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Lung cancer constitutes a formidable menace to global health and well-being, as

its incidence and mortality rate escalate at an alarming pace. In recent years,

research has indicated that exercise has potential roles in both the prevention

and treatment of lung cancer. However, the exact mechanism of the

coordinating effect of exercise on lung cancer treatment is unclear, limiting

the use of exercise in clinical practice. The purpose of this review is to explore the

mechanisms through which exercise exerts its anticancer effects against lung

cancer. This review will analyze the biological basis of exercise’s anticancer

effects on lung cancer, with a focus on aspects such as the tumor

microenvironment, matrix regulation, apoptosis and angiogenesis. Finally, we

will discuss future research directions and potential clinical applications.
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Introduction

Lung cancer constitutes a formidable menace to global health and well-being, as its

incidence and mortality rates escalate at an alarming pace (1). According to the worldwide

cancer data of 2020, lung cancer ranks among the most prevalent malignancies and exhibits

the highest mortality rate among all major cancers (2, 3). Annually, more than 2.1 million

new cases of lung cancer and approximately 1.8 million deaths are recorded (2). Non-small

cell lung cancer (NSCLC) is the most prevalent subtype of lung cancer, accounting for

approximately 80% of newly diagnosed cases (4). The 5-year survival rate for this

malignancy is a mere 15%, attributable in part to the inadequacy of early detection

techniques and the absence of effective treatments for advanced disease (1, 4).

Approximately fifty percent of non-small cell lung malignancies contain mutations in

the tumor suppressor gene p53, which plays a key role in numerous biological pathways,

including DNA repair, cell cycle arrest, apoptosis, senescence, autophagy, and metabolism

(5). Currently, treatment modalities entail surgical resection, chemotherapy, radiotherapy,
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targeted therapy, and immunotherapy (6). Therapeutic options for

lung cancer patients hinge upon the cancer type, disease stage, and

patient functional status. These interventions may also induce

adverse effects, which, in conjunction with the cancer symptoms,

impose a considerable burden on patients and exacerbate numerous

patient-related outcomes, including exercise capacity and physical

function (1). Consequently, it is of utmost importance to seek

treatment strategies for lung cancer that are less harmful.

Physical activity serves a vital role in the prevention and

management of lung cancer (7). Regular physical activity yields

substantial health advantages, mitigating the risk of various chronic

health disorders, such as obesity, brain disorders, cardiovascular

diseases, and diabetes (8–12). The World Health Organization

advises adults to partake in a minimum of 150 minutes

of moderate-intensity aerobic exercise weekly, fostering

cardiorespiratory, muscular, and skeletal health while diminishing

the risk of depression. Exercise correlates with a lower risk of

diverse cancers, encompassing colorectal, breast, esophageal,

pancreatic, endometrial, and ovarian malignancies (10).

Moreover, habitual exercise markedly curtails cancer-related

mortality rates following breast and colorectal cancer diagnoses

(13, 14). However, the molecular mechanisms underlying exercise’s

function in lung cancer prevention and treatment remain obscure.

In the realm of lung cancer therapy, exercise has unequivocally

exhibited its efficacy in bolstering the quality of life for patients

subjected to arduous treatment modalities (6). A salubrious lifestyle

characterised by regular exercise and physical activity is associated

with a lower incidence of cancer (including lung cancer) and cancer

mortality (10, 15, 16). Exercise also improves the overall physical

condition of cancer patients undergoing chemotherapy or surgery,

thereby reducing treatment-related adverse effects and

complications (6, 7, 17). Accumulating evidence underscores the

safety and effectiveness of exercise interventions, with pre-operative

exercise considerably decreasing the prevalence of post-operative

complications (7). In recent scrutinies concerning individuals

afflicted with non-small cell lung cancer, a compelling revelation

has surfaced, elucidating the transformative potential of physical

exercise. This enlightening research has unveiled significant

advancements in terms of ambulatory stamina, maximal exercise

capability, breathlessness alleviation, reduction in hospitalization

risk, and amelioration of postoperative pulmonary complications

(2, 3, 18).

Exercise constitutes an essential component in both the

prevention and management of lung cancer, with potential

underlying biological mechanisms comprising p53-mediated

apoptosis, inhibition of lung cancer cell proliferation and survival,

augmentation of host immunity, facilitation of immune cell

infiltration, refinement of the tumor microenvironment,

attenuation of chronic inflammation, activation of DNA repair

enzymes, and fortification against oxidative stress (3, 5, 7, 18–24).

Furthermore, research has indicated that aerobic exercise and high-

intensity interval training exert therapeutic effects on tumors (18,

22, 25). By modulating the microenvironment of tumors and

boosting the activity of immune cells such as T lymphocytes and

NK cells, exercise can boost immune function and aid in the fight

against tumors (3, 17–20).
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Although further investigation of the potential anti-tumor

effects of combining exercise with immunotherapy is warranted,

the implementation of exercise in lung cancer treatment has already

shown promise (3, 18). This study chiefly synthesizes all recent

fundamental research on exercise’s anti-tumor effects, offering an

exhaustive overview of established mechanisms, with the intent of

aiding scholars in their investigation of exercise’s anti-cancer

properties and furnishing a theoretical foundation for clinical trials.
The influence of exercise on the tumor
immune microenvironment (TIME)
of lung cancer

Within the Tumor Microenvironment (TME), three distinct

classifications have been identified, namely “Immune inflamed,”

“Immune desert,” and “Immune excluded,” based on the infiltration

and distribution patterns of immune cells (26–30). In an ‘Immune

inflamed’ TME, immune cells are widely infiltrated within the

tumor tissues, while in an ‘Immune desert’ TME, immune cells

are virtually absent within and around the tumor. An ‘Immune

excluded’ TME sees immune cells primarily concentrated at the

tumor margins (26, 27, 30).

An increasing body of research suggests that exercise may

facilitate the shift in the tumor microenvironment class (13, 31).

Although the precise mechanisms are still under investigation, one

possible explanation is that exercise may modulate both systemic and

local immune responses (19, 22). For instance, exercise may enhance

systemic immune responses by augmenting the number of immune

cells in circulation; simultaneously, it may influence the activities of

immune cells within the tumor by adjusting the local environmental

conditions surrounding the tumor, such as oxygen and nutrient

supply, as well as the extent of inflammatory and stress responses

(31, 32). This could lead to the transformation of the TME from an

‘Immune desert’ or ‘Immune excluded’ type to an ‘Immune inflamed’

type, thereby making it more conducive for the immune system’s

assault on the tumor (18, 33). Nonetheless, the precise impact of

exercise on TME alterations requires further exploration. A deeper

understanding of this not only sheds light on the role of exercise in

cancer treatment but also may provide novel insights for the

development of new immunotherapeutic strategies.

Various bioactive substances, such as myokines, endorphins,

glucocorticoids, growth hormones, insulin-like growth factor-1, and

nitric oxide, can be affected by exercise (34–38). These substances

play a regulatory role in the immune system by modulating

inflammatory responses, promoting immune cell activity, and

enhancing resistance against pathogens (35, 36). Moderate and

regular exercise helps maintain a balance in the levels of these

substances, thereby positively regulating the immune system (10,

17, 36).

Research has shown that exercise can reduce the levels of

inflammatory factors (such as TNF-a, IL-6, IL-1b) and reactive

oxygen species (ROS) within tumor tissue, thus inhibiting the

inflammatory immune microenvironment in tumors (22, 38).

Animal studies demonstrated that aerobic exercise could reduce

lung cancer inflammation, increase the levels of the anti-
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inflammatory cytokine IL-10, and decrease the levels of pro-

inflammatory cytokines (such as TNF-a, IL-6, and IL-1) (18, 20).

A systematic review and meta-analysis on lung cancer patients

indicated that exercise could improve immune function, reduce

inflammation, and enhance the quality of life (1). These studies

suggest that exercise’s anti-lung cancer mechanism involves the

regulation of tumor inflammation.

Animal and human studies indicate that exercise can affect

innate immune components by elevating the levels of myeloid cells,

including macrophages, monocytes, and neutrophils, in peripheral

blood and tissue exudates (17, 39–41). Exercise modulates the

tumor microenvironment by acting on both the innate and

adaptive immune systems, increasing peripheral blood T

lymphocyte and NK cell levels, enhancing their mobilization to

the tumor stroma, or tumor cell cytotoxicity (18, 19, 22, 42).

Furthermore, exercise can regulate the tumor microenvironment’s

reprogramming by promoting myeloid cell polarization towards a

more anti-tumor phenotype (15, 18, 22). However, research on

exercise and the regulation of the immune microenvironment in

lung cancer is limited, and the mechanism is not yet clear.

Tumor-associated macrophages (TAMs) serve a crucial role in

tumor promotion (43–45). Studies have found that TAMs can

constitute 30-50% of the total tumor tissue volume. Tumor cells

can recruit and induce macrophages to differentiate into TAMs,

which then promote tumor growth (46–48). Research has

confirmed that long-term swimming training can reduce TAMs

infiltration in tumor tissue and delay tumor growth (18). However,

8 weeks of voluntary wheel running does not change the number of

TAMs in subcutaneously implanted leukemia tumors, suggesting

that exercise’s impact on TAM accumulation in tumor tissue

depends on the tumor types (18).

Endurance exercise and high-intensity interval training (HIIT)

have been found not to prevent TAM accumulation in lung cancer

tissue (18). Although TAMs accumulate abundantly in tumor

tissue, they primarily exhibit an M2 phenotype, promoting tumor

growth and immune suppression (43, 48, 49). Numerous studies are

investigating how to target TAMs and polarize them from M2 to

M1 phenotype to eliminate tumors (43, 47, 49, 50). Some research

suggests that exercise can enhance anti-tumor activity by increasing

the M1/M2 TAM ratio (18, 22). However, research indicates that

endurance exercise reduces the quantity of M1-type TAMs in lung

cancer tissue significantly (18). Additionally, endurance exercise

downregulates TNF-a and iNOS expression in lung cancer tissue

but upregulates IL-6 and IL-10 expression (18). This indicates that

endurance exercise reduces the proportion of M1-type TAMs and

pro-inflammatory cytokines while enhancing anti-inflammatory

cytokines. HIIT also downregulates TNF-a and iNOS expression

in lung cancer tissue but increases IL-12 expression and plasma

IFN-g levels. IL-12 promotes IFN-g production, which can induce

monocyte differentiation into M1-type macrophages (18).

Therefore, HIIT may promote M1 polarization and immune

tumor control by increasing IL-12 and IFN-g levels. Moreover,

HIIT upregulates CD47 and CD24 expression, which is associated

with inhibiting macrophage phagocytic activity and enhancing

tumor immunogenicity (18). In summary, HIIT may

bidirectionally regulate TAM polarization and improve the
Frontiers in Immunology 03
immune microenvironment of lung cancer by modulating IL-10,

IL-12, CD47, and CD24. In comparison, endurance exercise

upregulates PD-L1 and Sirpa expression, potentially enhancing

tumor immunogenicity and inhibiting macrophage phagocytic

activity (18). Overall, endurance exercise and HIIT improve the

immune microenvironment of lung cancer by regulating TAM

polarization and immune checkpoint expression. These findings

provide new therapeutic strategies for lung cancer immunotherapy.

Pedersen et al. found that exercise can mediate epinephrine-

dependent and IL-6-dependent NK cell mobilization and

redistribution, thus limiting tumor growth (20). In their study,

gene chip analysis revealed that exercise training induced

upregulation of immune function-related pathways. In tumor-

bearing mice subjected to running, NK cell infiltration increased

significantly, and lung tumor burden decreased (20). In addition,

Asunción et al. found that aerobic and resistance training can

promote myeloid tumor infiltrates (mostly neutrophils) and

reduce tumor growth rate (3). These results suggest that exercise

can enhance immune surveillance, increase NK cell and neutrophils

infiltration into lung tumor tissue, and inhibit tumor growth.

In conclusion, exercise can influence the immune

microenvironment of lung cancer tumors by modulating the

production and release of bioactive substances, inflammatory factors,

and immune cell activity. Exercise may regulate tumor inflammation,

inhibit tumor growth, and improve the immune response by affecting

the innate and adaptive immune systems, TAM polarization, and

immune checkpoint expression (Table 1) (Figure 1). However, the

specific mechanisms underlying these effects remain to be

further elucidated.
The impact of exercise on the tumor
microenvironment matrix in lung cancer

The effect of exercise on the matrix of the tumor

microenvironment is a multifaceted process involving the

extracellular matrix (ECM), matrix rigidity, matrix metalloproteinase

(MMP) regulation, and modulation of extracellular signaling pathways

(32, 53–55). The tumor microenvironment matrix, which includes the

extracellular matrix (ECM), matrix rigidity, MMP regulation, and cell

signaling modulation, plays a crucial role in tumor growth, invasion,

metastasis, and treatment response (56, 57).

Exercise can affect ECM components, such as collagen and

fibronectin. Some studies suggest that exercise can reduce collagen

density and stiffness within the tumor microenvironment matrix,

thereby slowing tumor growth and metastasis (53). However, these

effects may vary depending on the tumor type and exercise

modality. Tumor microenvironment matrix stiffness is closely

related to tumor invasiveness and metastatic potential (58, 59).

Exercise may influence ECM components and extracellular

signaling pathways, altering the stiffness of the tumor

microenvironment matrix. Some studies reported exercise can

also affect the expression or activity of MMPs, further regulating

ECM degradation and remodeling, thereby influencing tumor

invasion and metastasis (22, 23). Ge et al. found that exercise can

decrease MMP expression, suppressing tumor growth and
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FIGURE 1

Mechanism of exercise’s anticancer influence on lung cancer.
TABLE 1 Benefits and mechanisms of exercise for lung cancer.

Species Type Results Underlying
mechanism

Ref

Mouse Aerobic exercise Slowing the progression of lung cancer Ki67↓ MMP9↓ (23)

Mouse HIIT Slowing the progression of lung cancer Ki67↓ MMP2↓ (23)

Mouse HIIT Diminishing the incidence of lung tumors Unknown (51)

Mouse Aerobic exercise Slowing the progression of lung cancer p53↑; Bax↑;
Ac-caspase 3↑;

Apoptosis in lung
cancer↑

(5)

Mouse Voluntary Running Showing over 60% reduction in tumor incidence and growth NK Cell
Mobilization and
Redistribution

(20)

Mouse Endurance exercise Avoiding the resumption of tumor growth. Protein degradation
levels↓;

Muscle atrophy↓

(52)

Mouse Aerobic and
resistance training

Promoting cancer immunotherapy treatment.
Reducing tumor growth rate

Myeloid tumor
infiltrates↑

(mostly neutrophils)

(3)

Mouse Voluntary Running Reducing the incidence of lung cancer Reducing lung nodule
numbers

(21)

Mouse Aerobic exercise Modulating the expression of some immune checkpoints in lung cancer.
Reducing the proportion of M1-type TAMs in lung cancer tissues

M1 TAMs↓;
SIRPa↓;
PD-L1↑;

Plasma IFN-g↑

(18)

Mouse HIIT Modulating the expression of some immune checkpoints in lung cancer.
Antagonistically regulating M1 and M2 polarization of TAMs;

IL-10, IL-12, CD47,
CD24↑;

Plasma IFN-g↑

(18)
F
rontiers in Im
munology
 04
↑ means gene expression is upregulated, ↓ means gene expression is downregulated.
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metastasis (23). The study indicated that exercise can modulate the

tumor microenvironment matrix composition and function by

regulating extracellular signaling pathways, such as transforming

growth factor-b (TGF-b), inflammatory factors, and growth factors

(23). In details, high-intensity interval exercise (HIIE) can

significantly increase the expression of transforming growth

factor-b1 (TGF-b1) in lung cancer tissue, suggesting that HIIE

may stimulate lung cancer cell epithelial-mesenchymal transition

(EMT) via TGF-b1 (23). However, although TGF-b1 can activate

the Smad3/4 complex and upregulate the expression of N-cadherin

in non-small cell lung cancer, the impact of HIIE on N-cadherin is

not well-defined, and the specific mechanism requires further

investigation. Regrettably, They have shown that exercise cannot

reduce the elevated expression of type I collagen in lung cancer

tissue, meaning that neither mice nor HIIE can modulate lung

cancer cell EMT through type I collagen regulation (23) (Table 1)

(Figure 1). These findings provide new insights into the

mechanisms underlying exercise’s effects on the matrix of lung

cancer cells, but further research is needed to reveal more details,

such as the impact of different exercise modalities on the tumor

microenvironment matrix and the changes in different collagen

subtypes within the matrix due to exercise.

The extracellular matrix composition is diverse and includes a

range of components such as collagen, elastin, and fibronectin (54).

But rare studies have reported the effects of exercise on those

components. Future studies would certainly benefit from further

investigation into how elastin, fibronectin, and other matrix

components respond to exercise. Additionally, the influence of

exercise on Cancer-Associated Fibroblasts (CAFs) within the tumor

matrix warrants further exploration. CAFs are key players in tumor

progression, as they contribute to matrix production, modulate

immune responses, and facilitate angiogenesis (59). Thus, a deeper

understanding of how exercise influences TGF-b and consequently,

the behavior of CAFs, could provide key insights into the mechanism

underlying the benefits of physical activity in cancer treatment.

Further studies in this field could potentially pave the way for

synergistic approaches combining exercise and targeted therapies.
The impact of exercise on apoptosis
in lung cancer

The influence of exercise on tumor cell apoptosis has been

confirmed in numerous studies, which involve intricate mechanisms,

including endocrine alterations, activation of signaling pathways,

improvement of the tumor microenvironment, and regulation of

apoptosis-related genes (60, 61). These findings suggest that exercise

could serve as a beneficial adjuvant therapy, aiding in the suppression

of tumor growth and promotion of tumor cell apoptosis.

The effect of exercise on apoptosis in lung cancer cells has been

corroborated in murine models. Moderate-intensity aerobic

exercise training can induce tumor cell apoptosis, activating

caspases and diminishing the expression of Bcl-2 (3, 22).

However, in certain models, apoptosis may not be the primary

reason for tumor regression; instead, it might be associated with the

response to the drug nivolumab, exercise, or their combination (62–
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64). Exercise can inhibit cell proliferation via multiple mechanisms,

including the reduction of circulating growth factors such as

insulin-like growth factor-1 (IGF-1), activation of AMP-activated

protein kinase (AMPK), and inhibition of protein kinase B and

mammalian target of rapamycin (mTOR) activity (5, 6).

Conversely, lung cancer tumors in exercised mice exhibit

elevated levels of P53 and Bax, suggesting that exercise might

enhance P53-driven apoptosis (5, 6, 18). This discovery, which

involves the observation of increased functional P53 protein levels

in lung cancer of exercised mice, holds significant implications for a

broad range of malignant tumors. Moreover, exercise might

stabilize wild-type P53 protein, rendering it more effective in

tumor suppression (6). However, the current understanding of

the impact of exercise on tumors carrying p53 mutations remains

unclear (Table 1) (Figure 1).

Future research directions encompass the investigation of

endocrine pathways, such as exercise-induced IGF-1 reduction,

systemic metabolic changes, the relationship between exercise-

derived exosomes and the promotion of apoptosis, and an array

of related pathways (65–67).

In summary, the impact of exercise on lung cancer cell

apoptosis potentially involves multiple complex mechanisms,

including the activation of P53 and the modulation of endocrine

pathways, thereby contributing to the deceleration of tumor growth

and the promotion of tumor cell apoptosis. Further research on this

topic can support that exercise can synergize with other treatment

modalities (such as chemotherapy, molecular-targeting agents,

immunotherapy, etc.).
The influence of exercise on
tumor angiogenesis

The impact of exercise on vascular endothelial growth factor-A

(VEGF-A) remains contentious. Studies have reported decreased

expression of VEGF-A in the peritumoral region or breast tumor

tissue, while others have documented increased expression (68–70).

Recent research indicates that after exercise intervention in mice

with Lewis lung carcinoma, serum VEGF-A levels increased relative

to baseline, but there were no significant disparities in survival rate

or tumor growth compared to the control group (3). Alternatively,

other studies have shown that high-intensity interval training

(HIIT) can significantly reduce tumor VEGF-A mRNA levels,

decrease tumor volume, and improve survival rates (23). But

Pedersen et al. showed that voluntary running did not change

expression of markers of angiogenesis (i.e., CD31 and VEGF-A)

(20). In addition, exercise may lead to increased tumor blood flow

(by upregulating VEGF-A), which can enhance drug delivery but

may also promote tumor progression (6, 22).

Tumor growth is closely associated with the expression of Ki67

and angiogenic factors, VEGF and CD31, in tumor tissues (71, 72).

CD105 is an endothelial cell marker that is highly expressed in

actively proliferating endothelial cells and tumor blood vessels (73,

74). High expression of Ki67 and CD105 in tumor tissues also

signifies increased tumor cell proliferation and poor prognosis (23).

Ge et al. reported that both murine exercise and HIIT can reduce
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the expression of Ki67 and angiogenic factors in tumor tissues,

suggesting that exercise may influence tumor cell proliferation by

inhibiting tumor angiogenesis (23). Meanwhile, Asunción et al. has

shown that moderate-intensity training can reduce the percentage

of Ki67-positive cells in lung cancer tissue, suggesting that exercise

can inhibit lung cancer cell proliferation (3). However, neither

murine exercise nor HIIT were able to reduce the percentage of

CD105-positive cells in lung cancer tissue, indicating that exercise

may have a weak inhibitory effect on tumor angiogenesis (23). In

addition, high expression of VEGF-C is also favorable for tumor cell

metastasis. Lung cancer tissue expresses VEGF-C at substantially

higher levels than normal lung tissue. However, neither murine

exercise nor HIIT decreased the expression of VEGF-C in lung

cancer tissue, indicating that both exercise modalities may have a

modest effect on inhibiting lung cancer cell proliferation and

metastasis (23) (Table 1) (Figure 1).

In summary, regular exercise can significantly inhibit local

tumor growth, but its effect on suppressing distant metastasis

remains uncertain and controversial. Current evidence supported

that exercise may inhibit tumor proliferation by reducing the

expression of Ki67 and angiogenesis-related factors in tumor

tissues; however, the impact on VEGF-A/C and CD105

expression is inconsistent, indicating that exercise may have a

weaker effect on inhibiting tumor angiogenesis.
Additional mechanisms

Apart from the aforementioned mechanisms, the anticancer

effects of exercise may also involve several biological processes,

including autophagy, ferroptosis, anti-muscle atrophy effects and

oxidative stress (52, 75–78). For example, exercise can induce

cellular autophagy, a process of intracellular degradation and

recycling of damaged or outdated organelles (79, 80). Exercise

promotes autophagy by activating the AMPK/mTOR signaling

pathway, which helps eliminate aberrant proteins and damaged

cellular structures, reducing the likelihood of tumor development

(81). Exercise can rescue TBI-induced ferroptosis via STING

pathway (82). Exercise can also enhance the functionality of the

antioxidant system, decrease reactive oxygen species (ROS) levels,

and alleviate oxidative stress (83, 84). Oxidative stress is closely

associated with tumor initiation and progression (85, 86). Exercise

contributes to maintaining the balance between oxidative and

antioxidative processes, lowering the risk of tumor development

(60, 87). These mechanisms have been experimentally validated in

other types of cancer, but their role in exercise as an anticancer

intervention for lung cancer has not yet been confirmed. Further

research is needed to explore these potential mechanisms in the

context of lung cancer prevention and treatment (Figure 1).
Conclusion

Exercise holds significant importance in the prevention and

treatment of lung cancer. Firstly, in terms of prevention, exercise

can reduce the risk of lung cancer development. By suppressing
Frontiers in Immunology 06
inflammatory responses, enhancing immune function, regulating

cellular autophagy, and alleviating oxidative stress, exercise helps

maintain a healthy physiological environment to resist cancer onset.

Secondly, in the context of treatment, exercise acts as a

supplemental therapy that patients with lung cancer can benefit

from in order to enhance their quality of life. Exercise helps reduce

side effects during lung cancer treatment by improving

cardiorespiratory function, alleviating fatigue, enhancing muscular

strength, and boosting psychological well-being. Additionally,

exercise can strengthen patients’ physical fitness, increasing their

tolerance to other treatment modalities (such as surgery,

radiotherapy, and chemotherapy), thereby enhancing treatment

outcomes. Hence, we zealously promote the inclusion of exercise as

a vital component in holistic lung cancer treatment plans, creating a

powerhouse of support for patients. To safeguard the well-being and

efficacy of exercise interventions, we propose tailoring personalized

workout regimens under the expert guidance of medical professionals.

In summary, the biological basis of exercise as an anticancer

intervention for lung cancer primarily includes modulation of the

tumor immune microenvironment, inhibition of tumor angiogenesis,

promotion of tumor cell apoptosis, and regulation of the tumor

extracellular matrix. Through these mechanisms, exercise can reduce

the risk of developing lung cancer, slow its progression, and enhance

lung cancer patients’ quality of life. To provide a robust and

comprehensive theoretical framework for clinical exercise

interventions, it is imperative to engage in further investigation and

unravel the intricate and nuanced anticancer mechanisms elicited by

exercise within the intricate realm of lung cancer.
Perspectives

The fundamental research on exercise as an anticancer

intervention for lung cancer will continue to delve deeper into its

underlying biological mechanisms, providing more precise

theoretical guidance for clinical practice (Figure 2). We hope that

the following directions can offer insights for researchers:
1. Molecular pathways: Researchers will investigate the

molecular pathways involved in the anticancer effects of

exercise. This includes studying how exercise regulates the

expression of genes and proteins associated with

inflammation, immune responses, cell growth, and cell

death in both healthy and cancerous cells (88–90).

2. Different exercise modalities: Research can also explore the

optimal type, intensity, frequency, and duration of exercise

interventions in animal models, providing more targeted

recommendations for preventive strategies (91–93).

3. Precision therapy: Research may focus on the role of

exercise interventions in combination with different

therapeutic approaches, as well as the impact of exercise

on specific lung cancer subtypes, disease stages, and

individual patient differences, offering more personalized

and precise guidance for clinical practice (92, 94–96).

4. Interactions with other lifestyle factors: Studies may

investigate the interactions between exercise and other
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Fron
lifestyle factors (such as diet, smoking, and alcohol

consumption) in terms of lung cancer risk and prognosis

(87, 97). This will help develop more comprehensive

lifestyle intervention strategies for more effective

prevention and treatment of lung cancer.

5. Personalized exercise prescriptions: With the advancement

of research, personalized exercise prescriptions may be

formulated for lung cancer patients based on factors such

as age, sex, physical fitness, cancer stage, and treatment

plan (98, 99). These individualized prescriptions will help

maximize the benefits of exercise while minimizing the risk

of injuries or adverse reactions.

6. Long-term effects and survival: Future research should also

focus on the long-term impact of exercise interventions on

lung cancer survival, including outcomes such as overall

survival, disease-free survival, and quality of life (92, 100).

This will help determine the optimal duration and intensity

of exercise programs for lung cancer patients and survivors.

7. Large-scale clinical trials: To further validate the benefits of

exercise in lung cancer prevention and treatment, large-

scale clinical trials are needed. These trials should be

designed to compare the effects of different exercise

modalities, frequencies, and intensities on lung cancer

outcomes (94, 101).
By deepening our understanding of the mechanisms and potential

applications of exercise in the context of lung cancer, we can strive to
tiers in Immunology 07
develop more targeted, effective, and evidence-based preventive and

therapeutic interventions. Ultimately, this will contribute to an

improvement in the general standard of life for lung cancer patients

as well as a reduction in the total burden caused by this disease.
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