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Background: Telomere length (TL) has been regarded as a biomarker of aging,

and TL shortening is associated with numerous chronic illnesses. The mounting

evidence has shown that inflammatory cytokines are involved in maintaining or

shortening TL, the causality of cytokines with TL remains unknown. Therefore,

we performed a two-sample Mendelian randomization (MR) analysis to estimate

the underlying correlations of circulating inflammatory cytokines with TL.

Methods: Genetic instrumental variables for inflammatory cytokines were

identified through a genome-wide association study (GWAS) involving 8,293

European individuals. Summary statistics of TL were derived from a UK Bio-bank

cohort comprising 472,174 samples of individuals with European descent. We

employed the inverse-variance weighted (IVW) approach as our main analysis,

and to ensure the reliability of our findings, we also conducted additional

analyses including the weighted median, MR-Egger, MR pleiotropy residual

sum and outlier test, and weighted model. Lastly, the reverse MR analyses

were performed to estimate the likelihood of inverse causality between TL and

the cytokines identified in the forward MR analysis. Cochran’s Q test were

employed to quantify the degree of heterogeneity.

Results: After applying Bonferroni correction, a higher circulating level of

Interleukin-7 (IL-7) was suggestively associated with TL maintaining (OR:1.01,

95%CI:1.00-1.02, P=0.032 by IVW method). The study also revealed suggestive

evidence indicating the involvement of Interleukin-2 receptor, alpha subunit (IL-

2Ra) level was negatively associated with TL maintaining (OR:0.98, 95%CI:0.96-

1.00, P=0.045 by IVW method), and the weighted median approach was

consistent (OR:0.99, 95%CI:0.97-1.00, P=0.035). According to the findings of

reverse MR analysis, no significant causal relationship between TL and cytokines

was explored. Our analysis did not reveal any substantial heterogeneity in the

Single nucleotide polymorphisms or horizontal pleiotropy.
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Conclusions: Our MR analysis yielded suggestive evidence supporting the

causality between circulating IL-7 and IL-2Ra and telomere length,

necessitating further investigations to elucidate the mechanisms by which

these inflammatory cytokines may impact the progression of telomeres.
KEYWORDS

telomere length, cytokine, genome-wide association study, Mendelian randomization,
single nucleotide polymorphisms
1 Introduction

Telomeres are specific nucleoprotein structures composed of

repetitive TTAGGG sequences at the end of linear chromosomes

(1). Due to their critical biological character in maintaining

chromosomal stability and integrity, preventing coalescence of

chromosomal ends, and assessing cell proliferation (2). Telomeres

have been widely recognized as a reliable biomarker for assessing

survival, pressure, and senility (3–5). Telomere shortening is

associated with an elevated risk of mellitus (6), malignant tumor

(7), cardiovascular diseases (8), and obesity (9).

Previous studies have suggested that the acceleration of

telomere shortening is primarily attributed to oxidative stress and

inflammation, which facilitate cell renewal and promote the

duplication of senescence cells (10–12). Moreover, the process of

inflammation stimulates the generation of reactive oxygen species

(ROS), resulting in telomere DNA damage, which subsequently

leads to a loss of replication ability and accelerates cellular aging and

apoptosis. Additionally, the consequence of this is the impairment

of stem and progenitor cell function, resulting in functional

recession and tissue atrophy (13, 14). Recently, accumulating

evidence has shown that circulating inflammatory cytokines

might be correlated with shorter telomeres. M. Groer et al.

reported a negative association between telomere length

shortening and IL-6 levels, which serves as a representative

marker for inflammatory response (15). They reported that

senescent cells not only shortened telomeres, but also caused

overexpression of the transcription factor nuclear factor-kB

during cell senescence, and these leaded to overproduction of

circulating cytokines including IL-6, TNF-a, and macrophage

interferon (16). Interestingly, an association has been also

observed between hypoadiponectinemia and telomere shortening

in obesity (17). What’s more, the verisimilitude of telomere DNA

damage being related to the ascent of CRP levels has been supported

by several epidemiological data (18). Another research conducted

by T. Wang et al. revealed a natural correlation between telomere

shortening-induced aging and the elevation of proinflammatory

cytokines levels, which in turn stimulate the development of COPD

through an inflammatory response (19). Considering the

susceptibility of observational studies to potential control bias and

reversed causality (20), further exploration into the underlying

causal correlation between circulating levels of cytokines and

telomere was still required.
02
Mendelian randomization (MR) study is a robust approach that

utilizes single nucleotide polymorphisms as instrumental variables

(IVs) to assess the causal link between exposures and outcomes

(21). The evidence of causality provided by the MR research

was reported to lie at the interface between conventional

epidemiological studies and randomized controlled trials (RCTs)

(22). Recently, a meta-analysis of genome-wide association study

(GWAS) was conducted to assess the genetic basis for 41 circulating

cytokines, providing an opportunity to explore their potential

association with telomere length. Hence, by performing a two-

sample MR analysis, we systematically evaluated the underlying

causal associations between circulating levels of cytokines

and telomeres.
2 Materials and methods

2.1 Study design

The workflow of our study is displayed in Figure 1. The study

was on a basis of publicly available data from GWAS on

inflammatory cytokines and telomere length, with explicit

characteristics listed in Supplementary Table S1. To enhance the

reliability of the MR analysis findings, this study endeavored to

fulfill the following three assumptions. Firstly, the IVs are strongly

associated with circulating levels of cytokines. Secondly, no

confounders are related to the IVs. Thirdly, the IVs influence the

outcome only via exposure and there are no other causal pathways

for the IVs to influence the outcome (23). We extracted genetic IVs

for each circulating cytokine to explore the causal link from each

inflammatory cytokine to telomeres. The utilization of publicly

available GWAS summary datasets obviated the need for

ethical approval.
2.2 Data sources and instruments

2.2.1 Cytokines
We collected genome-wide association summary datasets for 41

circulating inflammatory cytokines from the most proximate

GWAS reported by Ahola-olli et al. (24), including 8,293 Finns

from three independent cohorts: FINRISK1997, FINRISK2002, and

the Young Finns Cardiovascular Risk Study (YFS). These 41
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circulating cytokine distributions were normalized by converse

transformation. An additive genetic model, adjusted for sex, age,

body mass index (BMI), and the first ten genetic principal

components, was employed to examine univariable correlations

between 10.7 million genetic polymorphisms and 41 circulating

cytokine concentrations.

Firstly, the genome-wide significant threshold of p<5e-08 was

applied to each of the 41 circulating cytokines in order to identify

robust IVs associated with their levels. Due to no or few (<3) IVs

were extracted for a majority of the cytokines at the p-value<5e-08

level, we widen the threshold to p-value<5e-06 to select eligible IVs.

Lastly, all 41 circulating cytokines were identified under this

standard. Secondly, the impact of robust linkage disequilibrium

(LD) between SNPs was mitigated by utilizing a LD threshold for

the selected SNPs(r²<0.001,10000kb), ensuring independence

among instrumental variables for each exposure. Thirdly, to avoid

weak instrument bias, the average of SNPs F-statistics was

computed (25, 26), and the F-statistics greater than 10 were

regarded as robust IVs for our study. The F-statistic is a statistic

approach that captures the magnitude and accuracy of the genetic

effect on the trait. It can be calculated as F=R2(N-2)/(1-R2), where

R2 represents the proportion of variance in the trait illuminated by

the SNP, and N denotes the sample size of GWAS involving SNPs

with the trait (27). Fourthly, intermediate allele frequency

palindromic SNPs were excluded because allele frequencies were

not provided in the GWAS of circulating cytokines, so we could not

determine whether these SNPs were consistent with the direction of

exposure and outcome. Additionally, to satisfy the independence

assumption of MR, SNPs associated with confounders, including

blood pressure, body mass index (BMI), and smoking, were

excluded by applying the PhenoScannerV2 online platform.

Furthermore, we performed a phenome-wide association study

(including alcohol consumption, smoking, exercise, instant coffee

intake, physical activity, sedentary, hypertension, atrial fibrillation,

diabetes mellitus, and serum urate level, which can affect telomere

length) of the instrumental variables. Finally, altogether 450 SNPs
Frontiers in Immunology 03
related to 41 cytokines were extracted as IVs in our study. The figure

and F-statistics of the SNPs which are utilized in this study are

displayed in Supplementary Table S2.

2.2.2 Telomere length
The genetically-related datasets for telomeres were selected

from the publicly attainable GWAS (28), which was implemented

using 488400 DNA samples from UK Biobank (UKB) participants.

Mean telomere length was calculated utilizing an unequivocal

quantitative PCR assay and underwent comprehensive quality

inspection and technical change adjustments. Ultimately, 472,174

telomere length measurements were retained for our MR analysis.

The individuals in the UK Biobank study were exclusively

participants aged between 40 and 69 years, with a parallel

percentage of men (45.8%) and women (54.2%). For reverse MR

analyses, in all 117 genome-wide significant (p<5e-08) SNPs were

authenticated for TL. Then, these IVs were fetched to assess the

impact of genetic predisposition to TL on circulating cytokines.
2.3 Statistical analyses

To detect the causal effects of circulating levels of cytokines on

TL by conjoining diverse SNPs, we performed a two-sample

Mendelian randomization analysis employing five commonly

employed analytical means, including MR-Egger, Weighted

median, Inverse variance weighted (IVW), Simple mode, and

Weighted mode (29, 30). The random-effects IVW approach is a

dominant statistic method for aggregatingWald ratio estimations of

various SNPs, exhibiting the highest statistic power among various

MRmethods. This method was recognized as the primary approach

evaluating the underlying causal links between circulating cytokines

levels and TL. Our analysis necessitated data on SNPs, alleles, effect

sizes, P-values, and allele frequencies (EAF) (31). The weighted

median estimator can yield reliable estimates even when

incorporating 50% of the noneffective genetic instruments. Due to
FIGURE 1

Datasets, assumptions, and study design of two-sample Mendelian randomization for circulating levels of 41 cytokines and telomere length.
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its widened threshold, the MR-Egger method yields valid estimates

even in the presence of horizontal pleiotropy among SNPs, where all

instrumental variables are invalid. Additionally, simple mode and

weighted mode were also applied as auxiliary analysis methods.
2.4 Sensitivity analyses

The sensitivity analyses were executed by MR pleiotropy

residual sum and outlier (MR-PRESSO), MR-Egger regression,

Cochran’s Q Test, and leave-one-out analysis. Firstly, we utilized

the simple-median method and weighted-median method to

evaluate the underlying causal effects in situations where

conventional assumptions were challenged (32). Secondly, The

MR-Egger regression was conducted to assess the presence of

horizontal pleiotropy, with statistical significance defined as p-

values for the intercept being less than 0.05 (33). Thirdly, the

MR-PRESSO global test was applied to investigate potential

outliers as plausible pleiotropic biases and mitigate the impact of

pleiotropy by excluding the specific SNPs that deviated from

normality. Finally, the Cochran’s Q statistic was utilized for IVW

and MR-Egger to estimate heterogeneity among SNPs. A p-value

greater than 0.05 in the Cochran’s Q test indicated the absence of

heterogeneity among the IVs (32).In addition, we further examined

whether some SNPs could affect the results independently and

evaluated the stability of effect sizes via leave-one-out analysis.

Furthermore, the Bonferroni correction was utilized to resolve the

issue of multiple comparisons, and a significance level of p<0.00024

(0.05/(41*5)) was adopted (Bonferroni correction with 41 tests*

5 models).

All the MR analysis and sensitivity analysis were performed

with R (version 4.2.3). R packages “Two Sample MR” and “MR-

PRESSO” packages were utilized.
3 Results

Firstly, the MR analysis was conducted by expanding the

threshold to p-value<5e-06, taking account of the limited genetic

variance, as well as the restricted number of SNPs and low statistical

powers. By utilizing this standard (r²<0.001, p<5e-06),

PhenoScannerV2 database screening, and removing the

intermediate allele frequency palindromic SNPs, altogether 450

SNPs associated with 41 circulating cytokines were extracted. The

F-statistics of each SNP employed in this study ranged from 20.01 to

345, indicating the robustness and strength of the IVs. In addition,

we conducted a phenome-wide association study of the

instrumental variables. We found no SNPs showing an

association p-value<5e-06 with those relevant phenotypes

affecting telomere length (including alcohol consumption,

smoking, exercise, instant coffee intake, physical activity,

sedentary, hypertension, atrial fibrillation, diabetes mellitus, and

serum urate level), indicating that no potential confounding effect
Frontiers in Immunology 04
on results. The results of phenome-wide association study were

shown in Figure 2.

The results from the MR analysis of the associations between 41

cytokines and TL are shown in Figure 3 and Supplementary Table

S3. After applying the Bonferroni correction, only two cytokines

(IL-7 and IL-2Ra) manifested suggestive associations with TL. The

explicit characteristics for the associated SNPs were summarized in

Supplementary Table S4. Genetically predicted elevation in

circulating IL-7 levels exhibited a suggestively positive association

with TL (OR:1.01, 95%CI:1.00-1.02, P=0.032 by IVWmethod). The

findings of the alternative approach demonstrated comparable

trends, although they did not reach statistical significance

(OR:1.01, 95%CI:1.00-1.02, P=0.227 by Weighted median

method; OR:1.00, 95%CI:0.98-1.02, P=0.783 by MR Egger

method). Scatter plots of associations of genetically predicted IL-7

levels with TL were presented in Figure 4A. The leave-one-out

approach was employed for sensitivity analysis and exhibited no

impact in Figure 4B. The MR-Egger regression analysis did not

investigate underlying directional pleiotropic effects among the

SNPs (intercept p-value=0.139).

The findings of our study additionally manifested a suggestive

inverse association between the circulating levels of IL-2Ra and TL

(OR:0.98, 95%CI:0.96-1.00, P=0.045 by IVW method), and the

weighted median approach was in accord with IVW method

(OR:0.99, 95%CI:0.97-1.00, P=0.035), but the MR-Egger approach

was non-significant (OR:0.99, 95%CI:0.98-1.00, P=0.096). Scatter

plots for five methods highlighted the effect of IL-2Ra on TL in

Figure 4C. Furthermore, the absence of pleiotropy was supported by

the non-significant intercept observed in MR-Egger regression

analysis (intercept p-value=0.113). The results of the leave-one-

out method similarly indicated that none of the individual SNPs

exerted significant influence on the analysis outcomes (Figure 4D).

The absence of evidence supported the lack of causal

associations between other cytokines and TL (Supplementary

Table S3). The MR-PRESSO global test showed no pleiotropy

between the IVs and outcomes (Supplementary Table S5).

Furthermore, MR-Egger and IVW Cochran’s Q tests indicated no

significant heterogeneity of IVs (all p-values>0.05). The reverse MR

analysis utilizing the IVW method did not identify any statistically

significant associations of TL on IL-7 (OR:0.95, 95%CI:0.78-1.16,

P=0.647) and IL-2Ra (OR:0.85, 95%CI:0.70-1.03, P=0.104) levels.

The IVs we utilized and the outcomes of alternative approaches are

documented in Supplementary Table S6.
4 Discussion

In this study, we conducted a two-sample Mendelian

randomization approach to explore the underlying causal

associations between circulating levels of 41 cytokines and TL.

We have discovered suggestive evidence indicating a causal

association between genetically predicted levels of circulating IL-7

and IL-2ra and TL. Nevertheless, we did not find any evidence
frontiersin.or
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indicating a causal relationship between the levels of other

circulating cytokines and TL.

The cytokine IL-7 belongs to the cytokine family and possesses

four anti-parallel a helixes that interact with Type I cytokine

receptors. The production of this substance which plays a pivotal

role in stimulating growth and maintaining homeostatic of

lymphoid cells is attributed to stromal cells (34). Reports that

have observed an association between IL-7 levels and maintaining

telomere length are few. Previous experimental studies manifested

that the cells stimulated by IL-7 or IL-15 maintain their naïve

phenotype and preserve telomere length through the increased

telomerase activity (35). These observational research results

indicated that IL-7 was a potential protective factor for telomere

length maintaining. Coincidentally, we observed a causal

association between higher genetically predicted circulating IL-7

level and telomere maintenance, which aligns with previous study

findings. The findings of our study were substantiated by the

evidence obtained from experimental research through MR

analysis. It has been reported that IL-17 exerts concentration,

time, and subset-dependent effects by accelerating cell

proliferation and protecting cells from apoptosis. Furthermore,

long-drawn exposure of naïve CD8+ T cells to IL-7 facilitates

proliferation without inducing differentiation or shortening of

telomeres (35). These results suggested that IL-7 may serve as an

underlying therapeutic target in maintaining telomere length, but

further investigation to verify the potential biological mechanism

were required.

The transmembrane protein IL-2Ra, also called CD25,

is expressed on the surface of activated B cells, T cells,

oligodendrocytes, myeloid precursors, and thymocytes (36).

Additionally, human resting memory T cells constitutively

expressed CD25 (36). The signaling pathways mediated by IL-2/

IL-2Ra (CD25) are crucial in the regulation of adaptive immune

reaction and the control of T cell proliferation and survival (37).

Nevertheless, the epidemiological evidence for the association

between IL-2Ra and telomere length was few, limited by

employing a case-control study design and restricted by

diminutive sample sizes. Previous research conducted by F.
Frontiers in Immunology 05
Albarran-Tamayo et al. (38) showed that the analysis did not

reveal any significant correlation between IL-2Ra expression

levels in circulation and telomere length shortening or reduced T

cell proliferation. However, our results indicated that genetically

predicted circulating IL-2Ra level was negatively associated with

telomere length, indicating that the findings of observational studies

may require validation through additional research.

In our study, the links between multiple circulating cytokines and

telomere length were assessed utilizing MR analysis. Previously, S. Li

et al. confirmed that the length of telomere exhibited a positive

correlation with the expression levels of IL-6 and MIP-1a in bone

marrow mesenchymal stem cells (MSCs) derived from patients with

multiple myeloma (MM) (39). They found that the increase in

telomerase activity induced by IL-6 was demonstrated to occur

through AKT-mediated phosphorylation of hTERT in MM cell

lines, without any variation observed in the expression of hTERT

at the mRNA or protein level (40), suggesting that the biological

mechanism employed by MSCs to maintain their telomere length in

an inflammatory cytokine-rich microenvironment, such as IL-6, may

also be utilized (39). In addition, they also reported that the

contribution of MIP-1a to the progression of bone disease in MM

is manifested through its promotion of tumor survival (41),

inhibition of osteoblast function (42), and modulation of osteoblast

differentiation (43). Moreover, the expression of MIP-1a in MM-

MSCs was found to be significantly higher compared to MSCs from

the control group, suggesting that MM-MSCs may play a vital role in

the initiation and progression of MM (39). These results indicate that

IL-6 and MIP-1a are protective factors for maintaining telomere

length. However, in this study, we did not find any evidence

indicating a correlation between higher genetically predicted levels

of circulating IL-6 or MIP-1a and the maintenance of telomere

length. Moreover, another study reported by R. M. Corbo et al. (44)

showed that a significant negative linear correlation was observed

between serum IL-1b levels and telomere length, after adjusting for

age. Nevertheless, our study did not find a link between serum IL-1b
levels and telomere length. The variations could be attributed to the

diverse choice of IVs and GWAS summary data. Given the

inconsistency of the results, more studies are needed to detect the
A B D E
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FIGURE 2

Manhattan plot of genetically predicted circulating levels of cytokines on relevant phenotypes affecting telomere length, (A) alcohol consumption,
(B) smoking, (C) exercise, (D) instant coffee intake, (E) physical activity, (F) sedentary, (G) hypertension, (H) atrial fibrillation, (I) diabetes mellitus, and
(J) serum urate.
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accurate potential biological mechanisms of these cytokines in

maintaining or shortening telomere length. For as we know, this is

the first comprehensive and systematic MR analysis of the

associations between circulating levels of cytokines and telomere

length. Lastly, the reverse MR analysis we conducted yielded robust

evidence to substantiate our primary research.

However, our study was subject to several limitations. First, the

selection of IVs was conducted using a relaxed significance
Frontiers in Immunology 06
threshold of p<5e-06, and this might lead to consequence bias

and false-positive variants. Nonetheless, the F-statistics of IVs all

exceeded 10, indicating minimal presence of weak instrument bias.

Similarly, several previous studies have also utilized the identical

threshold (p<5e-06) when assessing the associations between

inflammatory cytokines and systemic lupus erythematosus (45).

Second, the participants of GWAS included in our study were

limited to European descent, and it remains highly questionable
frontiersin.or
FIGURE 3

Forest plot of the Mendelian randomization analyses for the associations between circulating levels of cytokines and telomere length (IVW method).
CI, confidence interval; OR, odds ratio; SNP, single nucleotide polymorphism.
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whether the same results can be extrapolated to other races. Third,

although pleiotropy cannot be completely ruled out, we have taken

measures to exclude SNPs associated with underlying confounding

factors and performed multiple sensitivity analyses using different

assumptions, such as MR-Egger regression. Fourth, after applying

the Bonferroni correction, no cytokines demonstrated a statistically

significant correlation with telomere length, and the associations of

only two cytokines (IL-7 and IL-2Ra) were found to be suggestive.

Finally, MR analyses are not equal to a randomized controlled trial

(RCT), the involvement of cytokines in maintaining or shortening

of telomere length may not be causally established. Thus, these

potential associations need to be validated in larger cohorts and the

underlying involvement of cytokines in the regulation of telomere

length maintenance or shortening should be further explored in

future studies.
Frontiers in Immunology 07
5 Conclusions

Our study provided support for the underlying causal

associations between two circulating cytokines (IL-7 and IL-2Ra)
and telomere length. Further investigations are warranted to verify

these findings, elucidate potential biological mechanisms, and

evaluate their utility as biomarkers and underlying therapeutic

targets for telomere length development.
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FIGURE 4

Scatter plots of Mendelian randomization (MR) analyses between circulating levels of cytokines and telomere length (TL), (A) IL-7; (C) IL-2ra. MR
leave-one-out sensitivity analysis to assess whether every single SNP drove the causal association of cytokines on TL, (B) IL-7; (D) IL-2ra. SNP, single
nucleotide polymorphism.
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Glossary

b-NGF beta nerve growth factor

CTACK cutaneous T-cell attracting (CCL27)

FGF-
basic

basic fibroblast growth factor

G-CSF granulocyte colony- stimulating factor

GRO-a growth regulated oncogene-a

HGF hepatocyte growth factor

IFN-g interferon-gamma

IL-1ra interleukin-1 receptor antagonist

IL-1b interleukin-1-beta

IL-2 interleukin-2

IL-2ra interleukin-2 receptor, alpha subunit

IL-4 interleukin-4

IL-5 interleukin-5

IL-6 interleukin-6

IL-7 interleukin-7

IL-8 interleukin-8 (CXCL8)

IL-9 interleukin-9

IL-10 interleukin-10

IL-12p70 interleukin-12p70

IL-13 interleukin-13

IL-16 interleukin-16

IL-17 interleukin-17

IL-18 interleukin-18

IP-10 interferon gamma-induced protein 10 (CXCL10)

MCP-1 monocyte chemotactic protein-1 (CCL2)

MCP-3 monocyte specific chemokine 3 (CCL7)

M-CSF macrophage colony-stimulating factor

MIF macrophage migration inhibitory factor

MIG monokine induced by interferon-gamma (CXCL9)

MIP-1a macrophage inflammatory protein-1a

MIP-1b macrophage inflammatory protein-1b

PDGF-bb platelet derived growth factor BB

RANTES regulated on activation normal T Cell expressed and secreted
(CCL5)

SCF stem cell factor

SCGF-b stem cell growth factor beta

SDF-1a stromal cell-derived factor-1 alpha (CXCL12)

Eotaxin (CCL11)

(Continued)
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TNF-a tumor necrosis factor-alpha

TNF-b tumor necrosis factor-beta

TRAIL TNF-related apoptosis inducing ligand

VEGF vascular endothelial growth factor
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