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Elena Grebenciucova* and Stephen VanHaerents

Feinberg School of Medicine, Department of Neurology, Northwestern University, Chicago, IL, United States
Interleukin 6 (IL-6) is a pleiotropic cytokine executing a diverse number of

functions, ranging from its effects on acute phase reactant pathways, B and T

lymphocytes, blood brain barrier permeability, synovial inflammation,

hematopoiesis, and embryonic development. This cytokine empowers the

transition between innate and adaptive immune responses and helps recruit

macrophages and lymphocytes to the sites of injury or infection. Given that IL-6

is involved both in the immune homeostasis and pathogenesis of several

autoimmune diseases, research into therapeutic modulation of IL-6 axis

resulted in the approval of a number of effective treatments for several

autoimmune disorders like neuromyelitis optica spectrum disorder (NMOSD),

rheumatoid arthritis, juvenile idiopathic arthritis, polyarticular juvenile idiopathic

arthritis, giant cell arteritis (GCA), and cytokine release syndrome, associated with

SARS-CoV2 pneumonia. This review discusses downstream inflammatory

pathways of IL-6 expression and therapeutic applications of IL-6 blockade,

currently investigated for the treatment of several other autoimmune

conditions such as autoimmune encephalitis, autoimmune epilepsy, as well as

myelin oligodendrocyte glycoprotein associated demyelination (MOGAD). This

review further highlights the need for clinical trials to evaluate IL-6 blockade in

disorders such neuropsychiatric lupus erythematosus (SLE), sarcoidosis

and Behcet’s.
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1 Introduction

IL-6 was first described in 1973 as a protein secreted by T lymphocytes that aided B cell

differentiation into antibody producing cells; thus, it first became known as ‘B cell

stimulatory factor 2 (BSF2)’ (1). A decade later, other proteins previously known as

hepatocyte stimulating factor, IFN-b2, as well as plasmacytoma growth factor were cloned

and found to be identical to IL-6, first illustrating its pleotropic functionality. In 1988 at a

conference titled ‘Regulation of the Acute Phase and Immune Responses: A New Cytokine,’

BSF2 was re-named into interleukin 6 (2). IL-6 is a small polypeptide (molecular weight of
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19–28 kDa), comprised of four a helices. Usually existing in a

monomer form, it consists of 184 amino acid residues, glycosylation

sites and two disulfide bonds. IL-6 encoding gene is located on

chromosome 7p and includes 4 introns and 5 exons (3). It is

produced by B lymphocytes, T lymphocytes, macrophages,

including microglia, as well as fibroblasts, keratinocytes,

mesangial cells, vascular endothelial cells, mast cells, and

dendritic cells. IL-6 expression is mainly activated by interleukin

1 b (IL-1b) and tumor necrosis factor-alpha (TNFa); however,
there are also other ways to promote its synthesis such as Toll-like

receptor activation (TLRs), prostaglandins, adipokines, stress

response, and other cytokines (4). IL-6 can bind either the

membrane bound IL-6 receptors (mIL-6R) or soluble IL-6

receptors (sIL-6R) (5). IL-6 family cytokines utilize gp130 for

signal transduction through gp130 homodimers or GP130-

containing heterodimers. While IL-6R is mainly expressed on

immune cells and hepatocytes, gp130 is ubiquitous, which

explains IL-6’s diverse roles in the body. In the classical pathway

of signal transduction, IL-6 binds to the membrane bound IL-6R.

Binding of IL-6- IL-6R complex to GP130 results in

phosphorylation of JAK family kinases that are constitutively

associated with the cytoplasmic region of GP130. In the second

pathway known as trans-signaling, IL-6 binds to soluble IL-6

receptor (sIL-6R) which is created by alternative mRNA splicing

or is shed from cells after cleavage by ADAM17 (metalloprotease)

(6). IL-6 complexed with sIl-6R then binds the GP130. Thus, trans-

signaling pathway allows for the activation of cells that do not

express the IL-6R on their membranes (7). A third pathway of IL-6

signal transduction was recently described as ‘trans- presentation.’

This pathway is specific to dendritic cells that present IL- 6-mIL-6

complex to T cells expressing gp130 and primes them to become

pro-inflammatory Th17 subsets (8).
2 Homeostatic role of IL-6 in health
and infection

IL-6 secretion is stimulated during inflammatory response

secondary to tissue injury or infection. After it is produced, it

moves through the blood stream to the liver, triggering production

of acute phase reactants such as C-reactive protein (CRP), serum

amyloid A (SAA), and a1-antichymotrypsin, fibrinogen and

haptoglobin (9). One of the effects of IL-6 is stimulation of

hepcidin production, which blocks iron transportation from the

gut. When this pathway is activated chronically, it causes what we

know as anemia of chronic disease. IL-6 also increases zinc importer

(ZIP14) expression on hepatocytes, inducing hypozincemia seen in

inflammation, and thus delaying wound healing, among other

effects of low zinc on the immune system (10). Once IL-6 reaches

the bone marrow, it increases maturation of megakaryocytes, thus

increasing the number of platelets, explaining why thrombocytosis

is often seen during inflammatory response. Together with tumor

necrosis factor alfa (TNF a) and IL-1, IL-6 is an important

pyrogenic cytokine affecting lymphocyte trafficking (11). In
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mouse and rabit models, intravenous or intracerebroventricular

introduction of IL-6 leads to increased body temperature (12). At

the time of pyrogenic response, IL-6 trans-signaling aids in the

multistep adhesion cascade promoting the entry of blood-borne

lymphocytes across ‘gate-keeper’ high endothelial venules (HEVs)

in lymph nodes and Peyer patches. In this context, primary

tethering and rolling of lymphocytes along the HEVs as well as

during secondary firm arrest of lymphocytes in HEVs, before they

can migrate into the surrounding parenchyma, is potentiated by IL-

6 trans-signaling. This sequence of events increases the probability

that patrolling lymphocytes with encounter the sequestered

antigens within the lymphoid organs. This illustrates how IL-6

sets up a framework of how pyrogenic response activates the

lymphocyte–HEV–IL-6 trans-signaling biological axis to

promotes immune surveillance. The cytokine helps control

differentiation of monocytes into macrophages by regulating the

expression of macrophage colony-stimulating factor (13).

Macrophages are effectors cells of the innate immune response

and one of the first line’s of defense against infections. They

phagocytose bacteria and secrete antimicrobial proteins and pro-

inflammatory cytokines to further potentiate the inflammatory

response. Macrophages can present antigens to T cells. In

addition, they play an important role in clearing the debris of the

damaged or diseased cells through programmed cell death (14). IL-

6 promotes Th2 response by inhibiting Th1 polarization (15). IL-6

induces CD4 T cells to secrete IL-4 that directs polarization to Th2.

It also decreases IFNg secretion by CD4 T lymphocytes, a cytokine

critical for Th1 polarization. In Th1 cells, reduction of IFNg leads to
decreased T cell activation (16, 17). In conjunction with

transforming growth factor beta, IL-6 induces CD4s to

differentiate into Th17, a subset pathogenic in autoimmune

mediated diseases but critical in the clearance of infectious agents

from the mucosal sites (18). In addition, in synergism with IL-7 and

IL-15, IL-6 empowers T cell differentiation and cytolytic ability (19).

IL-6 is a growth factor for B cells (20), inducing their maturation

and differentiation into plasma cells and increasing their survival

(21). It stimulates B-cell IgG production by regulating the

expression of IL-21 (22).
3 IL-6 in the central nervous system

In the central nervous system, IL-6 is generated within the

cortical, brainstem, cerebellar and spinal cord areas. It is also

secreted by the brain’s endothelial cells, modulating surrounding

cell’s health and behavior (23). IL-6 is constitutively expressed at

low levels by astrocytes (24, 25) and microglia (26) and, in certain

scenarios such as injury, by neurons (27, 28). IL-6 effects are

multifaceted and depend on the environment of the neuron and

whether it is located in the central or peripheral nervous system,

ranging from aiding in neurogenesis and neuro-regeneration after

injury to promoting neurodegeneration and cell death. IL-1b, a pro-
inflammatory cytokine secreted during infection or any CNS injury

(as an example, traumatic brain injury, stroke, etc) also induces

astrocytes and neurons to produce IL-6 (29, 30).
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Astrocytes, neurons and microglia express the receptors for IL-6

(IL-6R) (31–33). In addition, given that gp130 is widely expressed in

CNS tissue, IL-6 down-stream effects can take place via gp130-

mediated trans-signaling (34). Convergence of IL-6 down-stream

effects at JAK/STAT signaling pathway and inducing STAT3

phosphorylation enables pro-neuroregenerative effects of

neurotrophins such as nerve growth factor in the peripheral

sensory nerves (35). IL-6 acts as a neurotrophic factor for

dopaminergic neurons in the midbrain and cholinergic neurons

in the basal forebrain and septum (36, 37). It also influences

neuronal excitability and helps regulate several voltage-gated and

receptor-mediated channels (38).

Overall while IL-6 appears to be an important play in CNS

health, its dysregulation leads to pathological effects. Increased

levels of intrathecal IL-6 (albeit not the only cytokine elevated)

have been found in various brain disease states ranging from

traumatic brain injury, schizophrenia, depression (39),

neuromyelitis optica spectrum disorder (40) to Alzheimer’s (41)

and Lewy body dementia (LBD) (42). However, studies measuring

IL-6 levels have produced inconsistent results due to limited ability

to evaluate true CNS parenchymal levels of IL-6, including the

timing of such evaluation in relation to the acute injury. Indeed,

quantifying interstitial IL-6 levels inside the brain in living subjects

is not feasible, and most studies have relied on measuring

cerebrospinal fluid level of IL-6. In animal studies of experimental

CNS injury, the level in the interstitial fluid (measured via

microdialysis probe implantation) has been found to be 10 fold

higher than in the CSF (43). However, in one study of severe

traumatic brain injury, human subjects had similar levels of IL-6 in

both CNS parenchyma and CSF as measured by dialysate (44), an

invasive brain technique reviewed by Stovell et al. (45). In disorders

associated with elevated systemic levels of IL-6, decreased cognitive

function has been observed in humans and reproduced in animal

models. In patients with cerebral vascular disease, those with

dementia had higher levels of serum IL-6 in comparison to those

without cognitive sequela (46). Elevated serum IL-6 levels have been

associated with poorer cognitive performance in healthy subjects

(47, 48). IL-6 in the blood may gain access into the CNS via leaky

blood brain barrier and may have a direct effect on the blood brain

barrier permeability, as discussed in the paragraph below.
4 IL-6 and the blood brain barrier

Intact blood brain barrier is critical to the homeostatic

maintenance of the central nervous system (CNS) compartment,

regulating the bi- directional traffic of fluids and solutes between the

peripheral blood and the CNS microenvironment. Disruption of this

barrier is linked to a number of inflammatory and neurodegenerative

conditions. The neuro-inflammatory cascade accompanying the

disruption of BBB is strongly linked to the elevated levels of

cytokines such as IL-6 and TNF-a, among others. In a murine

model of ischemic brain injury, IL-6 was noted to help decrease BBB

integrity (49). In the ovine fetus model of ischemic insult increasing

blood brain barrier permeability, 24 hours after ischemia, blocking
Frontiers in Immunology 03
IL-6 with a monoclonal antibody infusion attenuated ischemia-

related increases in BBB permeability and modulated tight junction

and PLVAP (plasmalemma vesicle protein) expression in fetal brain

(50). Another murine model of inflammation associated with

atherosclerosis and its effects on BBB showed that IL-6 produced in

microvessels contributes to BBB impairment (51). Within the context

of neuromyelitis optica (NMOSD), in vitro and ex vivo BBB models

demonstrated that blocking IL-6 suppressed the NMO-IgG-induced

transmigration of T cells and barrier dysfunction. In the in vivo study,

blocking IL-6 signaling suppressed the migration of T cells into the

spinal cord and prevented the increased BBB permeability (9). Even

in the absence of microbial invasion of the CNS compartment,

systemic inflammation associated with increased leakiness of BB

results in increased lymphocyte trafficking into the brain,

increasing the influx of natural killer cells, neutrophils and

macrophages (52). Decreased BBB permeability has been

implicated in the pathogenesis of many infectious, autoimmune

and neurodegenerative conditions, including NMOSD, MS, HIV-

associated dementia complex, Alzheimer’s and others. The effects of

IL-6 blockade thus may be pertinent to a number of autoimmune and

neurodegenerative conditions, in which blood brain barrier

is dysregulated.
5 IL-6 and autoimmunity

Dysregulation of IL-6 axis is known to be involved in the

inflammatory pathways of several autoimmune disorders such

as rheumatoid arthritis, Castleman’s syndrome, idiopathic

juvenile arthritis, neuromyelitis optica spectrum disorder,

autoimmune epilepsy and others. While discussion of the

diverse immunological mechanisms of these disorders is beyond

the scope of this review, IL-6 dysregulation appears to be an

integral part of these processes. While expression of IL-6 is tightly

regulated by transcriptional and post-transcriptional mechanisms,

in situations where the synthesis of IL-6 is chronically elevated, the

inflammatory cascades that ensue lead to the pathological effects

of chronic inflammation and autoimmunity. These effects can be

explained by the pleotropic effects of IL-6 on the innate and

adaptive immune system. Together with transforming growth

factor (TGF)-b, IL-6 induces differentiation of CD4 T cells into

the pro- inflammatory Th17 subsets, implicated in the

pathogenesis of many autoimmune conditions (53). Moreover,

IL-6 reduces TGF-Beta induced CD4 differentiation into the T

regulatory subset, thus decreasing immune system’s natural brakes

on the inflammatory response (54). Dysregulation of the Th17/

Treg balance leads to the loss of immune tolerance and increases

risk of a number of autoimmune conditions and chronic

inflammation (55). Furthermore, IL-6 increases T-follicular

helper-cell differentiation and production of IL-21 responsible

for increased level of IgG, including IgG4. It induces B cells to

become plasma cells and secrete IgG, thus chronic inflammation is

associated with hypergammaglobulinemia. IL-6 further induces

differentiation of CD8+ T cells into cytolytic T cells (56). It

increases vascular endothelial growth factor (VEGF) and
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promotes angiogenesis and vascular permeability (57). Within the

CNS compartment, in response to local inflammation or injury,

astrocytes and microglia secrete IL-6, promoting downstream

demyelination and contributing to oligodendrocyte and axon

damage, as seen in NMOSD (40).
6 IL-6 axis modulating therapeutics

First clinical application of murine anti IL-6 monoclonal

antibody was trialed in a patient with multiple myeloma (MM); it

improved tumor burden and suppressed inflammatory acute phase

responses, but it led to accumulation of IL-6- antibody immune

complexes in the blood, preventing elimination of IL-6 and creating

high level of IL-6, highlighting the need for IL-6 receptor blockade

instead (58). Later, a clinical trial failed to show improved outcomes

of MM when anti IL-6 agent was added to the typical regimen (the

bortezomib–melphalan–prednisone regimen) (59, 60). Further

research created anti Il-6R antibody that was humanized and

given the name tocilizumab (developed by Kishimito and Chugai

Pharmaceutical Co). Tocilizumab, binds to mIL-6R and sIL-6R and

inhibits IL-6 signaling by preventing IL-6 from binding to IL-6R. In

the 90s, tocilizumab was first used in a patient with Castleman’s

disease, a lymphoproliferative disorder with a range of

inflammatory symptoms. In response to IL-6R blockade, the

fevers went down, the levels of C reactive protein (CRP)

decreased to zero and hemoglobin levels increased. Subsequently

to that a phase II clinical trial including 30 patients showed

effectiveness of tocilizumab in Castleman’s disease, normalizing

all markers such as CRP, serum amyloid A, hemoglobin, albumin,

IgG and cholesterol (61). Tocilizumab was approved in 2009 in

Europe and in 2010 in the United States. The discovery of elevated

IL-6 levels in the synovium of rheumatoid arthritis led clinical trial

of anti-IL6R antibody tocilizumab, paving its use in other

autoimmune conditions (62) (5) such as:
Fron
1. Giant Cell Arteritis (GCA)

2. Rheumatoid arthritis

3. Polyarticular Juvenile Idiopathic Arthritis (PJIA)

4. Systemic Juvenile Idiopathic Arthritis (SJIA)

5. Cytokine Release Syndrome (CRS)

6. Adults and pediatric patients 2 years of age and older with

chimeric antigen receptor (CAR) T cell-induced severe or

life- threatening cytokine release syndrome.

7. Off-label use in neuromyelitis optica spectrum disorder and

others.
The therapeutic benefit of tocilizumab led to the development of

several other antibodies to IL-6 such as sirukumab, olokizumab,

sartralizumab and clazakizumab. In 2022, FDA approved

tocilizumab for emergency use for the treatment of COVID-19 in

hospitalized pediatric patients 2 to less than 18 years of age who are

receiving systemic corticosteroids and require supplemental
tiers in Immunology 04
oxygen, non-invasive or invasive mechanical ventilation, or

extracorporeal membrane oxygenation (ECMO).

Two main anti-IL6 agents utilized in the United States and their

FDA and some off-label uses are listed below in Table 1.
7 IL-6 modulation in
neuromyelitis optica

Neuromyelitis optica (NMOSD) is a rare relapsing autoimmune

condition affecting central nervous system, pathogenically driven by

anti-aquaporin 4 antibody activating terminal complement cascade

with a resultant astrocyte damage and secondary demyelination.

Patients affected by neuromyelitis optica experience attacks of

longitudinally extensive transverse myelitis, unilateral or bilateral

optic neuritis, among other disabling manifestations, that in some

cases may be life-threatening (63) In this disease process, IL-6 appears

to be instrumental by promoting plasmablast survival, increasing

AQP4-IgG levels, enhancing pro-inflammatory T lymphocyte

activation and impairing blood brain barrier (BBB). Moreover,

levels of IL-6 have been noted to be increased in the serum and

CSF, particularly during the attacks (40). In clinical trials, blocking

IL-6 receptor, with a humanized monoclonal antibody tocilizumab

resulted in significant reduction of relapses due to NMO.

Tocilizumab went through several trials in neuromyelitis optica

with positive results. In TANGO, an open- label, multi-centre,

randomised, phase 2 trial recruited 118 adult patients (aged ≥18

years) with highly relapsing NMOSD who had a history of at least

two clinical relapses during the previous 12 months or three relapses

during the previous 24 months with at least one relapse within the

previous 12 months. The patients were randomized into azathioprine

vs tocilizumab groups. Fifty (89%) of 56 patients in the tocilizumab

group were relapse-free compared with 29 (56%) of 52 patients in the

azathioprine group at the end of the study (HR 0·188 [95% CI 0·076-

0·463]; p&lt;0·0001); the median time to first relapse was also longer

in the tocilizumab group than the azathioprine group (67·2 weeks

[IQR 47·9-77·9] vs 38·0 [23·6- 64·9]; p<0·0001) (64). A recent meta-

analysis evaluating safety and efficacy of anti IL-6 agents in NMOSD

included a total of nine studies with 202 patients and found that a

good proportion (76.95% CI: 0.61-0.91; p &lt; 0.001) of tocilizumab

treated patients were relapse free at follow up. It also significantly

reducedmean ARR (mean difference: -2.6, 95% CI: - 2.71 to - 1.68; p<

0.001) and but did not show significant difference in change in EDSS

score (mean difference = - 0.79, 95% CI: - 1.89 to - 0.31; p = 0.16).

Sakura trials of sartralizumab demonstrated significant reduction

of the risk of relapses (65). In Sakura Star trial, 64 AQP4-IgG +

adults were randomized to sartralizumab (n=41) or placebo (n=23).

77% of sartralizumab-treated patients were relapse-free at

96 weeks, compared to 41% placebo-treated patients, a 74% relative

risk reduction (66). In Sakura Sky trial, 52 AQP4- antibody + adults

taking certain immunosuppressant therapies were randomized to

sartralizumab (n=26) or placebo (n=26). 91% of sartralizumab -

treated patients were relapse-free at 96 weeks, compared to 57%

placebo-treated patients, with a 78% relative risk reduction (67).
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8 IL-6 modulation in myelin
oligodendrocyte glycoprotein
associated demyelination

Myelin oligodendrocyte glycoprotein associated demyelination

(MOGAD) is another autoimmune demyelinating condition in

which patients experience relapses of brain/optic nerve/spinal

cord inflammation, similar to AQP4 positive NMOSD. The

pathophysiology of MOGAD displays both antibody and

complement-mediated CNS injury and includes elevated levels of

IL-6 (68). A retrospective multicenter study evaluated the long-term

safety and efficacy of tocilizumab (TCZ), a humanized anti-

interleukin-6 receptor antibody in myelin oligodendrocyte

glycoprotein-IgG-associated disease (MOGAD) and provided

Class III evidence that long-term TCZ therapy is safe and reduces

relapse probability in MOGAD. Fourteen MOGAD patients

received TCZ for a median of 23.8 months (range 13.0-51.1

months), with an IV dose of median dose 8.0 mg/kg (range 6-12

mg/kg) monthly. The median ARR decreased from 1.75 (range 0.5-

5) to 0 (range 0-0.9; p = 0.0011) under tocilizumab (69). Currently a

Phase III, randomized, double-blind, placebo-controlled,

multicenter trial evaluating the efficacy, safety, pharmacokinetics,

and pharmacodynamics of satralizumab as monotherapy or in
Frontiers in Immunology 05
additional to baseline therapy in patients with MOGAD is

ongoing (NCT05271409).
9 IL-6 modulation in Neurobehcet’s

Bechet’s disease (BD) is a relapsing, multi-system inflammatory

vasculitis that can present with a remarkable heterogeneity in

different patients, ranging from ocular, genital, skin to

gastrointestinal to neurological involvements. Neurobehchet’s can

present with parenchymal brain or spinal cord syndrome,

peripheral nervous system involvement or venous sinus

thrombosis. The etiopathogenesis of this disease remains poorly

defined; however, both neutrophils and pathological activation of

JAK/STAT pathway associated with IFNGR1 polymorphysms as

well as the dysregulated inflammatory cytokine milieu with

increases in IL-6 and IL-17 that promoted Th1/Th17 polarization

have been implicated. Therapeutic agents used in the treatment of

Behcet’s range from colchicine, azathioprine, mycophenolate

mofetil, rituximab and include anti IL-6 agents. A systematic

literature review of tocilizumab administration for the treatment

of Behcet’s disease found 47 patients with a refractory disease in

response to prior conventional and biologic agents with the mean

disease duration was 99.5 ± 61.4 months. Tocilizumab was found to
TABLE 1 Anti IL-6 agents: FDA approved and off-label uses.

Agent FDA approved indications Not FDA approved uses (off label)
or in clinical trials

Tocilizumab Rheumatoid arthritis
Giant Cell Arteritis (GCA)
Polyarticular Juvenile Idiopathic Arthritis (PJIA)
Systemic Juvenile Idiopathic Arthritis (SJIA)
Cytokine Release Syndrome (CRS)
Adults and pediatric patients 2 years of age and older with chimeric antigen receptor (CAR) T cell-
induced severe or life- threatening cytokine release syndrome.

MOGAD
Autoimmune encephalitis
Autoimmune epilepsy
NMOSD
NPSLE
Sarcoidosis
Behcet’s
Adult-onset Still disease
Ankylosing spondylitis
Antibody-mediated rejection in renal
transplantation
Cardiac transplant rejection
Crohn’s disease
Hemophagocytic lymphohistiocytosis
Polymyalgia rheumatica
Psoriatic arthritis
Relapsing polychondritis
Retinal vasculitis
Sjogren’s syndrome myelopathy
Systemic lupus erythematosus
Systemic sclerosis (excludes systemic sclerosis-
associated interstitial lung disease)
Systemic sclerosis-associated myopathy/
polyarthritis
Systemic vasculitis
TAFRO syndrome
Takayasu arteritis
Thyroid eye disease
Tumor nerosis factor receptor associated periodic
syndrome (TRAPS)
Uveitis

Sartralizumab NMOSD (aquaporin 4 antibody positive) MOGAD
AE
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be effective in an organ-dependent fashion as an alternative

treatment for refractory vasculo-, neuro-, oculo-Behcet’s disease,

and secondary amyloidosis, but in mucocutaneous or join

involvement (70). A multi-center study of BD patients treated

with tocilizumab, refractory to standard treatment, studied 16

patients (10 men/6 women) found that tocilizimab is effective in

BD with major clinical involvement. However, it did not seem to be

effective in oral/genital ulcers or skin lesions (71).
10 IL-6 modulation in
autoimmune encephalitis

Autoimmune encephalitis (AE) is an umbrella term for a diverse

number of autoimmune conditions affecting the brain, with some

being antibody mediated (targeting surface receptors: LGI1, NMDA,

GlyR as an example), and some occurring due to a T cell mediated

autoimmune response to an intracellular antigen (examples: Hu, Yo,

KLCH 11). In a substantial number of cases, diagnostic workup does

not return a specific antibody associated with a given case of

autoimmune encephalitis. These cases are deemed to be

seronegative, which means that the causative antibody is either not

yet known or it is a T cell-mediated process. Treating these

neurological syndromes is particularly challenging, as the

underlying pathophysiology is poorly understood and could be

either B or T cell-mediated. In these instances, after administering

first line medications such as intravenous steroids, intravenous

immunoglobulins or plasma exchange, many clinicians favor anti-

proliferative agents targeting both B and T cells, such as

mycophenolate mofetil or azathioprine, particularly if full

improvement is not attained or there is a relapsing course (72).

However, these medications often take many months to become fully

effective. Because IL-6 results in B cell proliferation and increased

antibody synthesis, increased polarization of T cells into Th17 pro-

inflammatory subsets, decreases T regulatory cell ratios and induces

proliferation of CD8 + cytotoxic T cells, blocking this pathway seems

strongly appealing to target in cases of AE where the underlying

pathophysiology is not fully elucidated. Moreover, anti IL-6 agents

can be used in conjunction with mycophenolate mofetil and

azathioprine in a relatively safe way, as seen in NMOSD trial

(SakuraSky). Given that IL-6 has been shown to be elevated in the

CSF of many subtypes of AE (73), it has been therapeutically trialed

in several types of autoimmune encephalitis. In a large institutional

cohort of patients with refractory to rituximab AE, the tocilizumab

group showed more frequent favorable mRS scores at 2 months from

treatment initiation and at the last follow-up compared with the other

groups. 89.5% of the patients with clinical improvement at 1 month

from tocilizumab treatment maintained a long-term favorable clinical

response (74). Tocilizumab may be a good treatment strategy for

treating AE refractory to conventional immunotherapies and

rituximab. Currently A Phase III, Randomized, Double-Blind,

Placebo-Controlled, Multicenter Basket Study To Evaluate The

Efficacy, Safety, Pharmacokinetics, And Pharmacodynamics Of

Sartralizumab In Patients With Anti-N-Methyl-D-Aspartic Acid
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Receptor (NMDAR) Or Anti-Leucine-Rich Glioma-Inactivated 1

(LGI1) Encephalitis is ongoing (NCT05503264).
11 IL-6 modulation in
autoimmune epilepsy

The association of seizures and CNS autoimmunity is well

described. Not only have seizures been seen as a common

manifestation in autoimmune encephalitis, but administrative

database research has shown patients with systemic autoimmune

disorders to be at increased risk of seizures as well (75). While the

term ‘autoimmune epilepsy’ was initially suggested as a concept in

2002, the term has continued to gain popularity and use as further

studies and cohorts of patients with intractable seizures often

related to autoimmune encephalitis (76–78). In the recent

International League Against Epilepsy (ILAE) Definitions and

Classifications guideline, the category of “immune etiology” was

introduced and further defined by the ILAE Autoimmunity and

Inflammation Taskforce in 2020 (79, 80). When looking specifically

at the proinflammatory cytokine IL-6, we know that IL-6 along with

other pro- inflammatory cytokines such interleukin-1b (IL-Ib) and
IL-2, are typically concentrated in low quantities within the brain,

but increase after seizures (81, 82). However, some of the best data

between the involvement of IL-6 and seizures has been seen in

patients with new-onset refractory status epilepticus (NORSE).

NORSE is defined as refractory status epilepticus (RSE) that

occurs in adults or children without active epilepsy and without a

clear acute or active structural, toxic, or metabolic cause identified

in the first few days (83). While the exact pathophysiological

mechanisms underlying NORSE remains elusive, arguments often

suggest that NORSE results from a post-infectious process leading

to exacerbated cerebral inflammation. This is supported by frequent

abnormal cerebrospinal fluid (CSF) with mild pleocytosis and

mildly elevated protein levels (84–87). Additionally, there is a

subtype of NORSE, febrile infection-related epilepsy syndrome

(FIRES), where status epilepticus is preceded by febrile illness. In

these patients polymorphisms in cytokine-related genes were found

(88, 89) further eluding to this association. There have also been

several studies reporting increases in the actual serum and/or CSF

cytokine levels in patients with NORSE. In these patients, in

addition to elevated IL-6, there have been Th1- associated

cytokines/chemokines and other proinflammatory cytokines IL-

1ß, and CXCL8 elevated in the CSF compared with patients with

chronic epilepsy (89–94). The last of these studies in 2023,

demonstrated a significant increase in the serum and CSF of IL-6

along with TNF-a, CXCL8/IL-8, CCL2, MIP-1a, and IL-12p70 pro-
inflammatory cytokines/chemokines in patients with status

epilepticus (SE) compared with patients without SE. Interestingly,

NORSE patients with elevated innate immunity serum and CSF

cytokine/chemokine levels had worse outcomes at discharge and at

several months after the status epilepticus ended (93). Moreover, in

immunotherapy with intrathecal dexamethasone or anakinra (anti

IL-1) therapies, a subsequent decrease in CSF pro-inflammatory

cytokine levels was found to be associated with clinical
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1255533
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Grebenciucova and VanHaerents 10.3389/fimmu.2023.1255533
improvement (95, 96). Another recent study, looked at 6 patients

with anti-NMDAR encephalitis NORSE and 5 with cryptogenic

NORSE, and found CSF IL-6 and CXCL8 levels to be associated

with an up- proteomic score and that has now been suggested as a

promising indicator for assessment of the severity of NORSE (97).

Besides, NORSE, temporal lobe epilepsy has also been

demonstrated to have increased serum concentrations of IL-6

compared with those in healthy controls (98). Additionally,

increased circulatory concentrations of IL-6 have been associated

with high glutamic acid decarboxylase (GAD) antibody titers in

patients with epilepsy (99). Overall, further research is needed to

better understand the exact role IL-6 plays in seizure generation

and epileptogenesis.
12 IL-6 modulation in
neuropsychiatric lupus erythematosus

Systemic lupus erythematosus (SLE) is an autoimmune disease

involving multiple organ systems and affecting about 1.5 million

people in the United States. Neuropsychiatric lupus is an umbrella

term for the etiologically diverse neurological manifestations

associated with SLE. Cognitive dysfunction is a significant

problem in patients with SLE. Up to 48% of patients with SLE

perform poorly on MOCA test with evidence of cognitive

impairment (100). Patients with SLE can present with various

neurocognitive syndromes ranging from chronic cognitive

changes , acute psychos is to acute confus ional s ta te

(encephalopathy). One study found that in NPSLE patients (30.5

± 11.5 years old) the median IL-6 levels in the CSF were 32 pg/ml as

compared to IL-6 level of 3 pg/ml (median) in SLE patients without

neuropsychiatric manifestations (101). Elevated IL-6 cerebrospinal

fluid levels have a strong association with psychosis and acute

confusional state in patients with SLE (102, 103). In fact, neuro-

filament light chain (NFL) levels have been found to be positively

associated with IL-6 levels, highlighting the interface of

inflammatory cascade driving neuronal damage. (104) Moreover,

recent studies showed that SLE is associated with the breakdown of

the blood brain barrier, gray matter loss and cognitive impairment.

Those patients with extensive BBB leakage were found to have lower

global cognitive score with the presence of impairment on one or

more cognitive tasks (105). Hirohata and colleagues have recently

demonstrated that the breakdown of BBB in patients with SLE plays

a critical role in the development of diffuse psychiatric/

neuropsychological manifestations, due to allowing influx of anti-

neuronal antibodies from systemic circulation into the brain. Paired

serum and cerebrospinal fluid (CSF) samples were obtained from

101 SLE patients when they presented active neuropsychiatric

manifestat ions (69 patients with diffuse psychiatr ic/

neuropsychological syndromes [diffuse NPSLE] and 32 patients

with neurologic syndromes or peripheral nervous system

involvement [focal NPSLE]) and from 22 non-SLE control

patients with non-inflammatory neurological diseases. The levels

of albumin and IL-6 in CSF and sera were measured by ELISA. The

found that serum IL-6 and CSF IL-6 levels were significantly
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elevated in acute confusional state compared to other NPSLE

manifestations (cognitive dysfunction, psychosis). They showed

an increased albumin quotient between CSF and serum to highly

blood brain barrier break-down and found the degree of albumin

quotient to be higher in patients with acute confusional state versus

other manifestations. Interestingly, serum IL-6 levels were

significantly correlated with the albumin quotient, highlighting

the relationship between IL-6 and BBB permeability (106).

Currently there are no dedicated SLE treatments targeting acute

confusional state or chronic neurocognitive changes associated with

SLE. Clinical trials evaluating anti IL-6R agents in the acute

confusional state and cognitive changes in association with SLE

are critically needed.
13 IL-6 modulation in sarcoidosis

Sarcoidosis is a multi-systemic granulomatous disease, most

commonly affecting the lungs (107), also affecting central and

peripheral nervous system. The disease is associated with a

dysregulation of the Th17/T regulatory cell ratio, detected in

peripheral blood and bronchoalveolar lavage (108). This

imbalance is reversed by immunosuppressive therapy. Because IL-

6 plays a role in CD4 polarization into Th17 subset and decreases T

regulatory cell differentiation, therapeutic agents blocking IL-6 axis

appear to be a reasonable weapon. In fact, severe cases of

progressive sarcoidosis have been associated with genetic

variations in IL-6 coding gene (109). In Slovenian population a

promotor polymorphism in the IL-6 gene was found to be a risk

factor for sarcoidosis (110). In addition, a recent study of

neurosarcoidosis showed elevated IL-6 levels in the CSF with

levels 50 pg/ml being associated with a higher risk of relapse or

progression (111). A recent case series of 4 patients with sarcoidosis,

refractory to other treatments, tocilizumab has been found to be

effective, allowing for successful steroid tapering (112). However,

there are also several cases published of paradoxical sarcoidosis

onset in patients treated with anti-IL-6 agents for other disorders

(113, 114). Currently, a phase II clinical trial is evaluating efficacy

and safety of sarilumab in patients with glucocorticoid-dependent

sarcoidosis (NCT04008069).
14 Discussion

Since its discovery decades prior, interleukin 6 has proven to be

functionally pleiotropic, and when dysregulated, to participate in a

number of inflammatory cascades underlying pathophysiology of a

range of autoimmune conditions. From its role in blood brain

permeability, antibody production by B cells, Th17 subset

differentiation and effects on regulatory B cells, IL-6 has been

found to be a central cytokine interfacing with the normal innate

and adaptive immune system and autoimmunity. Successful

therapeutic modulation of IL-6 axis have led to the approval of

multiple therapeutic agents, with several clinical trial ongoing at this

time. Because anti IL-6 monoclonal antibodies can be combined
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with other immunosuppressive medications such as azathioprine

and mycophenolate mofetil, their use may be of further interest in

other neuro-inflammatory conditions that currently have no FDA

approved treatments.
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