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Changes in lifestyle induce an increase in patients with hyperuricemia (HUA),

leading to gout, gouty arthritis, renal damage, and cardiovascular injury. There is

a strong inflammatory response in the process of HUA, while dysregulation of

immune cells, including monocytes, macrophages, and T cells, plays a crucial

role in the inflammatory response. Recent studies have indicated that urate has a

direct impact on immune cell populations, changes in cytokine expression,

modifications in chemotaxis and differentiation, and the provocation of

immune cells by intrinsic cells to cause the aforementioned conditions. Here

we conducted a detailed review of the relationship among uric acid, immune

response, and inflammatory status in hyperuricemia and its complications,

providing new therapeutic targets and strategies.
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GRAPHICAL ABSTRACT

In the hyperuricemic environment, sUA and MSU have direct or indirect effects on various immune cells. They can stimulate monocytes, macro-
phages, T cells, granulocytes, dendritic cells (DC cells), and innate lymphocytes.
Introduction

Uric Acid (UA) is the ultimate product of purine synthesis,

occurring predominantly in the hepatic, intestinal, renal and

vascular endothelial cells. This synthesis arises from dietary

purines or the decomposition of endogenous purines, such as

nucleic acids, adenine, and guanine derived from damaged and

diseased cells (1). The kidney commands a leading function in UA

excretion. Roughly 70% of the daily UA produced in humans is

expelled by the kidneys (2), with the remaining 30% being

eliminated via the intestines (3). Hyperuricemia (HUA) occurs

when the production of UA exceeds its excretion, defined by a

serumUA concentration of over 7.0 mg/DL (4). Traditionally, HUA

was considered to solely cause gout and gouty arthritis. However,

contemporary research has increasingly highlighted its impact on

additional conditions, including renal disease, cardiovascular

disease, hypertension, and achilles tendon rupture (5–9).

Unraveling the regulatory mechanisms initiated by HUA is vital

for understanding the development, progression, and treatment of

its associated disorders.

Emerging research has delineated that HUA transcends the

definition of a mere metabolic disease, extending to inflammatory

and immune disorders. Intriguingly, HUA and its repercussions

manifest within the circulatory system and the actual lesion site.

This pervasive presence can be traced back to the infiltration of

immune cells and an escalated overexpression of inflammatory

cytokines by these immune cells (5, 9, 10). Uric acid has two states
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in the body: soluble urate (sUA) and monosodium urate (MSU)

crystals. The progression of HUA and its complications is

orchestrated through interactions among sUA, MSU crystals, or a

mix of both coupled with innate immunity (5). Both sUA and MSU

can perform as damage-associated molecular patterns (DAMP) to

activate the natural immune response (11). Activation of natural

immunity involves innate immune cells, such as macrophages,

monocytes, NK cells and neutrophils, and their secretion of pro-

inflammatory cytokines or induction of NACHT, LRR and PYD

structural domain protein 3 (NLRP3) inflammasome activation,

leading to a series of amplified inflammatory responses (12, 13). On

the other hand, adaptive immunity can be induced either through

the initiation of innate immunity or direct influence on T cells (14).

Various studies denote that sUA or MSU crystals manifest a

regulatory propensity on T cells, entailing their proliferation (15),

recruitment (16), and polarization (17), Importantly, immune cells,

under the regulation of UA in a modified state, have been identified

as influential determinants guiding the advancement of HUA (16,

18). Despite the progress made in comprehending the mechanisms

of UA-induced inflammation, there remains an ambiguity

concerning how UA regulates immune cells involved in the

inflammatory response in HUA and its complications. This

ambiguity spans the operational changes in immune cells,

alterations in cellular signaling pathways, and the interplay of

pro-inflammatory responses between UA-triggered immune cells

and tissue-intrinsic cells. The exact role of UA remains an enigma.

It is crucial to elucidate the transformations of immune cells
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pertaining to HUA and its complications to facilitate a deeper

exploration into the disease progression and therapeutic strategies.

In this review, our analysis concentrates primarily on the UA-

induced activation of immune cells, the consequent cytokine

expression, and detrimental inflammatory responses arising from

the imbalance in the immune cell populations that contribute to the

progression of HUA and its comorbidities. We summarize the

effects of UA on immune cell-associated inflammatory responses

from recent studies and debate the crucial role of immune cells in

HUA and its associated disorders. Moreover, we propose novel

clinical markers for screening therapeutic targets and approaches.
UA’s direct impacts on immune cells

Differences exist in the regulatory effects of sUA and MSU on

immune cells. More and more studies have shown that MSU

activates natural immunity. It activates the expression of

inflammatory signaling pathways through both direct contact

with immune cell surface receptors and internalization by

immune cells, inducing immune cell activation and promoting

inflammatory responses (19). In contrast, the regulatory role of

sUA on immune cells is controversial. Some studies have suggested

that sUA was thought to be a preservation mechanism that evolved

during human evolution due to its 90% reabsorption, implying that

sUA has beneficial effects (20). Thus, sUA is thought to be a natural

inhibitor of immune cells and could suppress inflammation induced

by MSU (13, 21). Conversely, some studies have suggested that sUA

can activate natural immunity in the same way as MSU and that

sUA may also potentiate MSU activation of immune cells (22).

Although sUA andMSU have had opposite regulatory effects on

immune cells in some studies, both have been known to impact on

immune cells. In contrast, the role of MSU in activating immune

cells may be more convincing. The other side of the immune-

activating effect has recently been shown to require a specific

concentration or to work in conjunction with other factors (21,

22). sUA’s regulatory effects on immune cells still need to be further

investigated, therefore, the regulatory effects of sUA mentioned in

the subsequent articles will be elaborated separately, so as to to

demonstrate the diversity of sUA better, and to discuss the reasons

affecting the regulatory effects of sUA.
Monocytes

As progenitor cells for macrophages, monocytes, steer the UA-

induced alterations in immune cells. Upon migration to peripheral

tissues, monocytes differentiate into either dendritic cells or

macrophages. They possess the unique adaptation to swiftly

modify their functional phenotype in response to dynamic

organismal environments, demonstrating considerable plasticity

and heterogeneity (23). UA serves as an inducer of monocytes,

with several studies indicating that UA transforms the epigenetic

landscape of Peripheral Blood Mononuclear Cells (PBMC).

Differential alterations, induced by UA, are evident in both

histone modifications and DNA methylation, which suggests the
Frontiers in Immunology 03
potential of UA in altering the epigenetic inheritance of immune

cells. Such alterations might contribute to the persistent

inflammation in tissues, even after the dissolution of MSU

crystals. Consequently, these epigenetic shifts observed in

monocytes could serve as a novel target for gout therapeutics

(24) (Figure 1).
UA regulates monocyte populations
and induces cytokine dysregulation

Differences were observed in the monocyte populations within

the peripheral blood of gout patients compared to healthy

individuals. Specifically, the plasma of gout patients exhibited

enriched populations of classic monocytes, whereas intermediate

monocytes were more prevalent in the plasma of healthy individuals

(5). There was also a notable variation in the monocyte MicroRNA

(miRNA) levels amongst these populations, with PBMC cells

displaying significantly increased miRNA-146a levels in HUA-

critical gout patients. Interestingly, a significant decrease was

observed in the expression of miRNA-146a in PBMCs derived

from gout patients. In vitro assays delineated MSU crystals’

propensity to induce TH1 cells to overexpress miRNA-146a,

implying that miRNA-146a acted as a transcriptional brake in

monocytes, which was suppressed during acute inflammatory

responses to MSU crystals. Metallothionein-1 (MT-1) mRNA

levels were markedly elevated during exacerbations in gout

patients, particularly in PBMCs from patients with gouty stones.

However, no significant difference in serum MT-1 levels was

observed among inactive gout patients, healthy individuals, and

those with HUA without gout. Additionally, a positive correlation

was evident between serum MT-1 levels and C-reactive protein, as

well as IL-1b, IL-6, and IL-18. Therefore, the differential expression

and levels of monocyte populations, proteins, and miRNA suggest

their potential utility as diagnostic, predictive, and differential

markers for HUA and its related complications.
sUA and MSU crystals
regulate monocyte

MSU crystals induce monocyte-associated inflammation.MSU

crystals directly instigate the assembly of NLRP3 inflammasome in

monocytes, leading to an increase in IL-1b production (25, 26).

Additionally, MSU induces monocyte cell pyroptosis via nuclear

factor kappa-B(NF-kB)/NLRP3/gasdermin D(GSDMD) signaling

pathway activation. This action occurs through its interaction with

the Bromodomain Protein 4 (BRD4) in human monocytes, which

subsequently contributes to IL-1b secretion and prompts an

inflammatory response (27). sUA was also considered to exert a

pro-inflammatory effect on monocytes. However, it’s imperative to

note that its crystallization into MSU is required to activate the

NLRP3 inflammasome in monocytes. Interestingly, sUA seems to

augment the sensitivity of monocytes to MSU crystals (22). In

addition to its pro-inflammatory effects, sUA also manifests as an
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1282890
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1282890
immunosuppressive agent in monocytes (28). A study by QiuYue

et al. discovered that monocytes absorb sUA intracellularly via the

urate transporter protein solute carrier family 2, member 9

(SLC2A9)/glucose transporter 9 (GLUT9). This intracellular

presence of sUA curbs monocytes’ ability to respond to

inflammatory stimuli and inhibits their activation induced by

MSU crystals. In vitro experiments further disclosed the

inhibitory effect of sUA on the monocyte Toll-like receptor (TLR)

signaling pathway, which in turn reduces the migration capability of

classical monocytes (6). These findings support that sUA is more

than just a substrate for MSU crystal formation. It also acts as an

inherent inhibitor of tissue inflammation instigated by MSU

crystal-induced monocyte activation (21).
Macrophages

Macrophages in most tissues have diverse functions, including

initiating immune and inflammatory responses toward pathogens,

maintaining tissue homeostasis, and contributing to tissue repair

and remodeling (29). A segment of the acute inflammatory

response incited by HUA is attributable to macrophages’

phagocytosis of MSU crystals (25). Existing research poined

towards significant macrophage infiltration in the tissues affected

by HUA and its complications (5). Furthermore, a consensus links

macrophages to metabolic diseases such as HUA (30), with

metabolic reprogramming identified as a characteristic trait of

macrophage activation (31). Recent findings from transcriptomic
Frontiers in Immunology 04
and metabolomic studies underscored the association between

macrophage metabolic reprogramming and its functional

malleability (32). Numerous factors present within the cellular

microenvironment can be stimulated to modulate cellular

metabolism, which can foster macrophage polarization and alter

integral signaling pathways involved in that polarization.

Significantly, macrophages play a crucial role in the pathogenesis

of the inflammatory and autoimmune disorders seen in HUA and

its subsequent complications (33, 34) (Figure 2).
UA induces macrophages to produce
inflammatory cytokines

MSU crystals induce macrophage production of inflammatory

cytokines (35). Specifically, MSU directly initiates macrophage

protein hydrolysis mediated by caspase-1, which processes the

NLRP3 inflammasome and heightens the secretion of IL-1b and IL-

18 (35). This mechanism forms a well-recognized signaling pathway

for MSU-induced inflammatory responses in macrophages.

Furthermore, MSU crystals can directly activate both dormant and

active macrophages via the Syk and JNK kinase signaling pathways

(36), stimulating the production of cytokines such as IL-1b,
Transforming Growth Factor-beta (TGF-b), and others. These

cytokines induce inflammation and metabolic reprogramming

through either the MyD88-dependent pathway or the Reactive

Oxygen Species (ROS)-NLRP3 signaling pathway (37–39). Thus,

macrophage NLRP3 inflammasomes play a crucial role in MSU-
FIGURE 1

In the hyperuricemic environment, the number of classic monocytes increases while the number of intermediate monocytes decreases. sUA and
MSU act on monocytes through multiple signalling pathways, such as NF-kB/NLRP3/GSDMD and SLC2A9/GLUT9, which ultimately affect the
expression of inflammatory factors.
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induced macrophage-associated inflammation. The degeneration of

NLRP3 directly mitigates the inflammatory response. Enhancing

NLRP3 degeneration by amplifying macrophage autophagy stands as

a powerful approach to counter macrophage inflammation (40).

Additionally, MSU crystals diminish intracellular NAD+

concentration by stimulating the nicotinamide adenine dinucleotide

(NAD+) degrading enzyme (CD38) in macrophages, subsequently

promoting IL-1b secretion (41). Tet2 influences the macrophage’s

response to the stimulation from monosodium urate (MSU) crystals.

It was observed that Tet2 knockout mice exhibited an increase in IL-1ß

secretion following MSU crystal administration. Additionally,

macrophages depleted of Tet2 secreted more IL-1b upon stimulation

with MSU crystals, a phenomenon mitigated by the inhibition of

NLRP3 inflammasomes. These findings suggest that Tet2 is a

transcriptional gene associated with macrophage NLRP3

inflammasomes and promoting its overexpression in macrophages

could serve as a potential therapeutic approach to mitigate the

inflammatory response in HUA (34). Recent studies have

underscored the role of miRNAs in the down-regulation of

inflammation in autoimmune diseases and inflammatory disorders

(42). A comparative study of serum samples from acute gout (AG)

patients, intergout gout (IG) patients, and healthy individuals

acknowledged that the expression of miR-223 was significantly

diminished in the AG group. However, the expression elevated post-

acute gout remission. Subsequent investigations indicated that MSU

crystals targeted the NLRP3 inflammasome by suppressing
Frontiers in Immunology 05
macrophage miR-223 expression and facilitated the production of

inflammatory cytokines, IL-1ß and TNF-a (43). Moreover, MSU

crystals also stimulated the secretion of macrophage inflammatory

factors through the induction of genetic variants. Research has unveiled

variants of the peroxisome PPARGC1B in macrophages derived from

patients suffering from gouty arthritis, notably the missense single

nucleotide polymorphism rs45520937. In vitro testing confirmed that

MSU crystals trigger the manifestation of macrophage rs45520937 and

amplify the expression of NLRP3 and IL-1b (44). In HUA and its

ensuing complications, MSU crystals also escalate their role in

prompting macrophages to produce inflammatory factors by

mediating other cytokines such as leptin (45). The complement

system serves as a nexus between innate and adaptive immunity

(46). Its activation bolsters macrophage activation induced by MSU

crystals. Functional C5 convertase complexes aggregate on the MSU

crystal surfaces, culminating in the production of active C5a. C5a

activates the NLRP3 inflammasome in macrophages and fosters the

release of IL-1b (47), thereby contributing to the inflammation

response triggered by HUA.

Studies pertaining to sUA-triggered innate immunity have

shown differential results. (1) sUA activates innate immunity.

Acts as a macrophage DAMP molecule like MSU crystals to

promote hyperuricemia and its complications (47, 48). sUA

incites the production of IL-1b via NLRP3 inflammasomes in

macrophages (48), which in turn, stimulates tissue-intrinsic cells

to induce NF-kB signaling pathway expression, thereby
FIGURE 2

In the hyperuricemic environment, for macrophages, the effects of sUA and MSU are inconsistent. In general, both substances induce macrophage-
associated inflammation through multiple signalling pathways, including sky/JNK and myD88/NLRP3. They also influence macrophage migration,
disrupt the balance between M1 and M2 populations, activate macrophage phagocytosis, and promote the production of necrotic macrophages.
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exacerbating the inflammatory response. (2) sUA inhibits

macrophage. sUA serves as a natural immunosuppressant, which

diminishes IL-1b production in mouse macrophages (28). During

investigations into HUA complications, MSU crystals were

observed to induce fibrosis and expedite the progression of

hyperuricemic nephropathy, unlike sUA (17). Recent research

indicates that Naip1 in mouse macrophages directly recognizes

sUA and its expression in human macrophages induces IL-1b, a
process reversible by pharmaceutically and genetically inhibiting

NLRP3 (49). Additionally, Naip1-NLRP33 interaction was

experimentally indicated, with the loss of Naip in human

macrophages relieving IL-1b production post-sUA stimulation.

The differential experimental outcomes are potentially attributable

to variations in sUA concentrations and origins of the cell species.
UA activates phagocytosis by
macrophages

MSU crystals promote phagocytosis by macrophages.

Phagocytosis by MSU crystals for foreign body elimination (50,

51). Despite their reduction through macrophage phagocytosis, the

inflammatory response persists due to the continued macrophage

engagement with MSU crystals (52), contributing to the chronic

inflammation characteristic of HUA. This cyclical response is due to

the activation of macrophage TLR 2 and 4, NF-kB, and JNK/Erk

signaling pathways during phagocytosis, causing the secretion of

pro-inflammatory cytokines IL-1b, IL-6, TNF-a, and Prostaglandin
E2(PGE2) (51, 53). Recent studies indicated a more potent

phagocytosis-inducing effect on macrophages when MSU crystals

interact with tissue proteins (19). MSU crystals in synovial fluid of

gouty arthritis patients are found to be enriched with type II

collagen (CII). CII influences the morphology of single MSU

crystals and how they are arranged in the eutectic system, thereby

magnifying phagocytosis and oxidative stress in macrophages.

Further, CII enhances the expression of the MSU-induced

chemokines CXC motif chemokine ligand 2 (CXCL2),

Chemokine (C-C motif) ligand 2 (CCL2), and the pro-

inflammatory cytokine IL-1b in macrophages. Overall, CII

stimulates the integrin b1 (ITGB1)-dependent TLR2/4-NF-kB
signaling pathway in macrophages, intensifying MSU-induced

inflammation. Therefore, in the environment where MSU is

present, promoting phagocytosis of MSU or MSU protein

complexes by macrophages, thereby accelerating the metabolism

of MSU from the site of injury is a potentially effective way to inhibit

inflammation generation. Moreover, MSU relies on ITGB1 on the

surface of macrophages to activate the inflammatory signaling

pathway, which suggests that targeting and inhibiting integrins on

the surface of macrophages to inhibit inflammation in MSU-

induced inflammatory complications is one of the research

directions for precision therapy. Overall, simultaneous promotion

of macrophage phagocytosis of MSU crystals and inhibition of MSU

crystal-induced generation of inflammation may reduce the

inflammatory response more rapidly.Therefore, inhibiting MSU

crystal phagocytosis or reducing the expression of inflammatory
Frontiers in Immunology 06
factors post-phagocytosis may present an efficient therapeutic

approach during MSU production. This hypothesis was

confirmed in a recent study that the inflammation inhibitor IL-37

boosted MSU phagocytosis by macrophages, lowered the

transcription of pyroptosis-associated proteins, and diminished

the release of inflammatory cytokines post-phagocytosis, thereby

mitigating the inflammatory response in gout (54). IL-37 has been

recognized recently as a significant member of the interleukin

family associated with developing and treating gout (55). There is

growing evidence that IL-37 inhibitors can suppress the

inflammatory response in gout by inhibiting multiple

inflammatory signaling pathways and modulating macrophages.

However, this inhibitor is still a long way from clinical use, and

there are no studies yet to validate the systemic adverse effects of the

non-targeted use of this immunosuppressive agent. We look

forward to seeing more in-depth studies of IL-37 inhibitors in the

near future and to clinical translation.

Studies examining the phagocytosis of macrophages by sUA

have demonstrated varied results. (1) Inhibition of macrophage

phagocytosis by sUA.Research into HUA-induced atherosclerosis

has suggested that macrophage overexpression of xanthine

oxidoreductase (XOR) and heightened intracellular sUA

concentrations activate macrophage phagocytosis. This activity

may lead macrophages to engulf large amounts of fat, forming

macrophage foam cells and subsequent atherosclerosis (7). (2) sUA

promotes phagocytosis by macrophages (56). Exposure to sUA

triggered the macrophage ROS-AMPK pathway, impaired CD68

expression, decreased macrophage phagocytosis, and inhibited

macrophage foam cell formation. These divergent outcomes of

sUA’s impact on macrophages within the same disease study

could be attributed to varied sources of sUA. Both studies

employed intracellular and extracellular sUA to stimulate

macrophages, respectively. Further investigation is warranted to

clarify the immunomodulatory effects of sUA on macrophages.
UA induces macrophages migration to
produce inflammation

MSU has been found to directly induce migration in

macrophages. Part of this migratory effect can be attributed to the

stimulation of IL-1b secretion by resident macrophages via MSU

crystals, which subsequently instigates caspase-11 expression in

macrophages through IL-1R and MYD88 (55). The migration of

circulating macrophages to MSU sites is induced by increased

caspase-11 secretion. Moreover, macrophages possess the ability

to relocate post-phagocytosis of encapsulated MSU crystals.

Macrophages transporting these migrated MSU crystals may

potentially contribute to the tissue’s widespread inflammatory

response (57). Recent research also illustrates that curtailing

macrophage migration to the MSU site effectively mitigates

HUA’s inflammatory response and associated complications (58).

sUA triggers macrophage migration indirectly. HUA instigates

insulin resistance (IR) in various peripheral tissues, a recognized

complication of HUA (59). Initially, sUA activates resident liver
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macrophages, prompting them to produce pro-inflammatory

cytokines, including IL-1b, IL-6, MCP-1, and TNF-a, thereby
inducing the migration of circulating monocyte-derived

macrophages toward the liver. Once reaching the liver, these

macrophages are inhibited by sUA, which further prevents the

nuclear translocation of GLUT-4 and impedes insulin receptor

substrate 2 (IRS2)/Phosphoinositide 3-kinase (PI3K)/AKT

signaling. Concurrently, sUA mediates the degradation pathway

of the IRS2 protein and activates Adenosine 5’-monophosphate

(AMP)-activated protein kinase (AMPK)/mammalian target of

rapamycin (mTOR) in macrophages, thereby reducing energy

consumption which leads to IR (60). Supplemental studies have

shed light on the upstream mechanism of this signaling pathway,

demonstrating that sUA provokes IR in HUA by stimulating the

Nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme Oxygenase

1(HO-1) signaling pathway and upregulating the regulatory

thioredoxin interacting protein (TXNIP), thereby inhibiting the

IRS2/PI3K/AKT signaling pathway in macrophages (57). In

conclusion, sUA induces an inflammatory response at the site of

injury by stimulating resident macrophages to recruit circulating

immune cells (60).
UA induces dysregulation of
macrophage glucose metabolism to
produce inflammation

Increased glucose uptake and glycolysis are metabolic markers of

pro-inflammatory activation of immune cells. MSU activates

macrophage glycolysis to promote inflammatory factor expression

(58). Glycolysis regulates NLRP3 inflammasome activation in

macrophages (61). High concentrations of glucose increase IL-1b
production via an NLRP3-dependent pathway (62). MSU crystals

increase glucose uptake in macrophages by upregulating glucose

transporter protein 1 (GLUT1) and upregulating glycolysis. This

triggers metabolic reprogramming, leading to NLRP3-dependent IL-

1b production (58). Inhibition of both GLUT1 and glycolysis reduced

MSU crystal-induced inflammation response. Notably, immune cells in

tissues injured by HUA complications have higher GLUT1 expression

than those in circulation (58). This suggests that targeting and

inhibiting GLUT1 in macrophages is a promising and specific

approach as a treatment for HUA and its complications.MSU

crystals also induce inactivation of mitochondrial pyruvate carrier

(MPC) in macrophages promoting NLRP3 inflammasome activation

and gout development. Pioglitazone is a commonly used hypoglycemic

agent in clinical practice, which also has an inhibitory effect on MPC.

Therefore, the increased risk of NLRP3-associated autoinflammatory

diseases should be considered in the clinical use of drugs such as

pioglitazone that target MPC (61). In addition, in vitro assays in mouse

macrophages revealed a significant increase in succinic acid expression

upon glycolytic activation. Further experimental results suggest that

succinate is a metabolite in innate immune signaling that enhances IL-

1b production during inflammation by stabilizing hypoxia-inducible

factor-1a (HIF-1a). Recent studies have also shown that the

inflammatory response of macrophages can be attenuated by
Frontiers in Immunology 07
inhibiting succinic acid (63, 64). However, there is still a gap in the

research on the modulation of macrophage inflammatory response

through inhibition of succinate in HUA disease, so this aspect of the

study is innovative for inhibiting HUA inflammatory response through

the modulation of glycolysis.

sUA induces insulin resistance in macrophages. IR is one of the

complications of HUA (59). sUA inhibits nuclear translocation of

GLUT-4 in macrophages and blocks insulin IRS2/PI3K/AKT

signaling. In addition, sUA mediates the IRS2 protein degradation

pathway and activates AMPK/mTOR in macrophages, which

reduces macrophage energy consumption leading to IR (60).

Other studies have complemented the upstream of this signaling

pathway and showed that sUA induces IR in HUA by activating the

Nrf2/HO-1 signaling pathway through up-regulation of the

regulatory thioredoxin-interacting protein (TXNIP) in

macrophages that inhibits IRS2/PI3K/AKT signaling pathway

(57). In conclusion, sUA impairs the macrophage glucose

transport signaling pathway, thereby inhibiting glucose uptake

and leading to IR (60). Although further in vivo studies are

needed, TXNIP and Nrf2 inhibitors may be promising

therapeutic targets for preventing and treating HUA-induced

insulin resistance in macrophages.
UA induces necrosis of macrophages
to produce inflammation

Recent research suggests that UA-induced necrosis significantly

contributes to HUA and its associated complications. MSU crystals can

stimulate necroinflammatory responses; therefore, inhibiting this

inflammation, induced by MSU crystals, may present a therapeutic

approach to managing HUA and related complications (65). When

exposed to MSU crystals, mouse macrophages underwent various

forms of cell death, including pyroptosis, apoptosis, and necroptosis.

However, the induction of necroptosis in mouse macrophages was not

effectively prevented by NLRP3 inhibition (66), indicating that MSU

crystals may stimulate macrophage necrosis and ensuing inflammation

through various mechanisms. This discovery holds consistent when

observing sUA, which also prompts macrophage necrosis, manifesting

HUA complications. For instance, in an investigation of atherosclerosis

induced by HUA, exposure to sUA significantly heightened

macrophage iron death through the NRF2/SLC7A11/Glutathione

peroxidase 4 (GPX4) signaling pathway (67). This reaction

hampered autophagy, fostering the development of atherosclerosis in

conjunction with HUA. A deeper understanding of the inflammatory

pathways invoked by UA-induced macrophage necrosis might shed

light on the constant state of inflammation characteristic of HUA and

its associated complications.
UA induces macrophage polarization
to produce inflammation

M1/M2 populace dysregulation is evident in HUA and its

associated complications (35, 68). Changes to the macrophage
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population could significantly affect UA concentrations, subsequently

amplifying HUA complications. The recently identified metabolism-

related gene, CG9005 (mda), plays a crucial role in the innate immune

response within HUA. The gene showed low activity in stationary

macrophages (M0), increases in pro-inflammatory differentiated cells

(M1 macrophages), and decreases in cells differentiating into anti-

inflammatory macrophages (M2 macrophages) (69). By inhibiting

mda, the manifestations of HUA could be reduced, aligning with the

examination of macrophage population dysregulation in HUA: the

harmful capacity of M1 macrophages and the remedying potential of

M2 macrophage therapy. Therefore, understanding the variations in

macrophage polarization in HUA and related complications carries

considerable implications for pathogenesis research and

therapeutic approaches.

MSU crystals induced macrophage polarization towards the M1

type. MSU crystals activate the Mitogen-activated protein kinase

(MAPK)/NF-kB and Janus kinase-1 (JAK-1) - signal transducers

and activators of transcription1/3 (STAT1/3) signaling pathways in

macrophages, inducing M1 macrophages polarization and releasing

M1 macrophages-associated factors TNFa, IL-1b, and IL-6 (66, 70).
It was found in a hyperuricemic kidney injury study found that

modulating M1 macrophages dampened the inflammatory

response (17). Other study determined that activation of AMPK/

sirtuin 1 (SIRT1) stifled M1 macrophage polarization and alleviated

the inflammatory response in HUA (71). It was also established that

besides MSU crystals alone, macrophages engulfing MSU crystals

and creating granulomas could further spur the generation of M1

macrophage polarization, intensifying interstitial inflammation and

propagating chronic kidney disease (CKD) progression (72).

Therefore, strategic reduction of M1 macrophages or their

cytokine expression could potentially alleviate the inflammatory

response in HUA and its associated complications.

sUA induces macrophage polarization toward the M2 type. The

M2 macrophages are characterized as an anti-inflammatory

phenotype, demonstrating high Arg-1 expression and producing

anti-inflammatory effects (73, 74). Inducing M2 macrophage

polarization in macrophages present at inflammation sites can

effectively lessen the inflammatory response. sUA exhibits

immunosuppressive properties, partially realized through the

induction of macrophage polarization toward the M2

macrophages. Studies conducted on an asymptomatic mouse

model of HUA, subjected to acute kidney injury instigated by

ischemia-reperfusion (IR-AKI), revealed that sUA could drive

macrophage polarization toward the M2 macrophages, thereby

expediting the recovery of renal function and structure in IR-AKI

(75). Furthermore, the activation of the PI3K/Akt signaling

pathway in macrophages during gouty arthritis studies has been

found to induce an anti-inflammatory effect by promoting a shift

toward the M2 macrophages, ultimately mitigating MSU-induced

gouty arthritis (76).
Granulocytes

Granulocytes, innate immune cells comprising neutrophils,

eosinophils, basophils, and mast cells, depend on inflammatory
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signals for their recruitment to sites of injury, infection, or allergic

reactions. These signals, in turn, activate the granulocytes to release

immunostimulatory molecules (77). Notably, research pertaining to

HUA and its ensuing complications has predominantly focused

on neutrophils.
Direct effect of UA on neutrophils

MSU crystals induce neutrophil migration (47), playing a critical

role in acute inflammatory responses, including infections and sterile

injuries characterized by crystal deposition. During sterile

inflammation, neutrophil recruitment from the bloodstream to

inflamed tissues incorporates various pro-inflammatory

chemokines and cytokines such as CXCL8, TNF-a, and IL-1b. The
migration process involves distinct stages, including adhesion, rolling,

and crawling, which significantly necessitate b2 integrins (78). MSU

crystals directly enhance CD18 integrin activation in neutrophils

(79), augmenting their ability to migrate toward these crystals via

leptin-facilitated mechanisms (45). Following recruitment, these

crystals latch onto the neutrophil plasma membrane lipids directly,

instigating the lipid raft structural domains’ aggregation in the

membrane, thereby activating the Syk kinase. This activation leads

to increased neutrophil activity and cytokine production (6).

Furthermore, MSU crystals can trigger Neutrophil Extracellular

Traps (NETs), whose formation leads to the release of nuclear

DNA bundled with neutrophil enzymes. NETs play a pivotal role

in the commencement and progression of inflammation in gout,

presenting the primary methodology through which neutrophils

facilitate inflammation resolution (55, 80, 81).

sUA inhibits neutrophil migration. sUA undermines b2
integrin activation and signaling, consequently diminishing

neutrophil migration to inflammation sites in vivo. Upon entry

into neutrophils via the SLC2A9 urate transporter protein, sUA

regulates the intracellular pH, modifies cytoskeletal dynamics to

reduce cellular size, and manages b2 integrin activity as well as its

internalization/recycling, leading to an overall decrease in

neutrophil functions such as migration. In addition to these

observations, sUA is also noted to curtail cytokine release and

phagocytosis capabilities without influencing NETs release (17, 82).

Interestingly, impeding the intracellular uptake of sUA by urate

transporter proteins can reverse the inhibitory effect of sUA

on neutrophils.
UA’s indirect impact on neutrophils

Apart from direct stimulation of granulocytes, MSU crystals can

also modulate the immune microenvironment indirectly by affecting

other immune cells. UA indirectly triggers the inflow and activation of

neutrophils to inflammation sites by spurring macrophages to produce

the IL-1b, which tends to reach the inflammation site first (47). This

stimulation of IL-1b production by macrophages significantly

enhances neutrophil recruitment and intensifies the inflammatory

response incited by HUA (83). Alongside IL-1b, MSU crystals also

induce macrophages to produce caspase-11, a module that serves both
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as a recruiting agent for circulating neutrophils and a stimulatory

cytokine prompting neutrophils to form NETs. In-depth studies

manifested that caspase-11 orchestrates neutrophil chemotaxis and

extracellular trap formation by advocating the phosphorylation of the

neutrophil filament-cutting protein, Cofilin (55). An alternate pathway

exists wherein resident macrophages initially clear small urate

microaggregates (UMAs) formed due to HUA. However, if clearance

fails, these UMAs undergo bipolar growth to forge standard full-sized

needle-like monosodium urate crystals (nsMSUs) which directly

induce neutrophils, resulting in the formation of NETs (84). Notably,

the phagocytosis of neutrophils was also shown to be affected in the

results of this study. Neutrophil phagocytosis is an essential function

for host defense against infection. Moreover, impaired neutrophil

phagocytosis can lead to the development of other diseases due to

immunodeficiency. Therefore, further investigation of the role of

neutrophils in disease development, where phagocytosis is affected by

soluble uric acid, may be worthwhile in order to clarify whether sUA is

indeed a beneficial immunosuppressive agent.
Dendritic cells

DCs are intrinsic in the natural immune system where these

recognize pathogens and activate immune cells in the adaptive

immune system (85). The initiation of the adaptive immune

mechanism by DCs is realized by inducing naïve T-cell activation

and differentiation via major histocompatibility complex (MHC)

molecules that present antigenic peptides. Sequentially, DCs

persistently induce effector T cell differentiation and govern T cell

tolerance (86). Moreover, DCs are capable of secreting cytokines

and growth factors to reinforce and manage the immune

response (87).
Populations of DCs display
imbalance in the complications
associated with HUA

A higher count of DCs was observed in the plasma of healthy

individuals compared to those suffering from AG (5). This

observation suggests that MSU crystals could induce the

migration of DCs, culminating in a diminished number of

circulating DCs. The critical role of UA as a catalyst modulating

the functionality of DCs has been verified; it facilitates DCs

maturation, bolsters the presentation of foreign antigens by DCs,

and prompts the stimulation of T lymphocytes (88).
T cells

Elevated purine levels in HUA bolster the proliferative response of T

lymphocytes towards pro-mitotic and antigenic stimuli (89). It was

determined that uric acid could independently activate T cells,

irrespective of the presence of antigens. Experimental findings with

human T cells isolated from healthy human blood samples indicated
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that UA not only escalates T cells activation by CD25 expression, but

also encourages IL-1b secretion in anNLRP3 inflammasome-dependent

manner, while simultaneously promoting T cell proliferation (90).

Furthermore, UA intensifies the immune response of CD8+ T

cells by provoking DCs and macrophages to express the co-

stimulatory molecules CD80 and CD86 (88). Allopurinol, a

prevalent treatment for symptomatic HUA or gout, has been

demonstrated to mitigate T cell activation following CD3 and

CD28 antigen stimulation. This is evident from the decreased

CD69 expression and diminished secretion of IL-2, a cytokine

influential in driving T cell activation, and IFN-g, a critical

effector of Th1. Such findings propose that directing interventions

toward pro-inflammatory T cells and corresponding cytokines

proves hopeful as a strategy in preventing and treating gout.

Deviances within T-cell populations have implied significance in

HUA research, proposing that therapeutic interventions could be

directed at these T cells. Dipeptidyl peptidase 4 (DPP4), also

recognized as CD26, is manifested on macrophages and T helper

cells (Th1, Th2, Th17). The expression of DPP4 may enhance in

response to Th cells activation, and can co-stimulate T cells activation

and proliferation (91, 92). DPP4 is also discernible in plasma, proximal

tubules, peduncles, and the brush border of glomerular endothelial cells

(93, 94). Hence, disrupting the influence of DPP4 on T cells potentially

represents a modality for treating systemic complications of HUA

manifesting in renal tissues.

The comparison of extrachromosomal circular DNA elements

(eccDNA genes) found in the plasma of clinically diagnosed HUA

patients with those in healthy individuals revealed exclusive expression

of TLR6, IL2RA, PTGS1, MAPK13, and IL5 genes in HUA patients

(95). Notably, IL5 andMAPK13 are integral to the operation of the IL-

17 signaling pathway, which is closely associated with the T cell

receptor signaling pathway. Consequently, These results suggest that

eccDNA indicator assays related to T cells may have potential as novel

organisms for early disease detection, risk assessment, and drug

treatment response monitoring. However, because of the sample size

of this study, further studies are needed for validation (95) (Figure 3).
Imbalances in T cell populations play
significant roles in various diseases

Alterations in T cell populations are observed in hyperuricemia

and its related complications. The plasma of gout patients

demonstrates enrichment of naїve CD4 T cells. In contrast, Th1/

Th17 cells, effector memory CD8 T cells, and mucosal-associated

invariant T cells (MAIT cells) are enriched in gout patients’ joint

fluids (5). Recent studies have illustrated a close relationship

between Th1/Th2 and Th17/Treg imbalance, both with

hyperuricemia and its ensuing complications.
Imbalance of Th1 and Th2

Excessive purines don’t directly enhance XOR expression in

human hepatocytes; instead, they act on lymphocytes, escalating the
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production and release of IFN-g. This highly expressed Interferon-

gamma (IFN-g) stimulates STAT1 and xanthine dehydrogenase

(XDH) transcription in a manner dependent on IRF1, wherein

STAT1 and IRF1 get attracted to the promoter, further recruiting

CREB binding protein (CBP) to spur XDH transcription. This

instigates XOR expression in hepatocytes, thus increasing UA

production eventually (96). IFN-g, majorly secreted by Th1 cells

(97), implies that the activation of Th1 cells might be a potential

pathogenic process, leading to HUA. In the case of HUA-afflicted

mice, the spleen’s Th1 cells secrete inflammatory cytokines IL-1b
and IFN-g at higher concentrations, whereas Th2 cells secrete IL-4

and IL-10 at lower concentrations than the usual group. This

finding indicates that modulating the Th1/Th2 equilibrium

towards Th2 dominance can be a prospective strategy for HUA

treatment (97). Yanjie et al. supported this in their study, using a

novel multi-epitope vaccine to intensify the Th2 cytokines IL-10

and IL-4 in diabetic mice, amplifying the Th2-like immune

response, and regulating the Th1/Th2 ratio imbalance. By making

the immune response primarily Th2, it was possible to considerably

lessen the UA levels in diabetic mice (98).
Imbalance of Th17/Treg

Th17 and Treg represent two intimately related T cell variants.

Individually, they perform integral functions in facilitating immune

responses and repressing immunity. The coordination and balance

between Th17 cells and Tregs enables the maintenance of standard
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immune functionality within the body (99). Microscopic crystalline

MSU triggers an imbalance in the Th17/Treg ratio within human

circulation, subsequently stimulating Th17 proliferation (45).
Th17 cells

UA has been discovered to directly foster Th17 differentiation.

A positive correlation has been established among the expression of

lnc-NEAT1, HUA, Th17, and IL-17 (14). This correlation suggests

that HUA may induce Th17 proliferation or activation through

increased lnc-NEAT1 expression. It consequently yields an

increased expression of the effector cytokine, IL-17, contributing

to the development and onset of HUA conditions. Additionally, UA

can indirectly instigate Th17 differentiation via other immune cells.

CD4+ T cell polarization towards Th17 is triggered by MSU crystals,

facilitated by DC cells (100). When co-cultured with DCs treated

similarly, MSU crystals induce the latter to release IL-1a/b,
prompting the activation of the NF-kB signaling pathway within

CD4+ T cells. Consequently, this activation encourages the

differentiation of CD4+ T cells into Th17 lineage and the

secretion of the Th17-associated cytokine, IL-17A. The gut and its

microbiota play a substantial role in HUA and its associated

complications (101). Imbalance in gut tissue flora in HUA,

leading to T-cell AKT/mTOR pathway activation, results in a

higher number of Th17 and a decreased quantity of Treg,

precipitating a Th17/Treg imbalance. Such an imbalance is

marked by heightened expression of Th17 cytokines such as IFN-
FIGURE 3

T cells, in the high-uric acid environment, show increased expression of inflammatory factors due to the direct stimulation of T-cell receptors like
CD38 by sUA and MSU. Additionally, DC cells and macrophages can activate T cells through CD80 and CD86 receptors. The high-uric acid
environment also leads to dysregulation of T-cell populations, including Th1/Th2, Th17/Treg, MAIT, and CTL.
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g, TNF-a, IL-1b, IL-6, and IL-17. Consequently, this enhanced

inflammatory response in the gut exacerbates the HUA

conditions (101).
Treg cells

Encouraging Treg differentiation presents a novel method for

addressing HUA and its subsequent complications. The incidence

of apoptosis, along with the depletion of circulating B-lymphocytes

and the upregulation of Treg cells post-labrylase administration,

proposes that this recombinant uricase treatment for HUA might

influence outcomes by inhibiting B-cells to bolster Treg (102).

These findings highlight the significance of manipulating the

Th17/Treg balance as a treatment strategy for HUA.
MAIT cells

MAIT cells are a unique subpopulation of innate invariant T

cells, distinguished by the expression of an evolutionarily conserved

invariant T cell receptor alpha (TCRa) chain. These cells interact

with major histocompatibility complex class I-like molecules (MR1)

and recognize ligands derived from bacteria or yeast, specific

metabolites of riboflavin (vitamin B2) (103–105). Upon ligand

recognition, cytokine signaling, or a combination of both, MAIT

cells instantaneously manufacture Th1/Th17 cytokines, including

IFN-g, TNF-a, and IL-17, in an innate-like response. Young et al.

discovered that the count of circulating MAIT cells in GA patients

was remarkably lower than in a healthy population (16). However,

GA patients displayed significantly elevated cell differentiation

antigen CD69 expression levels, programmed cell death protein 1

(PD-1), and lymphocyte-activation gene 3 (LAG-3) in MAIT cells.

Further studies demonstrated that MSU in the joint triggered the

migration and activation of MAIT cells. Activated MAIT cells

secrete pro-osteoclastogenic cytokines including IFN-g, IL-6, IL-
17, and TNF-a, which subsequently drive GA progression by

promoting osteoclastogenesis and illustrating their movement

from peripheral blood to inflamed areas. High levels of CC

chemokine receptor 6 (CCR6) and C-X-C chemokine receptor

type 6 (CXCR6) observed in circulating MAIT cells corresponded

with the expression of their respective ligands CCL20 and CXCL16

around gouty tophi. Overall, MSU crystals instigate the migration of

MAIT cells and stimulate their production of cytokines such as

IFN-g, TNF-a and IL-17, inducing T cell polarization towards pro-

inflammatory Th1 and Th17 phenotypes. This mechanism

contributes to the inflammatory responses observed in tissues.
Cytotoxic T lymphocytes

An imbalance in CTLs, also contributes to T cells dysregulation.

Frequently referred to as CD8+ T cells, CTLs are vital components

of the adaptive immune system (106). Research has indicated that

HUA disrupts the normal functions of CTLs and encourages their
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unchecked proliferation (107), thereby leading to dysregulated T

cells proliferation.
Innate lymphoid cells

ILCs

ILCs, an integral part of tissue structures and resident cells, are

lymphocytes that do not express many antigen receptor types found in

T and B cells. These cells are pivotal in metabolism, tissue homeostasis,

morphogenesis, and tissue repair and regeneration (108). An

imbalance in the ILCs population and changes in its cytokine

expression are observed in HUA and its complications. A

subcategory of these, innate lymphoid cells type 3 (ILC3s), are a

newly discovered group of innate immune cells implicated in the

progression of multiple metabolic diseases. They achieve this through

the secretion of IL-17 and IL-22. In HUA patients, an increased count

of circulating ILC3s has been noted, correlating positively with serum

UA and serum creatinine (Scr) levels. While there is no significant

difference in plasma IL-17A concentrations between HUA patients and

healthy individuals, a positive correlation exists between plasma IL-

17A, serum UA concentrations, and circulating ILC3 frequencies in

HUA patients. Therefore, ILC3s and IL-17A could serve as valuable

indicators of disease severity and potential novel therapeutic targets for

HUA. It has also been demonstrated that these ILC3 cytokines are

associated with the severity and progression of HUA (109).
Natural killer-cell

NK cells, a type of ILCs, play a vital role in immune surveillance

as a component of the natural immune system (110). Typically,

human NK cells are identified by the presence of CD56 proteins and

the absence of CD3 proteins on their surface, and can be further

subcategorized based on the relative expression of surface marker

proteins CD56 and CD16, primarily into CD56 dim and CD56 bright

subsets (111). NK cells are likely instrumental in the pathogenesis of

HUA (112). For HUA patients with UA levels equal to or above 8.0

mg/dL, a decrease in the absolute number of CD3- CD56+ NKG2D+

NK cells is observed, together with an increased quantity of

CD107a-secreting NK cells (112). By impeding NK cell activation,

it is feasible to augment Treg, thereby standardizing serum UA

levels in uricase-deficient mice (113). This implies a correlation

between the cell count and activation of NK cells and the

development of HUA. Evidence suggests that NK cells observed

at inflammation sites are initially recruited from the periphery, and,

upon reaching, are further activated by site-specific cytokines. These

activated NK cells establish interactions with other immune cells.

Specifically, NK cells respond to a blend of IL-12 and IL-15

cytokines secreted by monocytes and macrophages by emitting

IFN-g, which can subsequently activate macrophages. This nexus

between NK cells and macrophage and monocyte populations

intensifies the production of inflammatory factors, thereby

exacerbating the inflammatory response (114).
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UA activates the inflammatory
response of tissue-intrinsic cells
indirectly affecting immune cells

MSU crystals activate the TLR4/NF-kB/NLRP3 signaling

pathway in human umbilical vein endothelial cells (HUVECs),

leading to the secretion of intercellular cell adhesion molecule-1

(ICAM-1), IL-1b, IL-6, and vascular cellular adhesion molecule-1

(VCAM-1). The expression of these cytokines heightens the influx

of neutrophils into the joint fluid, followed by an increased inflow of

monocytes. When activated, monocytes and neutrophils actively

engage in phagocytosis of MSU crystals, initiating an inflammatory

response (115). Studies on HUA-induced cardiac remodeling have

determined that sUA prompts cardiomyocytes to manufacture

CXCL1 and CXCR2, which induce macrophage migration. This

migration leads to an inflammatory response and results in cardiac

myocyte hypertrophy (116).

In renal pathologies, sUA stimulates inherent renal cells,

including endothelial cells, vascular smooth muscle cells, and

renal tubular cells, to upregulate or secrete high mobility group

protein 1 (HMGB1), inflammatory cytokines, and chemokines.

These include C-reactive proteins, IL-6, IL-8, adhesion molecules

such as ICAM-1 and VCAM-1, and monocyte chemotactic protein-

1 (MCP-1). The expression of these molecules in endothelial cells

facilitates macrophage alignment and immigration (117, 118). sUA

also activates renal tubular TGF-b1/Smad, NF-kB, and Erk

signaling pathways, prompting inflammatory cell secretion and

subsequent macrophage migration (119–121). TLR4 receptor

inhibition reduces MCP-1 secretion from sUA renal tubular cells

(118). In addition, co-culturing macrophages with sUA-exposed

renal tubular cells suggest that UA amplifies inflammatory

responses by triggering renal lamina propria to produce pro-

inflammatory factors, instigating M1 macrophages polarization

(120). In the same vein, MSU crystals in renal disease incite an

inflammatory response in renal parenchyma cells, promoting

macrophages recruitment (122). This recruitment stems from

MSU induced ICAM-1 expression in human mesangial cells,

which fosters monocyte adhesion (117). Notably, gout studies

disclose that MSU crystals activate fibroblast-like synoviocytes

(FLS) JNK and ERK signaling pathways, augmenting neutrophil

chemokine CXCL8 secretion. Consequently, elevated CXCL8 draws

monocytes and neutrophils to the location of the urate crystals

within bursal tissues, exacerbating inflammation (123).

Tamm-Horsfall protein (THP), alternatively known as uromodulin

(UMOD), is a phosphatidylinositol-anchored glycoprotein exclusively

formed by renal tubular cells (TAL) situated in the rising rough

segment of the Henle loop (124). The function of UMOD as an

immune activator has been authenticated (125), and UA linked injury

to both TAL and its distal constituents precipitates increased interstitial

UMOD. This prevalence, in turn, fosters the upregulation of pro-

inflammatory cytokines such as TNF-a, IL-6, IL-8, and IL-1b (126).

Moreover, UMOD overexpression correlates with diminished UA

excretion, renal fibrosis, immune cell infiltration, and progressive

renal failure. In the context of UA, THP adheres to monocytes,
Frontiers in Immunology 12
macrophages, and DCs, facilitating lymphocyte expansion (126) and

mononuclear phagocytosis activation (127). Furthermore, THP within

the renal mesenchyme enhancedmononuclear phagocyte quantity,

plasticity, and phagocytic activity. An overnight incubation of THP

with PBMCs promoted dose-dependent augmentations of IL-1b, IL-6,
and TNF-a. Intriguingly, THP inhibits IL-1 initiated human T cell

colony formation (124). Both UMOD and THP constitute pivotal

proteins that modulate the impact of renal inherent cells on immune

cells in hyperuric acid nephropathy, paving the way for insightful

studies to clarify the origins of immune cell infiltration and uncover

novel therapeutic strategies for HUA nephropathy.

The synovial fluid of HUA patients culled from joint tissues

demonstrates an expression of RANTES and MCP-1, insinuating

that UA may indirectly enhance the inflammatory response within

the joint by elevating chemokine expression and enlisting

monocytes. Accompanying studies examined in afflicted bursal

tissues by gout underscore the function MSU crystals play in

prompting FLS to produce cytokines IL-6, which further

encourage Th17 differentiation and concurrently hinder the

differentiation of regulatory T cells (123). Consequently, UA’s

induction of immune cells through intrinsic cellular involvement

presents a plausible mechanism through which UA contributes to

GA (128).
Summary

This critique examines the phenomena and chief mechanisms

related to urate-induced dysregulation of immune cells. Distinct

immune cells, including monocytes, macrophages, and T cells,

extracted from patients suffering from HUA, are observed to

undergo cellular activation and enhanced migratory effects, increased

cytokine production, and problematic cellular differentiation when

stimulated by urate in vitro. These instances of immune cell

dysregulation are traced within the setting of MSU crystallization or

sUA inflammatory models. Urate induced dysregulation of immune

cells potentially spurs the onset of HUA and the consequent

complications, besides bolstering chronic inflammation. Evidence of

urate-induced long-term functional alterations also points to immune

cell dysregulation, but further studies are needed to determine the

metabolic adaptations of innate immune cells to urate as well as more

in-depth studies to discuss the mechanisms by which UA regulates

innate immunity. Morever, immune cells such as T cells and innate

lymphocytes, which have only recently been discovered, still require a

great deal of research to demonstrate the role and mechanisms of UA

in their regulation. Our review indicates that consequent inflammation

and tissue damage due to UA can be mitigated by suppressing specific

immune cell populations or inhibiting the secretion of cytokines by

immune cells.

Therefore, we may identify novel strategies for immunotherapeutic

intervention in autoinflammatory diseases and their accompanying

associated disorders by thoroughly understanding the mechanisms

inherent to urate-induced dysregulation of immune cells and

disease advancement.
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