are permeable to Na+, K+, and partially to

Ca2+ (28).
Anion channels

Volume-regulated Cl- or anion current (VRAC or Clswell)

channels open when T cells distend in a hypotonic milieu,

resulting in the efflux of Cl-, and water, returning the cell volume

back to normal (3, 7, 30). Kv1.3 and Clswell work together to regulate

T cell volume. VRACs channels expressed by T cells include GABA

receptor, CFTR, and leucine-rich repeat-containing 8 protein

(LRRC8) receptors which play a critical role in cellular

osmoregulation to prevent cell death. VRACs channels are

composed of the obligatory subunit LRRC8A (31) and promote

the efflux of Cl- from the intracellular to the extracellular

compartment. Other roles include inhibition of function and

proliferation of T cells, increased IL-4 secretion of CD4 cells,

decreased IL-2 and TNF production on CD8 cells, and T cell

development, function, and survival (32). Recently, LRRC8C has
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been shown to be essential for VRAC function in T cells, regulating

T-cell function through the LRRC8C-STING-p53 signaling

pathway (4). This represents a new inhibitory pathway in T cells

that controls T cell function and adaptive immunity (4).
Transporters and other ion channels

Ion channels are membrane pores that passively allow ions to

move quickly from higher concentrations to lower concentrations.

Transporters, by contrast, are membrane proteins that change

shape and allow ions to be carried from one compartment to

another of the membrane. Consequently, transporters are energy

dependent, slow, and can move ions/molecules against their

concentration gradient (from lower to higher concentration). The

divalent ion Mg2+ is an important molecule required for T cell

function requiring a transporter to enter the cells (7). Magnesium

transporter protein 1 (MAGT1) is highly specific for Mg2+ and does

not transport Ca2+, Zn2+, or Ni2+ (33). This MAGT1 transporter has

a role in T cell development and function (34). Interestingly,

membrane receptors for neurotransmitters have also been

recognized in T cells. These include a-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-

aspartate (NMDA) which are ionotropic glutamate receptor-

channels. They are non-selective cation channels that are largely

permeable to Na+ and K+ and to a lesser extent Ca2+ (35). Other

ligand-gated receptors expressed in T cells include muscarinic and

nicotinic acetylcholine receptors (36).

Voltage-gated proton channels (Hvcn1) reduce cytosol

acidification and facilitates the production of reactive oxygen

species. These channels only allow protons and no other ions to

cross cell membranes (37). Intracellular acidification plays an

important role in modulating the function of lymphocytes. Low

intracellular pH reduces the proliferation and function of human

and mouse T cells. Restoration of pH to physiological levels rescues

T cell function. Deletion of Hvcn1 receptors leads to increase

intracellular acidification, decreased expansion, loss of effector

function and apoptosis in CD4+ cells. In CD8+ cells there is

decreased expansion, loss of effector function, mitochondrial

damage, AMPK activation and metabolic adaptation (38). Hvcn1

plays an important role in controlling intracellular acidification in T

cells during the differentiation of T cells during the transition from

naive to activated T cells (38, 39).
Impact of ion channels on T cell function

Intracellular Ca2+ concentrations control the regulation and

function of transcription factors that ultimately influence the

differentiation and effector tasks of T cells (11, 15, 39), Table 1.

The temporal and spatial fluctuations of intracellular Ca2+ have

important consequences on T cell physiology and can contribute to

the generation of different signalling pathways, the development of

heterogeneity in T cells, the maintenance of immunological

tolerance, and prevention of autoimmunity (10, 52). Dolmetsch

et al. (53) were first to show that modulation of the amplitude and
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frequency of Ca2+ fluxes caused a disparity in the activation of

transcription factors, c-Jun NH2- terminal kinase (JNK), NFAT, and

NF-kB. This differential “decoding” or sensitivity of these

transcription factors means that the amount and timing of Ca2+

can regulate and govern an appropriate response. NF-kB and JNK

were selectively activated by a large transient intracellular rise of

Ca2+, whereas NFAT was activated by a low, sustained Ca2+ plateau.

The disparity in activation resulted from differences in the Ca2+

sensitivities and kinetic behavior of the three pathways. These

findings provide a mechanism by which Ca2+ can achieve

specificity in signalling to the nucleus. Although these results

were generated from B cells there is no reason to suspect that a

similar mechanism does not exist in T cells.

Ion channels by regulating ion movement and homeostasis

influence T cell function. However recent evidence suggests that

ion channels can regulate T cell function independent of their

activity. Both Kv1.3 and KCa3.1 are recruited to the immunological

synapse where it is possible that in this proximity with many other

receptors they interact and couple with other molecules co-localised

to the region (3, 37). Erdogmus et al. (5) have identified that the

channel Cavb1, encoded by Cacnb1, is a regulator of T cell function.

Using patch clamp electrophysiology and intracellular Ca2+

measurements, they were also able to demonstrate that although

Cavb1 regulates T cell function, the enhanced apoptosis and impaired

T cell expansion were independent of voltage-gated Ca2+

channel activity.

Upon TCR recognition of antigen, a cascade of coordinated

phosphorylation events occur that involve many signalling proteins

and ion channels (54). Protein kinases result in the activation of

phospholipase C (39, 55) hydrolyzing phosphatidylinositol

bisphosphates (PIP2), into soluble inositol 1,4,5- triphosphate (IP3)

and diacylglycerol (DAG) that is membrane-bound (56). DAG

activates Ras/Raf-1/MEK/ERK to stimulate the transcription factor

nuclear factor-kB (NF-kB) that results in cytokine and chemokine

gene transcription (54). IP3 binds to the IP3 receptor, expressed in the

ER, which releases Ca2+ from the ER stores (8) into the cytoplasm by

the process of SOCE. Within minutes, this results in a large influx of

Ca2+ required for refilling Ca2+ (2) stores via PMCA pumps (13) and

to support downstream Ca2+ required events for signalling. After

TCR stimulation CRAC channels influx Ca2+ which becomes
TABLE 1 Functional effects of store-operated Ca2+ entry (SOCE) on T cells.

Controls T cell proliferation (2, 7, 14, 15)

T cell migration (40, 41)

Apoptosis (42)

Cytokine production (43–45)

Transcriptional regulation (43–45)

Controls the development and function of T cells (2, 7, 14) /T regs (10, 46, 47)

Controls proliferation, and expansion of CD4+/CD8+ cells (9)

Regulates function of TH17 cells (10, 47, 48)

Controls germinal center reaction and humoral immunity (49, 50)

Tregs development in the thymus (43, 51)
frontiersin.or
g

https://doi.org/10.3389/fimmu.2023.1238171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Manolios et al. 10.3389/fimmu.2023.1238171
available to regulate the function of serine/threonine-phosphatase

calcineurin, NFAT, and NF-kB. Ca2+-bound calmodulin then results

in the activation of transcription factor cAMP responsive element

binding protein 1 (CREB1) that regulates IL-2 and other diverse

cellular events, including proliferation, survival, and cellular

differentiation (39, 57), Figure 2. The molecular mechanism by

which SOCE and CRAC channels regulate T cell proliferation (43),

apoptosis (42), cytokine production (44, 45) and migration (40, 41) is

outlined in Table 1. The secondary cellular events post TCR

activation include:

i. Proliferation. As previously discussed, Kv1.3, and KCa3.1 efflux

K+ from T cells (7, 58). Pharmacological inhibition of these

channels and CRAC prevent T cell proliferation. Blocking only

Kv1.3 alters the secretion of cytokines by CD4 T cells (59). The

decrease in IL-2 production may correlate with the inhibition of T

cell proliferation.

ii. Polarization. The nature of the antigen influences whether

Th1, Th2, or Th17 responses are utilized for its elimination. The T
Frontiers in Immunology 05
cell profile developed is dependent on the type of cytokine released

which is influenced by ion channels. For example, the expression of

T-bet and IFN-g (60) is increased in the absence of TRPA1 causing

the polarization of T cells into a Th1 profile. T cell profiles toward a

Th2 response have been associated with the upregulation of Cav

channels (7). The entry of Ca2+ through the P2X7 receptor activates

ERK1 or ERK2, which suppresses the transcription of forkhead box

P3 and promotes the polarization of T cells toward a Th17

phenotype, altogether inhibiting the regulatory T cells (Treg) (7).

iii. Ion channel phenotype changes in lymphocyte subsets. As

shown, the modulation of intracellular Ca2+ levels regulate the Th1

and Th2 differentiation of T cells (27) and establishes central and

effector memory phenotypes in T cells (18). T cells express different

ion channel patterns based on their level of T cell activation and the

degree of differentiation. This difference gives rise to different T cell

subtypes based on their ion channel expression. CCR7+CD45RA+

naive human T cells predominantly express Kv1.3 channels. Upon

antigen activation, they upregulate KCa3.1 expression (7). In Th1,
FIGURE 2

Overview of transcriptional events following TCR signal transduction. T cell activation results in signal propagation via three major signalling pathways:
the Ca2+–calcineurin, mitogen-activated protein kinase (MAPK), and NF-kB signalling pathways. The concerted activity of these pathways, lead to the
activation of transcription factors (Jun, Fos, AP-1, NF-kB, NFAT) that results in T cell proliferation, migration, cytokine production and effector functions.
Abbreviation: phosphatidylinositol 3-kinase (PI3K), CRAC, Ca2+ release-activated Ca2+ channel; DAG, diacylglycerol; ER, endoplasmic reticulum; InsP3,
inositol trisphosphate; JNK, Jun N-terminal kinase; PLCg1, phospholipase Cg1; PtdIns(4,5)P2, phosphatidylinositol 4,5-bisphosphate.
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Th2 and central memory T cells (TCM) KCa3.1 is selectively

upregulated upon activation (7). In contrast, Th17 and effector

memory T (TEM) cells selectively upregulate Kv1.3 channels on

activation. This contrast makes Th17 and TEM cells uniquely

susceptible to Kv1.3 channel blockade, whereas other T cell

subsets are consequently spared. In addition to K+ channel

expression during early T cell activation there is an upregulation

of STIM1 and Orai1 within days. This ensures CRAC channel-

mediated Ca2+ signalling for cytokine gene expression

and differentiation.

iv. Cytokine secretion. Ca2+ influx through the CRAC channels

regulates three cytokine pathways: (a) NFAT signalling; (b) NF-kB
pathway, and (c) c-Jun terminal kinase (JNK) pathway (43),

Figure 2. The NFAT pathway, also known as the calmodulin–

calcineurin pathway, requires the low and extended Ca2+ influx to

activate calcineurin which then dephosphorylates NFAT promoting

its translocation to the nucleus, and production of IL-2 (43). Unlike

NFAT a high and short burst of Ca2+ in the cytoplasm is required to

activate calcineurin that then regulates the NF-kB signalling

pathway (56). Another pathway related to Ca2+ influx is the JNK

pathway. Activation of c-Jun along with calcineurin, triggers the

activator protein 1 (AP-1) transcription factor complex, which plays

a role in cell growth and IL-2 induction (43). The combined

coordinated activation of NFAT, NF-kB, and AP-1 induces the

production of cytokines, including IL- 1b, IL-2, IL-4, IL-6, IL-8,
IFN-g, and TNF-a.

v. Migration. Using a dominant-negative Orai1-E106A mutant

to suppress Ca2+ signalling Greenberg et al. (40) demonstrated that

CRAC channel-mediated Ca2+ influx was necessary for T cell

homing to lymph nodes. In T cells, uropods which facilitate cell

motility and chemotaxis, express KCa3.1 and TRPM 7 which can

regulate the migration of human T cells (61).

In the thymus, SOCE is essential for Treg development. Mice

deficient in SOCE have a reduced number of peripheral and thymic

Treg cells (51, 46). In addition to the CRAC channels, TRP channels

are involved in the regulation of intracellular Ca2+ homeostatis (28).

These channels include TRPM2, TRPV1 and TRPM7 the function

of which includes thymic development and the production of

thymocyte growth factors (60, 62, 63). In mice, TRPM7 deletion

impairs T cell development and function (64). Extracellular ATP

binding to P2X4 and P2X7 mediates Ca2+ influx that can regulate T

cell migration, inhibit regulatory T cell differentiation, promote

Th1, Th17 (65) cell development, and stimulate the establishment

and maintenance of (tissue-resident) memory CD8+ T cells in mice

(66, 67). The role of CRAC channels in immunity and the molecular

mechanisms by which CRAC channels can control the function of

various T cell subsets, including T follicular helper (Tfh) cells are

reviewed by Vaeth et al. (10).
The role of ion channels in disease

Channelopathies is the term given to an assorted group of

disorders resulting from ion channel dysfunction. These

abnormalities may be congenital due to genetic mutations or
Frontiers in Immunology 06
acquired factors (6, 68). The term CRAC channelopathy refers to

a complex clinical phenotype caused by loss-of-function mutations

in Orai1 and STIM1 in humans. The condition is characterized by

immunodeficiency, autoimmunity, and non-immunological

symptoms such as pain and fatigue. In the human genome there

are more than 400 genes that encode ion channels. Mutations in

these genes can manifest as very rare disorders which are life-

threatening to mild and disabling conditions, Table 2. The organs

predominantly affected include the nervous, cardiovascular,

respiratory, endocrine, musculoskeletal, and immune systems

causing autoimmune diseases or immunodeficiencies. As

molecular-genetic and electrophysiological studies advance new

disorders are being recognised (86, 81, 82).
Immunodeficiencies

Patients with mutations in the Orai1 or STIM1 symptoms have

reduced numbers of Treg cells and suffer from a complex CRAC

channelopathy syndrome that causes severe immunodeficiency.

Given the Orai-STIM complex’s role in Ca2+ influx, dysfunction

in T cell activation, proliferation, and production of cytokines are

believed to be the underlying mechanism behind this

immunodeficiency (69). Similarly, patients with an inherited

mutation of the gene encoding the magnesium channel, MAGT1,

suffer a rare form of immunodeficiency known as X-linked

immunodeficiency with magnesium defect (XMEN), EBV

infection, and neoplasia (33). Little is known as to the role and

function of MAGT1 in T cell development and activation, and how

a mutation in this channel causes disease. In addition to its role in

VRACs, the LRRC8 protein family is also associated with

agammaglobulinemia (80).
Autoimmune diseases

SOCE can regulate immune tolerance and autoimmunity by

controlling the function of Treg and Th17 cells, reviewed in detail

by Vaeth et al. (10). Other ion channels such as the human P2X7

receptor has been shown to mediate ATP-induced apoptotic death

of T cells. Treg’s overexpress P2X7 receptors during differentiation.

Activation of the P2X7 receptor inhibits Treg function and, when

IL-6 is present, promotes conversion into Th17 cells (65). ATP

binds to P2 receptors and its levels are regulated by NTPDase

(CD39). CD39 is upregulated in systemic lupus erythematosus

(SLE) patients who exhibit increased levels of ATP that binds to

P2X receptors resulting in activation of the inflammasome, release

of IL-1b, and other cytokines associated with disease pathogenesis

(72). Considering P2X7 stimulation is proinflammatory and

induces apoptosis, the question arose of whether. functional

polymorphisms in this gene could affect lupus susceptibility.

Forchap et al. (73) investigated the role of the P2X7 receptor and

its loss-of-function Glu496Ala (rs3751143) polymorphism (SNP) in

the development of SLE. A loss-of-function SNP at position

rs3751143 of the P2X7 gene did not appear to be a susceptibility

gene locus for the development of sporadic SLE. However, this
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TABLE 2 Properties and functions of ion channels and transporters in T cells.

Channel Ion Function Channelopathy

Ca2+

CRAC

Orai 1

Ca2+
Involved with T cell activation, proliferation,
cytokine production 7, 14, 15

Mutations in STIM1, ORAI, 69 Leads to combined
immunodeficiency 68, autoimmunity 70, 71

Orai 2

Orai 3

TRP

TRP Ca2+, Na+ Enhances TCR signalling
Regulates Th1/Th2 differentiation, 26

TRPM2 Ca2+, Na+ Activation and cytokine production

TRPM4 Na+ Cytokine production 29

TRPM7 Ni2+,Zn2+,
Mg2+>Ca2+

Thymocyte development, production of thymic growth factors
7

P2X

P2X7 Ca2+, Na+

other
Involved with T-cell proliferation, cytokine production, SLE 23, 72, 73

Promotes Th17,
Inhibits Treg differentiation 19

P2X1,4 Ca2+, Na+ T-cell proliferation,
Cytokine production,
Thymocyte apoptosis

Cav

Cav, 1.2, 1.3, 1.4 Ca2+, Cytokine production, CD8 T-cell survival, CD8 T-cell
immunity to infection, Th2 function in asthma

Secretion of IL-2.

K+

Kv1.3 K+ Regulation of Vm ,
T-cell activation (Th17, TEM)
Cytokine production,

Multiple sclerosis 74, 75
Congestive cardiac failure 76
Autoimmunity and inflammation 70

KCa3.1 K+ Hyperpolarisation of Vm,
T-cell activation (Th1, Th2, TCM), cytokine production,
autoimmune colitis

Cancer 77–79

Chloride

Clswell Cl- (I-, Br-) Apoptosis in T-cells Agammaglobulinemia 80

CFTR Cl- Cytokine production

GABAA Cl- Inhibition of T-cell proliferation, cytokine production,
cytotoxicity, and T-cell mediated autoimmunity

Magnesium

MagT1 Mg2+ CD4+ development and activation. Immunity to infection
(EBV) 49

XMEN syndrome caused by X-linked mutations in MAGT1 33

(Continued)
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study does not exclude a connection between P2X7 channels and

SLE pathogenesis (41). Interestingly, in patients with SLE, the Tfh

cell response to extracellular ATP ex vivo was reduced when

compared to healthy individuals. It is suggested that the reduced

expression of P2X7 channels observed in SLE patients may serve to

limit the apoptosis and encourage Tfh T cell subset activation (65,

72). The findings by Faliti et al. (23), examining the role of P2X7

receptors in Tfh cells of patients, showed human Tfh-cells from

patients with SLE, when compared with healthy controls, displayed

reduced sensitivity of P2X7 to ATP-mediated stimulation and

consequently, reduced P2X7-dependant cell death. The Tfh cells

of patients with SLE were found in larger numbers, had reduced

P2X7R mRNA, greater germinal center reactions, IgA secretion and

binding to commensals (23). These results were not observed in

patients with primary anti-phospholipid syndrome or rheumatoid

arthritis supporting the view that P2X7 receptor activity plays a role

in SLE pathogenesis. Given that this review is an introduction to the

key ion channels in T cells, other receptors such as P2X1 and P2X4

are not discussed.
Infections

An important role of SOCE is to regulate the function of Th1,

Th2 and Th17 cells that can provide adaptive immunity to viral,

parasitic as well as bacterial and fungal infections (42). For recent

reviews on the role of ion channels in T cell mediated immunity and

viral infections see Vaeth et al. (10) and Bohmwald et al. (83).
Cancer

Reduced KCa3.1 activity enhances the inhibitory effect of

adenosine on the chemotaxis of T cells in cancer (77). Adenosine
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modulates immune responses by delaying the encounter of antigen-

loaded dendritic cells with T cells by stimulating cAMP production

and PKA1 activation through adenosine receptors (ARs) which

inhibits KCa3.1 channel function, T cell proliferation, and cytokine

release (79). Adenosine receptors comprise the P1 class of

purinergic receptors and belong to the superfamily of GPCRs.

ARs are classified into four subtypes, A1, A2A, A2B, and A3, which

are activated by extracellular adenosine, and play a central role in

the modulation of the immune system (84). Activation of the A2A

receptor enhances cyclic AMP production, which in turn activates

PKA1, and phosphorylation of the transcription factor CREB.

In certain cancer patient populations, both KCa3.1 activity and

calmodulin expression are reduced, with the downregulation of

membrane-proximal calmodulin being responsible for the

suppression of KCa3.1 activity and consequently limiting the

ability of these T cells to infiltrate the adenosine-rich tumor

microenvironment. It is believed the assembly and surface

expression of KCa3.1 channels are facilitated by calmodulin. In

migrating human T cells, KCa3.1 channels localize at the moving

edge of the cell (uropod) where they control motility and

chemotaxis. Kv1.3 channels are associated with CD8 cytotoxic

function. The tumour microenvironment, which is hypoxic and

hyperkalemic, impairs the function of Kv1.3 and KCa3.1 which

results in suppressed T cell motility and function. In mice,

restoration of function and overexpression of Kv1.3 channels

restored T cell functionality, reduced tumor burden, and

increased survival. Gawali et al. (78) demonstrated that treatment

with both anti-PD1 (pembrolizumab) and anti-PD-L1

(atezolizumab) antibodies facilitated the function of KCa3.1 and

Kv1.3 in head and neck squamous cell carcinoma (HNSCC)

patients’ peripheral lymphocytes. This study suggests that

immune checkpoint blockade improves T cell function by

increasing KCa3.1 and Kv1.3 channel activity in HNSCC patients.

In contrast, Markakis et al. (74) showed there was a more
TABLE 2 Continued

Channel Ion Function Channelopathy

Zinc

ZIP3, ZIP6, ZIP8 T-cell activation, T-cell development 7 Acrodermatitis enteropathica with immune deficiency caused by
mutations in intestinal ZIP4 transporter

Other

Nicotinic
Acetylcholine
Receptor

Allows
entry of
cations

Stabilises open and desensitised state of channel

Glutamate
receptor eg
NMDA

Na+, Ca2+

Acid sensing ion
channel

H+
Transports
H2O and
glycerol in
some cases

Regulates fluid balance, osmotic potential
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pronounced increase in functional Kv1.3 expression in T cells from

multiple sclerosis (MS) patients with secondary progressive MS

status. Kv1.3 channel up-regulation enhanced signalling in MS T

cells enhancing Ca2+ availability through CRAC channels

potentiating the immune stimulus, and heightening cytokine

production, cytokine secretion, and proliferation. Moreover, the

immune stimulus-induced Kv1.3 activity in these cells, increases b1-
integrin activation, facilitating their adhesion and cytokine-induced

migration into the central nervous system.

The p53 tumor suppressor gene, plays a key role in controlling

cell division and cell death. Activation of p53 prolongs cell-cycle

arrest in G1, thereby preventing proliferation, and/or leading to

apoptosis, mutations, or functional changes to p53 may result in

cancer. Gosh et al. (85) have shown that p53 promotes the

degradation of the DNA exonuclease TREX1, leading to the

accumulation of cytosolic dsDNA which activates the cytosolic

DNA sensor, cGAS, and its downstream effectors’ Stimulator of

interferon genes (STING),/TBK1/IRF3 resulting in induction of

type I interferons. The cGAS/STING pathway induces type I

interferon production and is a key mediator of the innate

immune system that functions to detect the presence of cytosolic

DNA and, in response, induce expression of pro-inflammatory

genes that lead to apoptosis or to the activation of defense

mechanisms (86). Wild-type p53 activates cGAS/STING.

Silencing of cGAS in cancer cells disables the innate immune

response to the accumulation of cytosolic DNA. Conception et al.

report that LRRC8C via cGMP uptake and suppression of Ca2+

influx, results in STING and p53 activation that acts as a negative

regulator of T cell function that can impair adaptive immunity.
Ion channels as pharmacotherapeutic
targets

Ion channels are the primary target of approximately 10% of the

marketed drugs and represent promising targets for the development

of novel therapeutic agents (87). The Guide to Pharmacology 2021/22

by Alexander et al. (88) provides a concise overview of the key human

drug targets. Links to the knowledgebase source of drug targets and

their ligands are provided for more detailed views of target and ligand

properties. A result summary of a patent search (https://

patents.google.com/patent/US8357809B2/en; https://www.lens.org/

lens/search/patent/list?q=ion%20channel%20inhibitors) using “ion

channel inhibitors” as key words, over the last 5 years is shown in

Table 3. These findings highlight the interest and application of ion

channel inhibitors in clinical applications (89).
Autoimmune diseases

T cell subsets express different ion channel phenotypes that

provide the means to eliminate disease-specific autoantigen clones.

The relative contribution of Kv1.3 and KCa3.1 related to their state

of lymphocyte activation provides an opportunity to selectively

target lymphocyte subsets for therapeutic purposes. Selective

targeting of TEM cells in multiple sclerosis or diabetes mellitus
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type 1, where only pathogenic T cell clones have been noted to

express high Kv1.3, provides the opportunity to delete/inhibit

disease-causing clones without compromising the overall immune

system. For example, synovial fluid T cells from rheumatoid

patients showed enhanced CCR7- and high Kv1.3 expression,

whereas T cells from osteoarthritis patients were CCR7+ with low

Kv1.3 expression. As such, inhibiting Kv1.3 may provide a

therapeutic target to modulate autoreactive TEM cells.

In animal models, inhibition of Kv1.3 channels leads to less

inflammation in experimental autoimmune encephalitis (EAE) and

psoriasis. As opposed to other Kv channels, Kv1.3 has only a minor

impact on cardiac physiology. Therefore, considering the role of

Kv1.3 channels in TEM cells and their minimal impact on other

organ systems, the channel is considered a prime target for

pharmacotherapy. Kv1.3 channel blockers have been found

effective in the prevention and treatment of other conditions such

as EAE, asthma, bone reabsorption in experimental periodontitis,

pristane-induced arthritis, rheumatoid arthritis, multiple sclerosis,

Type-1 diabetes mellitus, contact dermatitis, renal fibrosis, and

delayed- type hypersensitivity reactions. This therapeutic effect is

achieved through the specific suppression of TEM cells without

compromising naïve and TCM cells that are unaffected (88). An

important consideration of Kv1.3 channel blocker monotherapy is

that in many diseases, T cells are not the only cells involved.

Consequently, it has been suggested that combination therapies

be considered. For example, in rheumatoid arthritis a Kv1.3 channel

blocker may be paired with an ion channel blocker relevant to

fibroblast-like synoviocytes to reduce both lymphocyte and

fibroblast-like synoviocyte activity in affected joints.

A specific inhibitor of Kv1.3 is the synthetic peptide, ShK-186,

an analogue of the sea anemone Stichodactyla helianthus toxin (90,

91). Chabra et al. (91) have identified and characterized two other

selected peptides, AcK1 and BmK1 from a large family of ShK-

related peptides and showed that, they can preferentially inhibit

Kv1.3. ShK-186 (Dalazatide) has recently passed phase 1 clinical

trials and has shown to be well tolerated. A predicted range of drug

exposure was achieved, and no serious adverse reactions were

observed (https://clinicaltrials.gov/ct2/show/NCT02446340). In

the phase 1b trial, 5-10 patients with plaque psoriasis, had

improvements in target lesion score relative to baseline and 9 in

10 patients had improvements that were sustained for 4 weeks

following the last dose (https://clinicaltrials.gov/ct2/show/

NCT02435342). Phase 2 trials are planned to test efficacy in

patients with SLE and efficacy trials in patients with multiple

sclerosis and rheumatoid arthritis. In clinical studies modulation

of cellular effector function by ShK-186 may constitute a novel

treatment strategy for granulomatosis with polyangiitis with high

specificity and less harmful side effects (92).

Li et al. (93) described a novel peptide ADWX-1 that is a

selective Kv1.3 blocker. ADWX-1 considerably reduced EAE in the

rat model by selectively inhibiting CD4+CCR7− phenotype effector

memory T cell activation. In addition, they also showed Kv1.3

knockout mice were resistant to the development of multiple

sclerosis-like syndrome. Peptide inhibitors of ion channels are not

without their limitations. Due to their low molecular mass, peptides

face rapid renal excretion. PEGylation and conjugated variants have
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been tested to increase circulation half-life hand the most effective

and efficient method for retaining blood concentrations above the

half-maximal inhibitory concentration (IC50) has been through

subcutaneous injections, remaining at therapeutic serum

concentrations for 2-7 days in rat and monkey models.

With Kv1.3 being preferentially expressed in TEM cells

consideration is given to the conjoint use of Kv1.3 channel blockers

with the Bacillus Calmette-Guerin (BCG) Tuberculosis vaccine to

improve its efficacy (94). The vaccine on its own has a low and varied

reported efficacy, despite a robust Th1 T cell response, thought to be
Frontiers in Immunology 10
due to the poor generation of cellular memory. However, if the TEM

response is restrained, a greater TCM response would occur

generating a larger pool of TCM cells from which TEM cells could

later be produced, resulting in a longer-lasting and more robust

immunememory, consequently improving the efficacy of the vaccine.

To date, the highest affinity Kv1.3 inhibitors with the best Kv1.3

selectivity are the sea anemone analogues engineered from the ShK

peptide (e.g., ShK-186), the engineered scorpion toxin HsTx1

[R14A] and the natural scorpion toxin Vm24 (95). These

peptides inhibit Kv1.3 in picomolar concentrations and are several
TABLE 3 Summary of patents filed over the last five years for drugs targeting ion channels.

PATENT ID TITLE LINK

US- 11008306- B2 Quinazolines as potassium ion channel inhibitors https://patents.google.com/patent/US11008306B2/en

US-2022041552-A1 Charged ion channel blockers and methods for use https://patents.google.com/patent/US20220041552A1/en

US-2019038573-A1 Ion channel activators and methods of use https://patents.google.com/patent/US20190038573A1/en

US-2020101069-A1 CRAC channel inhibitors for the treatment of stroke and traumatic brain injury https://patents.google.com/patent/US20200101069A1/en

US-2022193096-A1 Inhibitors of ncca-atp channels for therapy https://patents.google.com/patent/US20220193096A1/en

JP-2021098713-A Permanently charged sodium and calcium channel blockers as anti-inflammatory agents https://patents.google.com/patent/JP2021098713A/en

US-2020108056-A1 Liposomal Mitigation of Drug-Induced Inhibition of the Cardiac IKR Channel https://patents.google.com/patent/US20200108056A1/en

US-10774050-B2 Pyrimidines as sodium channel blockers https://patents.google.com/patent/US10774050B2/en

US-10350430-B2
System comprising a nucleotide sequence encoding a volvox carteri light-activated ion
channel protein (VCHR1) https://patents.google.com/patent/US10350430B2/en

JP-2019142914-A Trpa1 inhibitors for treating pain https://patents.google.com/patent/JP2019142914A/en

US-11377438-B2 2-amino-n-heteroaryl-nicotinamides as Nav1.8 inhibitors https://patents.google.com/patent/US11377438B2/en

US-10898496-B2 Targeting NCCa-ATP channel for organ protection following ischemic episode https://patents.google.com/patent/US10898496B2/en

US-2019111137-A1 Methods for antagonists of a non-selective cation channel in neural cells https://patents.google.com/patent/US20190111137A1/en

US-2022227732-A1 Pyridine carboxamide compounds for inhibiting Nav1.8 https://patents.google.com/patent/US20220227732A1/en

JP-6630004-B2 Macrocycles as Factor XIA inhibitors with aromatic P2 'groups https://patents.google.com/patent/JP6630004B2/en

US-10668051-B2 Modulators of calcium release-activated calcium channel https://patents.google.com/patent/US10668051B2/en

US-11357841-B2
Expansion of tumor infiltrating lymphocytes with potassium channel agonists and
therapeutic uses thereof https://patents.google.com/patent/US11357841B2/en

US-10701938-B2 Composition for inhibition of insect host sensing https://patents.google.com/patent/US10701938B2/en

US-10653673-B2 Substituted imidazoles as N-type calcium channel blockers https://patents.google.com/patent/US10653673B2/en

EP-3625214-B1 Deuterated pyridone amides and prodrugs thereof as modulators of sodium channels https://patents.google.com/patent/EP3625214B1/en

US-11192863-B2 Antiviral compounds and methods https://patents.google.com/patent/US11192863B2/en

US-10472359-B2
Pharmaceutical compositions comprising 4-((6bR,10aS)-3-methyl- 2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3',4':4,5]pyrrolo[1,2,3-d
e]quinoxalin-8-yl)-1-(4-fluorophenyl) butan-1-one for inhibiting serotoninreuptake transporter activity

US-10472359-B2 https://patents.google.com/patent/US10472359B2/en

JP-7072154-B2 Fertilizer pesticide product https://patents.google.com/patent/JP7072154B2/en

US-10548886-B2 Methods of treatment using a JAK inhibitor compound https://patents.google.com/patent/US10548886B2/en

US-2018172671-A1 Methods for treating neural cell swelling https://patents.google.com/patent/US20180172671A1/en

ES-2882186-T3 JAK inhibitors containing a 4-membered heterocyclic amide https://patents.google.com/patent/ES2882186T3/en

US-2020163902-A1 Therapeutic agents targeting the NCCA-ATP channel and methods of use thereof https://patents.google.com/patent/US20200163902A1/en

AU-2018200632-B2 Cystathionine-y-lyase (CSE) inhibitors https://patents.google.com/patent/AU2018200632B2/en

US-11439639-B2 Pyrazine-containing compound https://patents.google.com/patent/US11439639B2/en
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thousand-fold selective for Kv1.3 over other biologically critical ion

channels (96). The increasing number of autoimmune diseases and

the application of these potent inhibitors of Kv1.3 hints at a rich

source of new pharmacological tools and therapeutic leads.
Anti-tumor response

Tumour-infiltrating lymphocytes are dysfunctional in situ, and yet,

capable of stem cell–like behavior when taken out of that milieu. It is

hypothesized that high levels of extracellular K+ in the tumour

microenvironment triggers suppression of T cell effector function.

With the reduced activity of Kv1.3 and KCa3.1 exhibited in tumor-

infiltrating lymphocytes of cancer patients due to factors such as

adenosine and hypoxia, the ability of the T cells to infiltrate and have

cytotoxic action on the tumor is consequently impaired, leading to a

failure of immune surveillance. It has been suggested that K+ channel

activators should be developed as a potential therapy for solid cancers.

Understanding the mechanism of T cell dysfunction, and the role of

cancer tissue-dependent factors in the regulation of ion channel function,

may lead to novel approaches for cancer immunotherapy (22).

Zhu et al. (97) showed that alpha2-adrenergic receptor agonists

can substantially improve the clinical efficacy of cancer

immunotherapy by reducing cAMP levels and protein kinase A

activity. Increased expression of Hvcn1 in tumours reduces cytosol

acidification and facilitates the production of reactive oxygen

species. The increased expression of this channel in cancers that

are characterized by hypoxia and angiogenesis has led to proposing

Hvcn1 antagonists as potential therapeutics (38).
Inflammation

The TRPV1 receptor, also known as capsaicin or vanilloid

receptor, is a transmembrane ion channel present on sensory

neurons and is involved with the sensation of pain and “itch” (98).

Capsazepine was first described as a competitive TRPV1 antagonist in

1990 and shown to reduce pain with a promising future for pain relief.

Recent studies have shown a role in CD4+ T cell function and having

an immunomodulatory effect. Numerous TRPV1 antagonists have

been developed by pharmaceutical companies (87). In models of T

cell–mediated colitis, TRPV1 promoted pathogenic T cell responses

and intestinal inflammation. This raises the possibility that inhibition

of TRPV1 could represent a new therapeutic strategy for restricting

proinflammatory T cell responses (21).

There is increasing interest in the active crosstalk that occurs

between nociceptor neurons and the immune system via ion channels

to regulate pain, host defense, and inflammatory diseases. The

discovery of the concept that reflex neuronal circuits control

immunity provides a new mechanistic understanding and approach

to infection, and inflammation. Pinho-Ribeiro et al. (99, 100) reported

that lethal tissue destruction seen in streptococcal necrotizing fasciitis is

the result of sensory neurons reflexively secreting calcitonin gene-

related peptide (CGRP) that inhibits neutrophil migration. Treatment

with Botulinum neurotoxin A (BoNT/A) and CGRP antagonist block
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neural suppression of CRGP release and allows the immune system to

overcome the infection. Thus, there is an interplay between immune

cells and neurons acting via ion channels. Immune cells/inflammation

releases factors that modulate pain and thermal sensitivity. In turn,

sensory neurons release neuropeptides and neurotransmitters from

nerve terminals that regulate vascular, innate, and adaptive immune

cell responses.

Recently, the Orai1-STIM complex was investigated as a target in

acute and progressive Th17-mediated inflammatory kidney injury

(101). Mouse models deficient in Orai1 or STIM1, when subjected to

MHC-mismatched skin allografts, were unable to efficiently reject

the grafts.

When the T cells from these mice were transferred to fully

allogeneic mice, they had slower and attenuated acute graft-versus-

host disease. This suggests that an Orai-STIM complex blocker may

be more suited to use as an immunosuppressant.
Other

The LRRC8C-STING-p53 signaling axis as a novel inhibitory

pathway in T cells that controls T cell-mediated immune responses.

The pharmacological suppression of LRRC8C may provide a novel

approach to enhancing T cell function in the context of immunity to

infection and antitumor immunity. LRRC8C is selectively enriched in

T cells and its deletion is not lethal inmice, by contrast to the obligatory

LRRC8A channel. Targeting LRRC8C may represent a more specific

and safer approach to modulating T cell function (4). P2X7 channel

inhibitors may be novel therapeutic agents for hypertension.

Clofazimine, a medication used to treat leprosy is a Kv1.3 channel

blocker. In diseases such as multiple sclerosis, rheumatoid arthritis, and

type 1 diabetes featured by pathogenic TEM cells which are

characterized by Kv1.3-high expression the use of this medication

may be of value.

Therapeutic monoclonal antibodies (mAb) have revolutionised the

management of many clinical diseases over the past few decades.

Chimeric humanised and fully humanised mAb can now be made by

recombinant engineering with tolerable short-term side-effects that are

the mainstay of many auto-immune disorders. Unfortunately, mAb-

based therapies targeting ion channels so far has not been developed for

clinical use. Haustrate et al. (102) give a comprehensive review of mAb

against ion channels, describe their mechanisms of action, and discuss

their therapeutic potential.
Conclusion

There is an abundance of ion channels expressed in lymphocytes

that are important for development and function. With time the

importance of these individual ion channels is becoming better

recognized, and the interplay between each other, and the crosstalk

that occurs is becoming better understood. New channels, and better

understanding of function and mechanism of action, are being

continuously recognised. It is amazing how different fluctuations in

temporal expression and amounts of intracellular Ca2+ can play a

pivotal role in directing crucial T cell functions through the activation
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and regulation of transcription factors “sensitive” to these changes.

Based on the strength of stimulation and level of ion channel

expression the immune response can be varied. Similarly astonishing

is; (a) the recent recognition that ion channels may have other

functions than their primary function of ion pores; (b) ion channels

can contribute to the development of different T cell subsets; (c) as a

corollary, T cell subtypes express different ion channel phenotypes,

which allow; (d) specific TEM and exact ion channels to target

pathogenic T cells without compromising general systemic

immunity; (e) the potential of developing new therapeutic drugs.

This overview examined the role played by ion channels in the

function of T cells, in health and disease, and outlined future avenues

for future pharmacological therapy. The targets include the Orai1-

STIM complex because of its central role in Ca2+ influx, signaling, and

T cell function, P2X7 and P2X4 channels, and KV1.3, KCa3.1 in the

immunological fight against cancer. Research into ion channel

expression, function and modulations in T cells is a growing field in

immunology and there remains much to discover about the possible

connections between ion channels, disease, and the development of

new therapies.
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