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Competent T-cells with sufficient levels of fitness combat cancer formation and

progression. In multiple myeloma (MM), T-cell exhaustion is caused by several

factors including tumor burden, constant immune activation due to chronic

disease, age, nutritional status, and certain MM treatments such as alkylating

agents and proteasome inhibitors. Many currently used therapies, including

bispecific T-cell engagers, anti-CD38 antibodies, proteasome inhibitors, and

CART-cells, directly or indirectly depend on the anti-cancer activity of T-cells.

Reduced T-cell fitness not only diminishes immune defenses, increasing patient

susceptibility to opportunistic infections, but can impact effectiveness MM

therapy effectiveness, bringing into focus sequencing strategies that could

modulate T-cell fitness and potentially optimize overall benefit and clinical

outcomes. Certain targeted agents used to treat MM, such as selective

inhibitors of nuclear export (SINE) compounds, have the potential to mitigate

T-cell exhaustion. Herein referred to as XPO1 inhibitors, SINE compounds inhibit

the nuclear export protein exportin 1 (XPO1), which leads to nuclear retention

and activation of tumor suppressor proteins and downregulation of oncoprotein

expression. The XPO1 inhibitors selinexor and eltanexor reduced T-cell

exhaustion in cell lines and animal models, suggesting their potential role in

revitalizating these key effector cells. Additional clinical studies are needed to

understand how T-cell fitness is impacted by diseases and therapeutic factors in

MM, to potentially facilitate the optimal use of available treatments that depend

on, and impact, T-cell function. This review summarizes the importance of T-cell

fitness and the potential to optimize treatment using T-cell engaging therapies

with a focus on XPO1 inhibitors.
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Introduction

Multiple myeloma (MM) is a malignancy of plasma cells and the

second most frequent adult hematologic cancer in the US (1, 2). MM

remains incurabledespite the evolving therapeutic landscape of the last

two decades, including the development of cornerstone agents such as

proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), and

monoclonal antibodies (mAbs). New agents with marked efficacy in

treating relapsed and refractoryMMinclude chimeric antigen receptor

T-cells (CAR-T) and bispecific antibodies (3). Despite a high response

rate to T-cell engaging therapies in MM, most patients experience

relapse and require additional therapies before eventually succumbing

to the disease. The success of T-cell engaging therapiesmay depend on

the immunesystemstatus, specificallyonthecompetence andfitnessof

T-cell populations, and the expression of different activating and

inhibitory receptors (4).

CAR-T is designed to be a one-time therapy where a patient’s T-

cells are collected and modified ex vivo into a functioning CAR-T

product, then reintroduced into the patient. Crucial to developing a

clinically effective biologic CAR-T product is a fit and numerically

adequate T-cell population pre-leukapheresis. As such, consideration

of drugs that do not negatively impact downstream T-cell health pre-

leukapheresis may allow CAR-T function optimization (5). Likewise,

mitigating T-cell exhaustion after the CAR-T product is infused into

the patient to maintain the CAR-T effector function and achieve

prolonged clinical potency remains a challenge, although

maintenance therapies post-CAR-T therapy are being explored (6).

Studies have revealed that T-cell health is influenced by patient

and disease characteristics and correlates with treatment outcomes

(7). Alkylating agents and PIs, but not IMiDs, were most closely

associated with inferior T-cell therapy clinical results (8). Though

not yet studied in this context, selective inhibitors of nuclear export

(SINE) compounds, referred to here as XPO1 inhibitors, may

represent a class of T-cell sparing agents that could support later

T-cell therapies. In addition to direct cytotoxicity against malignant

cells, XPO1 inhibitors may modulate the immediate tumor immune

microenvironment to promote T-cell fitness and reduce T-cell

exhaustion, as demonstrated in preclinical melanoma and acute

lymphoblastic leukemia (ALL) models (9, 10). Results of these

studies indicate that dose and sequencing are critical to XPO1

inhibitor efficacy, as well as subsequent CAR-T therapy (9, 10);

similar principles may apply to MM treatment.

This review highlights the importance of both T-cell fitness and

optimizing treatment sequencing with therapies that affect T-cell

engagement, fitness, and exhaustion (4). With this in mind, the

evidence suggesting the ability of XPO1 inhibitors, such as selinexor,

to enhance the effectiveness ofT-cell engaging therapies is emphasized.

These compounds, like IMiDs, present a small molecule option to

enhance T-cell function dependent MM therapies (11).
The importance of T-cell fitness

In the context of CAR-T therapy for hematological malignancies,

T-cell fitness is the ability of a T-cell to generate an immune response

that mediates the elimination of malignant cells and provides durable
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protection from relapse (5). T-cell exhaustion is defined by poor

effector function, and characterized by reduced T-cell proliferation,

increased expression of inhibitory receptors such as checkpoint

inhibitors, and a distinct transcriptional signature (4, 12). In MM,

disease progression is also associated with an altered T-cell repertoire

including a reduction in bone marrow and peripheral blood effector

T-cells, leading to an overall decrease in T-cell fitness (13). In vitro

studies show that anti-BCMA CAR-T from healthy donors have

superior long-term activity compared with those derived from

RRMM patients who received CAR-T therapy (14).

T-cell exhaustion has been a crucial limiting factor in hematologic

malignancy studies utilizing autologous CAR-T therapy (5, 15, 16). In a

study of advanced, heavily pretreated patients with high-risk chronic

lymphocytic leukemia (CLL) who received CD19 CAR-T therapy,

biomarker profiles from autologous infusion products after CAR-T

stimulation, demonstrated a correlation with the degree of treatment

response (17). Higher expression of the T-cell exhaustion markers

programmed cell death protein (PD)-1, T-cell immunoglobulin and

mucin domain-containing protein 3 (TIM3), and lymphocyte-

activation gene 3 (LAG3) correlated with partial response (PR) or no

response (NR). Patientswhoachieved complete remission (CR)orpartial

responsewithhighlyactiveT-cellproducts (PRTD)hada lowerexpression

of exhaustion markers (17). Similarly, the abundance of exhausted-like

CD8+ T-cell clones correlated with clinical response failure to bispecific

T-cell engagers in patients with MM (18). Furthermore, RRMM patient

profile parameters correlated with clinical outcomes in idecabtagene

vicleucel (ide-cel) CAR-T therapy studies: higher frequency of T-cells in

isolated peripheral blood mononuclear cells (PBMCs), increased T-cell

proliferation during manufacturing, higher drug product T-cell

transduction and potency, higher absolute lymphocyte counts and a

longer washout period after alkylator treatment, were all associated with

favorable patient responses (7).

Similar to the importance of competent T-cells for T-cell directed

therapies inMM, inpatientswithacutemyeloid leukemiawhoreceived

allogeneic hematopoietic stem cell transplantation (Allo-SCT),

detection of severely exhausted bone marrow memory T cells

predicted disease relapse (19). Additionally, increased expression of

co-inhibitory receptors in leukapheresis and infusion products have

been associated with treatment failure (20). Lastly, T-cell exhaustion

may be a potential driver of atypical and otherwise rare infections such

as Pneumocystis jirovecii pneumonia, cytomegalovirus, or Aspergillus

species, and can be associated with significant mortality (21, 22).

Collectively, these results support the hypothesis that the success of

CAR-T and bispecific antibody therapy, could depend on intrinsic T-

cell competence and fitness.
Negative impactors of T-cell health

T-cell fitness can be negatively affected by multiple factors,

including prior treatments, increased age, malnutrition, and

systemic inflammation (Figure 1). Alkylating agents such as

cyclophosphamide, commonly used in MM management, impair

proliferation and blunt functional activity of T cells (8). The

alkylator bendamustine, used to treat hematological malignancies

and solid tumors, is associated with decreased naïve T cell counts
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1275329
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Binder et al. 10.3389/fimmu.2023.1275329
and impaired T-cell directed cytotoxicity (23, 24). Bendamustine

use before immunotherapy negatively affects the clinical outcomes

of CAR-T therapy, causing prolonged lymphopenia that can result

in serious and fatal infections (25). The lymphocytic populations of

these patients, therefore, require careful clinical monitoring (26).

Additionally, alkylators used before CAR-T therapy in the pivotal

phase 2 KarMMa trial, which investigated B-cell maturation antigen

(BCMA)-directed CAR-T therapy, ide-cel, in triple-class exposed

patients with RRMM, showed a detrimental effect on the apheresis

of PBMC material up to 6-9 months after the last dose (8). In

bispecific antibody therapies, given that most of these agents have

been developed with continuous therapy schedules, accumulating

data also point to the relevance of treatment-free intervals in

functional and transcriptional rejuvenation of T cells (27).

Other therapies may also reduce T-cell fitness. In a retrospective

analysis, PI administration resulted in deleterious effects on ide-cel

production (7). PIs are known to decrease T-cell health and

resistance to viral infections, underpinning the recommendation

on herpes zoster prophylaxis prescribing instructions in PI-treated

patients (28). IgG1 antibody therapies, such as elotuzumab and

daratumumab, kill myeloma cells via antibody-dependent cellular

cytotoxicity and are associated with T-cell exhaustion and

dysfunction when patients become resistant to these agents (29, 30).

Patient demographic characteristics can also negatively impact T-

cell fitness. Advanced age is associated with reduced hematopoiesis, a

skewtowardsmyeloid cellproduction, increasedsystemic inflammation,

and dysfunctional T-cell populations (31). Malnutrition, a systemic

condition associated with tumor burden, duration of disease, and

impact of prior therapies, affects the immune system, including T cells

(32). In patients with a poor nutritional state, the thymus atrophies,

increasing circulating, immature T cells and T-cell numbers decrease

with diminishing intrathymic cell proliferation (33).
T-cell fitness and mitochondrial
metabolism

As key regulators of T-cell metabolism, mitochondria affect T-

cell activation, function, and survival, and are important in MM

disease progression and drug resistance (34, 35). Whereas low
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mitochondrial membrane potential (Dym) is associated with

reduced expression of exhaustion markers, lower levels of reactive

oxygen species (ROS), and decreased deoxyribonucleic acid damage,

high T-cell Dym is associated with increased production of ROS,

reducing T-cell mediated anti-tumor immunity (35). For example,

patients with CLL and ALL treated with CAR-T have different

therapeutic outcomes (35). Patients with relapsed and refractory

ALL had a high remission rate whereas patients with CLL had a

lower clinical response rate. This was partly attributed to metabolic

impairment of T cells inCLLwhere restingCD8+T cells showed lower

glucose transporter 1 (GLUT1) expression, increased Dym after

stimulation, and increased mitochondrial ROS (35). In patients with

CLL who received CAR-T, phenotypes and genotypes associated with

T cells in different states of activation were observed across patients

with CR, PR, and NR. Acquired T-cell dysfunction could therefore

contribute to a limiting response in CAR-T therapy (35).

Other MM treatments such as the alkylator melphalan,

administered in high doses before autologous-SCT, perturbs the

composition of the T-cell compartment and drives substantial

metabolic remodeling with significant increases in Dym, thereby

reducing T-cell fitness (36, 37). Additionally, chronic infections,

including those from disease or immunosuppression therapy can shift

T-cellmetabolism fromthatobserved inacute infections to anexhausted

or dysfunctional phenotype that allows for lowered levels of pathogen

control. This shift encompasses metabolic reprogramming including

reduced mitochondrial and glycolytic metabolism through the

regulation of mammalian target of rapamycin (mTOR) expression

and transforming growth factor (TGF)-b-mTOR signaling (38, 39).

Suppression ofmTOR through TGF-b signaling is a critical regulator of
metabolism in precursors of exhausted T cells, which self-renew and

continuously generate exhausted effector T cells. Early, transient

suppression of mTOR in the precursors of exhausted T cells improved

long term T-cell responses in chronic infection mouse models (39).
T-cell engaging therapies to mitigate
T-cell exhaustion

Several factors can increase T-cell fitness (Figure 1). Known T-

cell stimulating agents, IMiDs, increase proliferation cytokine
FIGURE 1

Factors contributing to changes in functional and exhausted T cells, and the resulting poor outcomes of patients with hematological malignancies
and T-cell exhaustion.
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signaling by several hundred-fold (40). While IMiDs are a

transformative therapy in MM, negative consequences of T-cell

overstimulation have been observed through induction of graft

versus host disease when Allo-SCT recipients received

lenalidomide as a maintenance therapy (41, 42). IMiDs and

cereblon E3 ligase modulators can improve the efficacy of CAR-T

in vitro and in vivo but there are concomitant specific toxicities such

as cytopenias and cytokine release syndrome, perhaps due to T-cell

overactivation (43). Current trials are testing the combination of

IMiDs with CD19 or BCMA CAR-T therapy in diffuse large B-cell

lymphoma and MM (43, 44).

In contrast, checkpoint inhibitors were devised to override T-

cell dysfunction or exhaustion due to chronic antigen exposure and

suppression by tumor cells (45). However, T-cell overstimulation

may be a concern and safety concerns halted earlier trials of

checkpoint inhibitors combined with IMiDs in MM (46, 47). T-

cell engagement also plays a critical role in two new classes of MM

agents: bispecific antibodies and CAR-T therapy. CAR-T therapy

overcomes immunological tolerance from recognition of self-

antigens by combining effector function antigen recognition in a

non-MHC restricted manner (48). The Food and Drug

Administration (FDA) approved the use of two different

autologous BCMA-directed CAR-T products based in part on the

remarkable efficacy of these therapies, despite eventual relapse in

most patients (49). Bispecific antibodies overcome the requirement

of tumor-associated antigen (TAA) recognition via T-cell receptor

by linking two antibody fragments that recognize distinct epitopes

on the TAAs and the T-cell surface (13). Teclistamab was recently

approved by the FDA as the first bispecific antibody for the

treatment of adult patients with RRMM (50). Subsequent studies

showed that T-cell engaging salvage therapies appear to maintain

the pronounced clinical activity of the BCMA-directed CAR-T

therapy (51).
XPO1 inhibitors for T-cell engagement

XPO1 inhibitors are anti-neoplastic drugs that inhibit XPO1,

also known as chromosomal region maintenance 1 (CRM1). XPO1

inhibition causes nuclear retention of critical tumor suppressor

proteins such as p53, p21, forkhead box protein A2, and others,

facilitating their activation (52, 53) and can prevent oncoprotein

translation by inhibiting export of certain oncogene mRNAs that

interact with eukaryotic translation initiation factor 4E (54, 55).

Additionally, XPO1 inhibitors have anti-inflammatory properties,

facilitating a favorable immune microenvironment for effector T

cells (56). Specifically, XPO1 inhibition activates several anti-

inflammatory, antioxidant, and cytoprotective transcription

factors, including inhibitor of kB-a (IkB-a), peroxisome

proliferator-activated receptors g (57), and retinoid X receptor a
(58). As the nuclear factor kB (NF-kB) inhibitor, IkB-a, is an XPO1

cargo, selinexor treatment traps IkB-a in the nucleus protecting it

from proteasome degradation and inhibiting NF-kB p65. In a sepsis

mouse model, oral selinexor reduced cytokine storm-associated

inflammatory cytokine secretion, the number of peritoneal cavity

macrophages, polymorphonuclear neutrophils, and increased
Frontiers in Immunology 04
survival (59). In vivo research with selinexor demonstrated anti-

inflammatory and anti-viral activity following SARS-CoV-2

infection (56). Research with another XPO1 inhibitor, verdinexor,

against syncytial respiratory virus (60, 61) and H1N1 influenza

(swine flu) (62) found similar results, including decreased cytokine

production and viral titer analysis. Finally, the XPO1 inhibitors

eltanexor and verdinexor had beneficial effects in zebrafish and

Duchenne muscular dystrophy mouse models (63).
Pre-clinical evidence of T-cell impact
by XPO1 inhibitors

XPO1 inhibitors have shown potential in vitro and in vivo in

maintenance of T-cell homeostasis and exhaustion mitigation.

Figure 2 summarizes the potential ways XPO1 inhibitors may

combat T-cell exhaustion. Combination studies assessing XPO1

inhibitors and CD19-directed CAR-T cells have shown that

pretreatment of target cells with an XPO1 inhibitor increases the

subsequent cytotoxicity of the CAR-T cells towards those targets

and reduces expression of T-cell exhaustion markers including

LAG-3, PD-1, and Tim-3 (10, 64). Research using mouse models

demonstrated that the frequency of the selinexor dosing schedule

was an important factor in the maintenance of T-cell homeostasis

(9). A weekly dose of 15 mg/kg preserved nearly normal immune

function whereas a thrice-weekly dose of 15 mg/kg or 7.5 mg/kg

hindered CD8+ T-cell and B-cell development (9). In a syngeneic

immunocompetent B16 mouse model of melanoma, twice weekly

dosing with 10 mg/kg selinexor increased the fitness of exogenous

tyrosine related protein 1 (TRP1) CD8+ T cells, reduced expression

of PD-1, Tim-1, and CD44, and did not impact levels of endogenous

tumor-infiltrating lymphocytes (9). Both interferon-g and

granzyme B increased in exogenous and endogenous CD8+ T

cells, suggesting improved effector functions (9). Despite transient

inhibition of T-cell activation, normal T-cell function was observed

when selinexor was administered at clinically-relevant doses and

schedule intervals (9). Similarly, a mouse model of non-Hodgkin’s

lymphoma showed that biweekly administration of 10 mg/kg

selinexor followed by non-XPO1 inhibitor exposed CD19 CAR-T

injection significantly reduced the tumor burden at 4-6 weeks

compared with CD19 CAR-T injection to non-selinexor treated

mice or selinexor alone. This suggests that selinexor sensitized

tumor cells to CD19 CAR-T-mediated cytotoxicity; however, the

mechanism remains to be elucidated (10).
Clinical data with XPO1 inhibitors

Recent clinical advances regarding T-cell engagement therapies

fall into the pre- and post-anti-BCMA targeting therapy space.

Retrospective trial data suggest that tumor cells pretreated with

XPO1 inhibitors are more susceptible to T-cell killing. In four

clinical studies (STORM, STOMP, BOSTON, XPORT-MM-028),

the use of selinexor treatment before anti-BCMA therapy in heavily

pretreated MM patients was not associated with inferior response to

the anti-BCMA agents (65). The majority of treatment comprised
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the antibody-drug conjugate (ADC) belantamab-mefadotin and a

median overall survival from non-cellular anti-BCMA (NCA)

treatment initiation was 12 months (95% CI: 9.4, NE) with a median

follow-up of 7.8 months. Median time to discontinuation of NCA

treatment was 4.4 months (95% CI: 2.1 NE). In this cohort of heavily

pretreated patients with MM who received a selinexor regimen before

NCA, overall survival was in the range of 1 year, akin to historical results

seenwithADCs. Thus, the 8-weekmedian time between administration

of selinexor and NCAs suggested that selinexor combination with

various partner agents, did not negatively impact overall survival with

subsequentNCAtherapy (65).Ananalysis of salvage treatments from79

patients following relapse after BCMA CAR-T therapy showed that

additionalT-cell engaging therapies, including selinexor,maycontribute

to survival (51). Specifically, of 79 patients, selinexor was given as a first-

line or subsequent salvage treatment in 5 and 15 patients respectively.

ORRwas 40.0% (2 of 5 patients) and 21.4% (3 of 14 patients) andVGPR

was also 40.0% (2 of 5 patients) and 21.4% (3 of 14 patients) for selinexor

as a first-line and as a subsequent salvage treatment, respectively. First-

line salvage treatmentshadaprogression free survival (PFS)of9months,

including those treated with selinexor (51). In a second study, selinexor

pairedwith low-dosedexamethasonewithorwithoutPIs (bortezomibor

carfilzomib) resulted in 1 unconfirmed CR, 2 VGPR, 3 PR or 1minimal

response in patients who had exhausted other treatment options for

rapidly progressing disease and who had progressed after CAR-T

therapy (66). A third study focused on selinexor efficacy in 11 heavily

pretreated patients predominantly receiving anti-BCMA-ADC therapy

prior to selinexor-containing regimes (11). Compared to previous anti-

BCMA therapies, selinexor-containing regimens achieved durable

responses with numerically higher ORR (63.6% vs 50.0%), clinical

benefit rates (81.8% vs 50.0%), and 6-month PFS (75% vs 12%),

despite administration later in the treatment course. Together, these

results suggest potential efficacy in selinexor use after failing anti-BCMA

therapy. Future prospective clinical studies will explore whether the
Frontiers in Immunology 05
efficacy is related to the XPO1 inhibitor effect on T-cell health using

dynamic T-cell population endpoints.
Summary and future directions

CAR-T therapy and bispecific antibodies show promise in the

treatment of hematologicmalignancies, but efficacy is likely dependent

on the status of a patient’s immune system, tumormicroenvironment,

andprior treatmenthistory (4, 15, 67).T-cell exhaustion,drivenbyage,

disease burden, and prior cancer treatment, is a critical limiting factor

of these therapies (5). Alkylating agents and PIs have been shown to

decreaseT-cellfitness (8)whereasXPO1 inhibitors and IMiDs, despite

overstimulation risks, may promote T-cell health (9, 64, 68). As such,

selinexor-IMiD combinations, which have shown potential in the

treatment of RRMM, may be of interest (69–71). The challenge in

clinical practice is to maintain CAR-T effector or bispecific antibody

therapy function and persistence to achieve clinical potency, while

simultaneously balancing the risk of immediate and delayed infections

with best prophylactic approaches (4, 72).

Oral smallmolecules such asXPO1 inhibitors offer the potential to

improve T-cell fitness and augment cancer cell immune susceptibility

without negatively impacting T-cell health. Towards this end,

downstream partners engaged by XPO1 inhibitors may be elucidated

through analysis of serologic and marrow immunophenotypic

signatures, paired sequencing data from primary myeloma patient

samples on active XPO1 inhibitor therapy, and therapies that have the

potential to hamper T-cell fitness. Particular emphasis may be placed

on expression profiles and activity of inhibitory pathways (e.g., PD-1,

LAG3 and/or TIM3), the extent of activation and/or suppression of

CD8 T cell effector functions (i.e., IFNg and granzyme B) as well as

other transcriptional signatures of proliferation (4, 9). In addition,

factors such as substantial metabolic remodeling with significant
FIGURE 2

XPO1 inhibitors have direct cytotoxic effects on tumor cells, decrease inflammation in infectious disease, and may facilitate a favorable immune
microenvironment for effector T cells to combat T-cell exhaustion.
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increases in mitochondrial membrane potential, which can reduce T

cell fitness, may also play a role and should be assessed (5). Further

clinical studies that include optimizing dosing schedules to prime the

T-cell repertoire or post-T-cell therapy to aid the persistence ofCAR-T

activity are needed to evaluate the impact of XPO1 inhibitors onCAR-

T and MM cell immune susceptibility. Such clinical and real-world

data may further elucidate how disease and host factors, including

exposure to prior therapies, interplay to inform optimization of long-

term disease control.
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