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Engineering immune cells to treat hematological malignancies has been a major

focus of research since the first resounding successes of CAR-T-cell therapies in B-

ALL. Several diseases can now be treated in highly therapy-refractory or relapsed

conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies

are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma

(DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular

lymphoma (FL). The implementation of these therapies has significantly improved

patient outcome and survival even in cases with previously very poor prognosis. In

this comprehensive review, we present the current state of research, recent

innovations, and the applications of CAR-T-cell therapy in a selected group of

hematologic malignancies. We focus on B- and T-cell malignancies, including the

entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute

myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic

leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy

cell leukemia (HCL), and Waldenström’s macroglobulinemia (WM). While these

diseases are highly heterogenous, we highlight several similarly used approaches

(combination with established therapeutics, target depletion on healthy cells),

targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that

require individualized approaches. Furthermore, we focus on current limitations of

CAR-T-cell therapy in individual diseases and entities such as immunocompromising

tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences

in the occurrence of adverse events. Finally, we present an outlook into novel

innovations in CAR-T-cell engineering like the use of artificial intelligence and the

future role of CAR-T cells in therapy regimens in everyday clinical practice.
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CAR-T-cell therapy, T-cell malignancies, AML, CML, CLL, lymphoma, hairy cell
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1 Introduction

The diverse cluster of mature hematologic malignancies can

broadly be classified into five groups using genetic, molecular, and

clinical parameters: mature B-cell neoplasms, classic Hodgkin-

Lymphomas, mature T- and natural killer (NK)-cell-neoplasms,

histiocytic and dendritic cell neoplasms, and immunodeficiency-

associated lymphoproliferative disorders (1).

These groups feature a wide spectrum of pathophysiological

mechanisms of disease, pathological features, and therapeutic

options. The clinical characteristics of these diseases differ

significantly: While some, like CLL, do not necessarily require

therapy upon diagnosis (2), diseases such as aggressive T-cell

malignancies still present a highly complex clinical challenge with a

median overall survival of less than 12months (3). Patient groups like

people living with HIV (PLWH) are at increased risk of developing

hematologic malignancies (4). Some diseases are more common in

pediatric (acute leukemias) or geriatric (CLL) patients (5). The

treatment and management of these malignancies have significantly

benefited from the implementation of CAR-T-cell therapies and this

technology remains the most successful of several cellular

immunotherapies developed in the 21st century (6, 7).

Research currently focuses on expanding this technology

towards treatment of solid tumors. Other possible areas of

application are infectious diseases (e.g. HIV, HBV, other viral and

fungal infections), and auto-immune disorders (such as rheumatoid

arthritis, systemic lupus erythematosus). While these areas are

prominently featured in the current CAR-T-cell research

landscape, there are also approaches for its implementation in

novel hematologic malignancies. Currently, many of these

diseases are treated utilizing a combination of chemotherapy and

immunotherapy, and in some cases, autologous or allogeneic

hematopoietic stem cell transplantation (allo-HSCT), leading to

high response rates and potential long-lasting complete remission.

However, patients with relapsed or refractory disease often have a

poor prognosis (8, 9). Furthermore, particular patient populations

like heavily pretreated patients and those over the age of 60 years

often suffer from reduced response to therapy or limited life

expectancy (10).

To extend the remarkable achievements of CAR-T-cell therapy

to more diseases and patient populations, researchers are currently

employing an array of different technologies and approaches. These

include CRISPR/Cas9- and TALEN-based (Transcription activator-

like effector nucleases) gene-editing, OMICs methods (including

transcriptomics, surfaceomics, and proteomics), nanotechnology,

single-cell technologies, and advanced combination regimens with

established therapies. Through these approaches, more and more

malignant entities become possible targets of CAR-T-cell therapy

(11–13).

However, severe adverse events including immune effector cell-

associated neurotoxicity syndrome (ICANS) and cytokine release

syndrome (CRS) (14) as well as T-cell dysfunction, resistance, and

tumor escape mechanisms still pose difficulties (15, 16). Novel

approaches for the management of these adverse events are

currently under development, including subcutaneous injection of

IL-6-adsorbing hydrogel (17) and the implementation of inducible
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“on-and-off” systems (18). Recent research has highlighted the

possibility to employ sequential CAR-T-cell therapies to tackle

post-CAR-T-cell relapse, a major cause of death in CAR-T-cell

treated patients (19). Additionally, tools are being developed to aid

in the management of CAR-T-cell patients and improve clinical

care (20).

After initial hopes that CAR-T cells could present a potentially

universal therapeutic approach for malignant diseases, researchers

are currently understanding that CAR-T cells are most likely just

one of several options in personalized therapies (21). Therefore,

other innovative immunotherapeutic strategies are being

investigated, including different immune cell groups, oncolytic

viruses, technologies like T-cell engagers, T-cell receptor (TCR)

engineering, and combinations of these technologies with CAR-T

cells (22). The ultimate goal of these approaches and innovations is

the improvement of clinical outcomes like overall survival (OS),

progression-free survival (PFS), prevention of adverse events,

improvements in patients’ quality of life, and above all the

identification of curative therapeutic strategies.

While many of these techniques are still in their early

development, several CAR-T-cell therapies have already been

approved and are utilized in the clinical setting. Therefore, we

highlight potential applications of CAR-T-cell technology in

hematologic malignancies beyond the currently approved

indications. We also provide an overview of the current research

and possible innovations regarding different lymphomas and

leukemias. We further focus on aspects such as safety, efficacy,

and organizational issues.
2 T-cell malignancies

2.1 Current state of treatment

T-cell malignancies include lymphomas and leukemias

originating from T cells and their precursor cells. Within the past

decade, the prognosis of acute lymphatic T-cell leukemia (T-ALL)

has improved, especially due to new chemotherapy protocols and

monitoring of minimal residual disease (MRD) after therapy (23).

However, these diseases still pose a difficult task for oncologists as

the treatment and management of complications remain complex

with poor outcome (24). Especially patients with cases of refractory

or relapsing disease rarely respond well to established salvage

protocols (25). Standard therapy regimens include chemotherapy,

histone deacetylase inhibitors (HDACi) and monoclonal antibodies

targeting antigens such as CD30 or CCR4 (26).

The lack of malignant T-cell-specific target antigens for CAR-T

cells is one of the main difficulties as most of the targeted antigens in

T-cell malignancies (such as CD3, CD5, CD7) are expressed by

healthy T cells as well. A T-cell depleting therapy would lead to a

complete eradication of T cells, resulting in detrimental infectious

complications (27). The second fundamental challenge in

employing CAR-T-cell therapy for T-cell malignancies is the

apheresis of exclusively healthy T cells from the patient in order

to generate CAR-T cells without contamination with circulating

tumor cells (28).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1285406
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Karsten et al. 10.3389/fimmu.2023.1285406
2.2 CD7-directed CAR-T-cell therapy

To account for these limitations, a CAR-T-cell therapy needs to

be able to distinguish between healthy and malignant T cells to a

required extent. This poses a substantial challenge to researchers as

the expressed proteins on healthy and malignant T cells differ only

marginally (29). The most comprehensively studied T-cell-specific

target is CD7 due to its abundant expression in T-cell malignancies

compared to limited presence on healthy T cells (30).

An important issue in the use of anti-CD7 CAR-T cells against

T-cell malignancies is the concept of “fratricide”, meaning the

killing of therapeutic CAR-T cells by the CAR-T cells themselves

due to shared expression of CD7 (Figure 1) (31). This protein is also

expressed on NK cells, where it is related to activation and

maturation (32). Fratricide results in reduced anti-tumoral

activity, decreased survival of CAR-T cells and limited therapeutic

success (33). Approaches to reduce fratricide include nanobody-

based techniques (34, 35), natural selection of fratricide-resistant

CAR-T cells (36, 37), and the use of antibodies (38) or protein

expression blockers (39).

Chiesa et al. have recently shown the benefits of using base-

editing to inactivate the genes encoding for the CD52 and CD7

receptors, and the b chain of the ab TCR in a phase I trial of CD7-

targeting CAR-T cells (40).The implementation of targeted

pharmacotherapy with the objective of diminishing fratricide has

the potential to facilitate the utilization of unedited anti-CD7 CAR-

T cells, thereby enhancing the targetability of CD7. Previous studies

have investigated the combination of ibrutinib and dasatinib for this

purpose (41).

Another approach for the circumvention of fratricide is to make

use of the naturally occurring subset of CD7- T cells for the

generation of CAR-T cells. These could be resistant to fratricide
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and provide a more sustained anti-tumor activity (42).

Furthermore, to avoid fratricide, CD7 can be gene-edited with

techniques like CRISPR/Cas9 (43, 44). If the expression of

targeted antigens can be sufficiently reduced on the CAR-T cell

itself, even bi-specific CAR-T cells are potential therapeutic tools

without eliciting fratricide (45). These bi-specific CAR-T cells can

be generated through the use of nanobodies as demonstrated by Xia

et al. with the manufacturing of CAR-T cells targeting CD30 and

CD5 (46).

Investigating another way to tackle fratricide, Jiang et al. have

recently developed a “2-in-1 strategy” of knocking out the CD7

locus and inserting an EF1a-driven CD7-CAR in this locus to

achieve improved tumor rejection in a mouse xenograft model (47).

A similar technique was employed by Liao et al. for the generation

of CD38-specific CAR-T cells (48). Similar to this is the editing of

the T-cell receptor a constant (TRAC) locus (49). By this

modification, allogeneic cell attack by T and NK cells can be

reduced. There are multiple techniques to disrupt the TRAC

expression, focusing on different parts of the receptor. The main

technologies used for these editing approaches include CRISPR/

Cas9 and TALENs (50). Xie et al. have recently demonstrated how

CRISPR-based CD7- and TRAC-knockout CAR-T cells can

efficiently proliferate and kill T-ALL cells in vitro and in vivo. The

researchers showed increased frequency of CD8- T cells and a

higher number of activated CD4+ memory T cells (51). The

application of gene-edited CD7- hematopoietic stem cells could

help sustain a sufficient number of healthy T cells after anti-CD7

CAR-T-cell therapy (52).

So far, clinical trials have utilized both autologous and

allogeneic anti-CD7 CAR-T cells and have shown great promise

regarding survival, tumor regression, and PFS (53–55). Recently,

Chen et al. demonstrated the complete eradication of CD7+ T cells
A

B

C

FIGURE 1

Fratricide elicited by anti-CD7 CAR-T-cell therapy. After infusion CAR-T cells recognize CD7 present on tumor cells (A), other CAR-T cells (B), and
healthy T cells (C) in the recipient. These targeted cells are then destroyed by the immune system. The consequences are the depletion of the
patient’s healthy T-cell reservoir as well as a reduced capacity and longevity of applied CAR-T cells.
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and the rapid expansion of the functional CD7- T-cell subset

following anti-CD7 CAR-T-cell therapy (56). Li et al. observed a

patient achieving >3 years of PFS in their cohort of 12 patients

treated with “off-the-shelf” anti-CD7 CAR-T-cell therapy (57).

However, these studies have also confirmed the risks of T-cell

aplasia as the result of on-target-off-tumor effects with associated

severe adverse events like viral reactivation and infection, and

fungal pneumonia. This is described by a case report of a

hepatosplenic gd-T-cell lymphoma treated with HLA fully-

mismatched allogeneic anti-CD7 CAR-T-cell therapy. Researchers

observed CRS, cytopenia and infections to a manageable extent and

rapid decrease of circulating CAR-T cells after infusion. However,

the patient did receive allo-HSCT and achieved lasting CR (58).
2.3 Potential targets

To circumvent CD7-related fratricide, researchers are also

focusing on finding more suitable biological markers to

differentiate between malignant, healthy, and therapeutic T cells.

Recent studies have investigated the T-cell receptor b-chain
constant domains TRBC1 and TRBC2 (24, 59), CD1a (60), CD2

(61), CD4 (62), CD5 (63, 64), CD21 (65), CD26 (66), CD38 (67),

CD99 (68, 69), CCR9 (70), the natural CD7 ligand SECTM-1 (71),

and the dual targeting of CD38 and LMP1 (72). Shaw et al. have

shown the efficacy and antigen-specificity of TCRvb-targeting
CAR-T cells in cell lines, patient samples, and mice (73). To

enhance the functionality of CAR-T-cells in the treatment of T-

cell malignancies, researchers are also investigating other parts of

the CAR-T-construct. This includes the hinge region, which has

recently been shown to influence the cytotoxicity of anti-CD5 CAR-

T cells and can be enhanced through specific modifications (74).

There are particular target antigens for different patient

populations like targets specifically investigated for pediatric T-

cell malignancies (75). Today, many of these targets seem

promising, but CD7 is still the most extensively tested CAR-T-cell

target antigen in clinical trials.
2.4 Increasing CAR-T-cell therapy safety

To reduce CAR-T-cell toxicities and adverse events, CAR-T cells

incorporating “safety switches” or suicide genes have been proposed.

These mechanisms limit the CAR-T-cell life span and persistence due

to depletion upon administration of a prodrug (metabolic switch) or

using monoclonal antibodies (76). In an effort to control CRS after

CAR-T-cell therapy, Li et al. have shown promising results utilizing

the Januskinase inhibitor ruxolitinib after infusion of anti-CD7 CAR-

T cells (77). This application has also illustrated potential in

preventing severe cases of CRS by limiting cytokine release and

proliferation of CAR-T cells and is used for the treatment of CRS in

other diseases (78). These advances towards a safer CAR-T-cell

therapy are accompanied by innovations reducing the cost and

complexity. These include retroviral vector-based gene therapy

approaches based on in vivo delivery of the CAR gene (79).
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To account for the risks and complexities of acquiring

autologous T cells from patients, researchers are also investigating

the application of allogeneic CAR-T cells. Hu et al. have shown the

potential of allogeneic anti-CD7 CAR-T cells derived from healthy

donors to target T-ALL cells (80). In the phase I trial, adverse events

like high-grade ICANS and CRS or Graft-versus-Host-Disease

(GvHD) were not observed in the study cohort of 11 patients. In

contrast, Pan et al. administered allogeneic anti-CD7 CAR-T cells in

20 patients with 2 of them experiencing CRS grade 3-4 and 60% of

patients experiencing GvHD grade 1 or 2 (53).
2.5 Cutaneous T-cell lymphoma

A special entity within the group of hematologic T-cell

malignancies is the cutaneous T-cell lymphoma (CTCL), derived

from the CD4+ T-cell subset. The most common forms of CTCL are

mycosis fungoides and Sézary syndrome. While both diseases can

be managed through treatment, achieving a complete cure is only

feasible with allo-HSCT (81–83).

Currently investigated targets to combat CTCL with CAR-T

cells include CD30, CD38, CD56 (84), and CCR4 (85). The latter is

of particular interest as CCR4 is needed for cell trafficking and

homing, as well as recruiting of regulatory T cells to the TME and

has also shown to be upregulated in advanced stages of CTCL (86).

However, anti-CCR4 CAR-T cells have been shown to elicit

fratricide and selectively attack TH2-, TH17- and Treg-cells (87).

Recent findings have indicated CD37 and TRBC as potential targets

(88, 89). Gluud et al. have highlighted the importance of the JAK/

STAT signaling pathway in CTCL and its potential targeting in

immunotherapy (90).

Relevant obstacles in CAR-T-cell therapy for CTCL include

antigen overlap with healthy T cells, transduction of malignant cells,

fratricide, and prolonged T-cell aplasia (91). Tumor heterogeneity

plays an important role in CTCL immunotherapy and shifts

researcher’s attention towards dual- or multi-targeting therapy

approaches. These could target malignant cells comprehensively

and specifically (92). Further approaches include in-depth

genotyping of tumor cells and monitoring of intra-tumoral

activity of T cells (93). Due to these advances, CAR-T-cell

therapy is seen as an option to achieve long-term remission in

CTCL patients (94) and could offer a promising chance for these

currently incurable diseases (95).
2.6 Peripheral T-cell lymphoma

These peripheral T-cell lymphomas (PTCL) are difficult to treat

as there are few established treatment methods and the prognosis is

mostly poor (96). Thus, PTCL proves to be a potentially rewarding

target of CAR-T-cell therapy.

As shown in other T-cell malignancies, major problems include

fratricide, the consequences of therapy-induced T-cell aplasia and

the contamination of the CAR-T-cell product with malignant T

cells (97). Similar problems in the implementation of CAR-T-cell
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therapy have also been independently described for entities such as

T-follicular helper cell lymphoma (98).

Wu et al. have shown the efficacy of anti-CD30 CAR-T cells

against PTCL cells in vitro and in vivo mouse models (99). As

TRBC1/2 is already being investigated as a CAR-T-cell target

antigen (24), current research is aiming at increasing the

specificity towards this target in T-cell malignancies (100). A key

aspect of this approach is the finding that T-cell malignancies are

restricted to either TRBC1 or TRBC2. These can be targeted

differentially. While clinical trials currently investigate other

targets like CD5 and CD7 for T-cell malignancies, many of these

trials do not include patients with PTCL (101). Other groups are

investigating CD37, CD70, and CD147 as potential targets for

PTCL CAR-T-cell therapy (102). As CD4 is also frequently

upregulated on subtypes of PTCL like angioimmunoblastic T-cell

lymphoma, anti-CD4 CAR-T cells are another area of investigation

(103). Fang et al. could recently demonstrate the effect of CD4-/

CD8- anti-CD4 CAR-T cells against T-ALL and PTCL in vitro and

in vivo without eliciting fratricide (104).
2.7 Outlook

CAR-T-cell therapy can offer a novel therapy option for patients

with advanced, relapsed or therapy-refractory T-cell malignancies

(105). While side effects could potentially be detrimental, the

general risk-benefit evaluation could yield an overall positive

outcome for a significant subgroup of patients. In a follow-up of

2 years after application of anti-CD7 CAR-T cells, Tan et al.

observed durable efficacy but serious adverse events and potential

disease relapse (106). Li et al. have recently highlighted the potential

role of anti-CD7 CAR-T cells for bridging patients towards allo-

HSCT (107).

In conclusion, anti-CD7 CAR-T-cell therapy remains the most

promising approach to T-cell malignancies. So far, clinical trials

with this target have shown potential regarding PFS and OS.

However, other targets such as TRBC1/2, CD30, and specific

targets for subgroups like CTCL and PTCL could provide

potential benefits for patients.
3 Acute myeloid leukemia

3.1 Potential targets

Acute myeloid leukemia (AML) comprises a group of acute

hematologic malignancies that arise from myeloid precursor cells

and is often associated with a variety of genetic aberrations. As AML

is the second most common type of leukemia in adults, there are

numerous approaches to make this type of disease feasible to CAR-

T-cell therapy (108, 109). Previous studies using CAR-T-cell

therapy in AML patients have shown that the technique could

prove a potentially valid strategy for patients with relapsed or

refractory disease (110–114), a patient group that currently has

only very limited therapy options.
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Potential target antigens for CAR-T cells in AML include CD7

(110, 115), CD33/Siglec-3 (116, 117), CD38 (67, 111), CD41 (118),

CD44 (119), CD64 (120), CD70 (121–123), CD117 (124), CD123

(125), CLL-1 (112, 114, 126, 127), B7-H3 (128), PR1 (129), FLT3

(130–132), IL1-RAP (133, 134), Siglec-6 (135), NKG2D (136),

PRAME (137), and GRP78 (138). As it has recently been shown

to be associated with the highly aggressive subcategory AML-MR,

CD5 is another potential target of CAR-T cells (139). Similarly,

CD36 is being investigated as a central driver of dissemination,

disease progression, and relapse in AML patients and association

with an unfavorable disease prognosis (140). In a high-precision

approach, Giannakopoulou et al. have recently shown the

possibility of targeting a single driver mutation (D835Y) in FLT3.

This lead to the successful elimination of both CD34+ and CD34-

AML cells in mice through a mutation-specific TCR (141).

Other studies investigate bi-specific or dual CAR-T cells targeting

CD13/TIM3 (142), CD123/FR-b (143), IL3-zetakine/CD33 (144),

CD123/NKG2DLs (145), and FLT3scFv/NKG2D (113). These

multi-targeted CAR-T-cell therapies could help to increase the

specificity of CAR-T cells towards leukemic cells, limiting on-

target-off-tumor effects and thereby enhance safety and efficacy for

patients (146). Targeting multiple targets, especially those with low

surface expression, can control tumor growth even in genetically

heterogenous AML cases (147). Alberti et al. have recently proposed

the dual targeting of stromal and non-stromal targets by CAR-T cells,

investigating CD33/CD146 cytokine-induced killer cells (CIKs)

(148). However, stromal syntenin appears to be downregulated in

AML, potentially enhancing AML cell survival and increasing

translational activity (149).

Kim et al. have also shown that the genetic inactivation of

potential CAR-T-cell targets like CD33 on healthy hematopoietic

stem cells might reduce the risk of bone marrow suppression (150).

Studies investigating the role of CD33 have found this protein to be

a non-vital marker of myeloid cells and its depletion does not

hamper development and function of cells (151). Further studies

underlined the role of CD33 on malignant AML cells by correlating

its presence to clinically unfavorable outcomes and parameters

(152). The presence of AML fusion-genes in CD33- cells might be

the reason for relapses after CD33-targeted AML therapy and

necessitates the highly-precise engineering of CARs targeting this

structure (153). This need is being addressed in current clinical

trials through systematic preclinical structural evaluations (154).

These evaluations also consider known modes of resistance to

CD33-targeted therapy, including CD33-gene polymorphisms and

upregulation of downstream pathways (155).

In another promising approach, Hino et al. have investigated the

complex crosstalk between CAR-T cells and thymoid tissue in AML.

The authors hypothesized a potential enhancement of patient’s

endogenous anti-tumor capacities through elimination of tumor-

antigen carrying APCs. Additionally, the thymus plays a central role

in the development of the T-cell repertoire and could therefore be

integral to the TME and success of immunotherapies for AML (156).

Future research could investigate if the thymus is another possible

focus of action to enhance the functionality of CAR-T-cell therapies.

The search for leukemia-specific target antigens remains a

central challenge in the efforts to design CAR-T cells for AML
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therapy. While some targets are chosen because of their functional

relevance to AML pathogenesis (CD5, CD33, CD36), others are of

particular interest due to their relatively upregulated expression on

AML cells or potency in pre-clinical trials (CD44, CD64, CD123).
3.2 Overcoming immunosuppression in
AML

To transfer the success of currently available CAR-T-cell

therapies, researchers are focusing on a diverse range of

approaches to enhance the immune response towards AML cells.

Major obstacles towards this goal are summarized in Figure 2.

One of the most prominent challenges is the limited persistence of

CAR-T cells in vivo and decreasing anti-tumoral effects over time with

resulting disease relapse (157). Relapse can occur either with antigen-

positive AML cells or accompanied by the phenomenon of antigen-

loss. An important mechanism leading to antigen-loss is the selection

of antigen-negative malignant clones through homozygous mutations

of the B-cell receptor complex, splicing or target mutations. Newly

developed, highly affine CAR-T cells have the ability to target even low

antigen-expressing cells (158) and overcome epitope masking. The

application of these T cells could help to target AML cells in patients

after allo-HSCT with relapsed disease due to immune escape (159).

To further enhance CAR-T-cell efficacy in AML, An et al. and

Leick et al. have shown positive effects of other fine-tuning approaches

of CAR-T cells like the targeted down-regulation of PI3K-d (160) and
the design of a non-cleavable hinge region (161). Current studies also

underline the potential use of unconventional T cells like invariant
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natural killer T cells and gd-T cells, since they can function without

HLA-signaling and possess natural anti-tumoral activity (162).

Naturally occurring mutations in target regions and molecular

resistance mechanisms as well as an immuno-suppressive,

leukemia-specific TME are further obstacles in effective CAR-T-

cell therapy for AML (119, 163). As CAR-T-cell therapy is currently

mostly investigated as a salvage therapy in relapsed or refractory

disease, decreased T-cell fitness could play a role in the performance

of CAR-T cells. In accordance with this, Vadakekolathu et al. have

recently highlighted T-cell exhaustion and senescence as well as

unique cellular signaling processes and chemokines as central

components of this immunosuppressive microenvironment (164).

This is supported by recent investigations into the role of ferroptosis

signatures that highlighted their role in the TME and T-cell

function (165). The effects of a functional T-cell immune

response in AML patients on therapy efficacy (166), as well as

clinical (167) and laboratory parameters (168, 169) are known.
3.3 Approaches to increase CAR-T
specificity

Another obstacle of adoptive cell therapy in AML is the

insufficient discrimination between healthy and malignant

myeloid cells through specific antigens. This can lead to

severe neutropenia and life-threatening infections due to

myelosuppression (170). To overcome this, innovative techniques

aim to increase the CAR-T-cell specificity in targeting malignant

myeloid cells and therefore reduce on-target-off-tumor effects.
A
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FIGURE 2

Escape mechanisms of AML cells after CAR-T-cell therapy. These include downregulation or loss of target antigen expression on tumor cells (A),
modification of the target antigen to escape recognition and binding by the CAR-T cell (B), and an immunosuppressive tumor microenvironment
(TME) (C). Through these mechanisms, AML cells avoid detection and lysis through CAR-T cells, thus limiting the therapeutic efficacy of CAR-T cells.
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Furthermore, researchers aim to increase the chance of long-term

persistence of immunological tumor control.

To achieve these goals, researchers are employing multiple

methods. These include suicide switches (anti-CD20 agents

against CAR-T cells carrying CD20), logic gating (typically AND,

NOT, and OR) to improve target recognition, and the genetic

engineering of hematopoietic stem cells (HSCs) to reduce target

antigen expression on their surface (171). Specific logic gating

strategies have been proposed for anti-CD93 CAR-T cells (172)

and an IF-BETTER gate for the targeting of ADGRE2 and

CLEC12A (173).

So far, progress has been made in epitope-engineering with the

altering of CD123 expressed on HSCs while maintaining their

functional capabilities (174). Similarly, Casirati et al. have shown

success in engineering epitopes of FLT3, CD123 and KIT and

introducing these into CD34+ stem and progenitor cells resulting

in the maintenance of functional hematopoiesis and the eradication

of AML cells (175).. Another approach to sustain hematopoiesis is

the targeting of leukemia-specific signaling pathways like the newly

discovered IL33-ST2 interaction on myeloid leukemic stem cells

(176). Nelde et al. have recently investigated non-mutated and neo-

epitopes of common driver mutations of NPM1 and IDH2 shared

between AML cells and leukemic progenitor and stem cells. This

study further emphasizes the possible functional relevance of these

epitopes and their association with clinical outcomes (177).
3.4 Novel CAR-T platforms

From a clinical perspective, the management of adverse events

and therapy-associated risks is possibly more difficult due to the

high number of older AML patients. This could intensify several

adverse events including CRS, off-target-effects, and the risks

associated with myelosuppression such as life-threatening

infections (178).

To mitigate these risks, “suicide genes” have been implemented

into CAR-T cells. This approach aims to control the infused suicide

gene-modified CAR-T cells in vivo through its activation with a

nontherapeutic agent like rapamycin (179). Constructs like this can

lead to accelerated recovery of the patient’s immune system after

CAR-T-cell therapy as demonstrated for anti-FLT3 CAR-T

cells (180).

Wemke et al. have reported on first-in-human proof-of-concept

for rapidly switchable anti-CD123 CAR-T cells based on the

universal chimeric antigen receptor platform (UniCAR) that is

currently further investigated in a phase Ia trial. This platform

could allow for the sequential or parallel targeting of multiple target

antigens. So far, all three patients who have gone through the

treatment protocol in this study have experienced partial or

complete remission without dose-limiting toxicities (125). CAR-

constructs based on the UniCAR platform can be rapidly switched

off upon the occurrence of adverse events by withholding the

antigen targeting module. Ehninger et al. have shown the success

of this approach for the handling of ICANS after administration of

anti-CD123 CAR-T-cell therapy (181). These results are further

supported by the reports of Peschke et al. who have developed an
Frontiers in Immunology 07
anti-FLT3 UniCAR-T-cell product. They observed killing of AML

cells in vitro and in vivo in a murine xenograft model (182).

Nixdorf et al. have recently investigated the approach of using

the AdCAR platform to specifically target AML cells using three

adapter molecules targeting different antigens (CD33, CD123 and

CLL-1). In these ex vivo experiments, AdCAR-T cells could be

applied, targeted at one antigen, and later on re-targeted towards

another, achieving high anti-tumor activity (183). This approach

could address the problem of therapy-induced escape variants and

target downregulation on AML cells. Using the UniCAR or AdCAR

platforms, it could be possible to improve the management of CAR-

T-cell induced adverse events like CRS and ICANS by limiting the

exposure of CAR-T cells to their target antigen.

Overall, engineering CAR-T cells with mechanisms to reduce

their activity after infusion appears as a central innovation towards

making them a safer and more reliable therapeutic option. Novel

CAR-T platforms provide the basis for innovative approaches,

multi-targeting, and can help to address escape mechanisms and

adverse clinical events.
3.5 Combinatorial regimens

Another field of investigation is the combination of CAR-T cells

with established therapeutics like rapamycin (184), DNA

hypomethylating agents like azacytidine (185) or decitabine (186,

187), and anti-PD-1 antibody therapy (166). Combinations of novel

CAR-T-cell products with agents like chidamide and decitabine

have proven superior to mono-therapy in vitro (122).

Using CAR-T cells to “bridge” the time towards allo-HSCT or

in patients ineligible for allo-HSCT could help enhancing their

usability in AML patients (188, 189). Anti-CD83 CAR-T cells even

have the potential to be used in GvHD or AML relapse after allo-

HSCT (190). Similarly, the combination with other pharmaceuticals

might prove to be another therapeutic pathway (191, 192).

However, major concerns against using CAR-T cells as a salvage

therapy in AML relapse after HSCT include the occurrence of

cytopenia and the risk of GvHD as well as limited efficacy (193).

This may be due to increased T-cell exhaustion phenotype and a

depletion in absolute T-cell numbers as hypothesized by Jia et al.

using a newly developed Graft-versus-Leukemia (GvL) model in

AML. The authors highlight the possibility of enhancing T-cell

function in this model through the blockage of T-cell-inhibitory

pathways (194).

As has been shown, valproic acid has the capacity to increase

the cytotoxicity of anti-CD123 and anti-CLL-1 CAR-T cells against

AML cells in mice (195). Cummins and Gill have recently

highlighted the proposed advantages of either increasing antigen

expression through combinatorial treatment or investigation of

possible dose escalation schemes of the CAR-T-cell therapy (196).
3.6 Outlook

Despite disappointing progress in the field of immunotherapeutic

approaches in AML (197), the implementation of proteomics (198)
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and transcriptomics (199) in designing a more personalized CAR-T-

cell therapies holds promises. Single-cell sequencing offers the

possibility to investigate mutational changes across the DNA,

epigenetic and protein level (200). A recent review by Shahzad

et al. has investigated 10 clinical trials and 3 case reports, overall

calculating the response rate of patients with relapsed or refractory

AML to CAR-T-cell therapy at 49.5% (201).

Finally, novel production pipelines of CAR-T cells like

piggyBac-transposon-based technologies offer the possibility of

cost reduction and shortening of production cycles (202).

Approaches combining such transposon-based delivery systems

with CRISPR technologies have the potential to facilitate

allogeneic CAR-T-cell therapy through depletion of HLA-I and

the TCR on donor cells (203). It should be noted that the induction

of mutations and limited specificity restrict the utility of gene

editing technology (204).
4 Chronic myeloid leukemia

4.1 Current state of treatment

Chronic myeloid leukemia (CML) is a disease with malignant

transformation of myeloid precursor cells similar to AML. Unlike in

AML, targeted therapies have significantly improved the treatment

outcomes for CML using inhibitors of tyrosine kinases (TKI) –

enzymes that are pathologically activated in most of the CML cases

(205). Many patients can be treated safely and effectively with these

oral inhibitors. Severe cases with progression into the acceleration

phase or a potentially lethal blast crisis are relatively rare. Under

optimal therapy and comprehensive management of comorbidities,

patients can achieve a close to normal life expectancy (206).

However, there are patients that cannot be treated with TKIs,

experience insufficient therapy success or excessive side effects

(207). The current ultima ratio for CML patients is an allo-HSCT,

which makes use of the highly advantageous GvL effect. Adoptive

cell therapies could be employed as a salvage option for patients

with relapsing disease even after allo-HSCT (208, 209) or long-time

remission after TKI therapy (210).
4.2 Potential targets

In the past years, CD19 (211, 212), CD26 (213), CD38 (214),

and IL-1-Receptor-associated Protein (IL-1-RAP) (215) have been

investigated as potential target antigens for a CAR-T-cell therapy

approach in CML. IL-1-RAP is of pronounced interest as its

expression correlates with the formation of the Philadelphia

chromosome in CML cells (216) and is often expressed in

increased levels on malignant hematopoietic cells (217). CAR-T

cells targeting IL-1-RAP can be produced semi-automatically and

GMP-compliant since 2023 (218). In 2021, a digital droplet PCR

(ddPCR)-based method was established to monitor both anti-CD19

and anti-IL-1-RAP CAR-T cells (219) to accurately assess their

presence in vivo.
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4.3 Outlook

Zhang et al. have shown that the combination of anti-CD19

CAR-T-cell therapy with the TKI dasatinib can potentially provide

a curative therapy option even in the phenomenon of multilinear

disease with several lines of mutated cells present (220). While

several studies have shown substantial success in middle- to long-

term follow-up of treated patients, the current research landscape

on CAR-T cells focuses on other malignancies due to the success of

TKI therapy (221).

Future studies have the potential to establish CAR-T-cell

therapy as a valid and even potentially curative treatment option

for CML through the targeting of promising antigens like IL-1-RAP.

Especially patients refractory towards TKI therapy or after

progression to acceleration phase/blast crisis can profit from this

novel approach (222). Importantly, Jiang et al. have recently shown

the preserved functional capacity of CD4+ T cells in CML patients,

suggesting that this subgroup could be suitable for the generation of

CAR-T cells (223). Additionally, success in implementing novel

technologies like streamlined production processes and digital PCR

allow for an easier implementation of CAR-T cells into

clinical practice.
5 Chronic lymphocytic leukemia

5.1 Current state of treatment

Chronic lymphocytic leukemia (CLL) is a disease that primarily

affects patients over the age of 65 years and is the most common

type of Non-Hodgkin Lymphoma (NHL) in the western

hemisphere (224). Today, there are numerous treatment options

available for patients including monoclonal antibodies like

rituximab and obinutuzumuab (anti-CD20), the BCL-2 inhibitor

venetoclax, and BTK inhibitors (i.e. ibrutinib, acalabrutinib). Due to

these available and well-established therapeutics with very high

efficacy, research in CAR-T-cell therapy in CLL lacks behind that in

other hematological malignancies of comparable clinical

relevance (225).

Still, many patients develop a resistance towards established

therapeutics (226). Disease progression into a highly malignant

NHL (“Richter transformation”) remains a major issue (227)

despite significant progress in the understanding of its genetics

and mechanisms (228). Early results of phase I/II trials indicate a

possible role for CAR-T cells in prevention or treatment of Richter

transformation (229, 230), but highlight the importance of further

research in this approach (231). Research has further identified IL-

10, IL-6 and reduced levels of CD27+/CD45RO-/CD8+ T cells as

potential biomarkers for refractoriness to immunotherapy (232). In

contrast, IL-27 has been shown to boost CD8+ T-cell anti-tumor

activity against CLL and is decreased in the peripheral blood of CLL

patients (233). MALAT1 expression has recently been found to be

associated with an aggressive course of disease in CLL and may hint

towards previously not understood mechanisms of disease (234).
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5.2 Overcoming resistance mechanisms

A challenging aspect of immunotherapy in CLL is a

pathologically reduced immunocompetence. Main reasons for this

include an immuno-suppressive microenvironment generated by

malignant cells and systemic extracellular vesicles (235), changes in

immune-synaptic signaling (236), and disruptions in T-cell

metabolism (237). Additionally, Treg cells seem to disturb the

expression of CD62L and IL-4R on neutrophils, reducing their

natural immunological capacities in CLL models (238).

T cells of CLL patients frequently display an exhausted

phenotype and show increased expression of PD-1, CTLA-4,

TIGIT, CD160, and CD244 (239). Agarwal et al. have recently

demonstrated how the selective deletion of CTLA4 can enable

CD28 signaling in CAR-T cells targeting CD19 in CLL (240).

Epigenetic studies have highlighted changes in the profile of

cytokine secretion, reduced cytotoxic capacities, and exhaustion as

factors leading to reduced T-cell function in CLL (241). Possible

solutions include the application of allogeneic CAR-T cells that are

not affected by these defects or the combination with modulators of

epigenetic reading (242).

T-cell-focused studies have further indicated the CLL-

associated depletion of polyfunctional CD26+ T cells, which

represent another possible target for adoptive cell therapy (243)

and unique subsets and transcriptional signatures of T cells in CLL

patients (244). These pathological mechanisms can disrupt the

efficacy of CAR-T cells as well as their long-term establishment in

the recipient (Figure 3) (245).
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Specific T cells like Vg9Vd2 cells have been identified as a

central player in the TME and gd-T cells can be used as carriers of

anti-CD19 CARs (246–248). Investigations into different ways of

cultivating Vg9Vd2 cells and using them as cytotoxic agents are

showing promising results (249). Engineered gd-T cells have further

been shown to impact the TME and potentially show lower rates of

on-target-off-tumor effects (250). Donor-derived gd-T cells could be

another therapeutic option as they exhibit natural anti-tumor

activity (251). Another aspect of fine-tuning gd-T cells for

antitumor use includes the specific expression of chemokines like

IL-15 to increase longevity and tumor control (252).

Recently, receptors of the SLAM-family have been investigated

as central players of disease progression. So far, SLAMF3 and

SLAMF7 are in focus of CAR-T-cell research. However, these

approaches have been limited by fratricide induced by SLAMF-

targeting CAR-T cells (253).
5.3 Previous studies

CAR-T-cell therapy has been employed since 2011 for CLL

patients (254). While the first CAR-T-cell treated CLL patients have

shown both comprehensive as well as sustained responses (255,

256), this is not the case for all patients. Using a CD19-targeting

CAR-T-cell therapy (lisocabtagene maraleucel, initially approved

for DLBCL, PMBCL and FL), 45% of patients after multiple disease

relapses achieved a complete remission (257). In 2020, Cappell et al.

demonstrated a duration of response of over 3 years for 50% of CLL
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FIGURE 3

Mechanisms impacting the efficacy of CAR-T-cell therapy in CLL patients. These include disruption of formation of the immunological synapse and
communication between an immune cell and a tumor cell (A), exhausted phenotype of CAR-T cells (B) and a reduced naïve compartment of T cells
(C). Additionally, patient-specific factors and comorbidities (D), an immunosuppressive tumor microenvironment (E), as well as systemic extracellular
vesicles (EVs) inducing exhaustion phenotype CAR-T cells with reduced anti-tumor efficacy (F) are important factors.
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patients treated with anti-CD19 CAR-T-cell therapy with a limited

prevalence of serious adverse events and a median event free

survival of 40.5 months (258).

Recently, Siddiqi et al. have reported a phase I/II study

investigating lisocabtagene maraleucel in 117 patients who had

previously experienced BTK-inhibitor therapy failure. The

investigators observed a complete response rate of 18% with 9%

of patients experiencing grade 3 CRS and 18% experiencing grade 3

neurological events. Overall, within 90 days after CAR-T-cell

infusion 5 treatment-emergent deaths were reported (259).

Detailed investigations into the kinetics of CAR-T-cell

persistence have shown correlations between the numbers of

CAR-T cells present in the peripheral blood and adverse events

like the occurrence of CRS (260). In line with these findings,

patients treated with anti-CD19 CAR-T-cell therapy for CLL have

experienced side effects like bacterial, viral, and fungal infections

due to myelosuppression similar to patients suffering from other

hematological malignancies (261). Through the comprehensive

analysis of 47 patients with CLL or Richter transformation

receiving anti-CD19 CAR-T-cell therapy, Liang et al. have

determined several factors associated with longer PFS. These

include peak CD4+ and CD8+ CAR-T-cell expansion, MRD

negativity and CAR-T-cell persistence (262).

Other studies underline the complex immune mechanisms

influencing the efficacy, survival and functionality of CAR-T cells

(263). Until today, CD19 is still the most comprehensively

investigated target antigen for CAR-T-cell therapies directed

against CLL (264). However, there have also been promising

results with the use of CARs targeting malignancy-associated k-
light chains (265), CD32b (266), the Fc m receptor (267), and Siglec-

6 (268) in CLL patients. Luo, Qie et al. have recently reported the

success of BAFF-R-targeted CAR-T cells even in CD19- cell

lines (269).
5.4 Outlook

Currently, CAR-T-cells are being investigated as part of an

integrated therapeutic algorithm including established lines of

therapy to maximize the percentage of patients being treated

optimally (270). Studies have shown favorable results for the

implementation of CAR-T cells into the therapeutic repertoire for

CLL through combination with PI3K-g-d inhibitors (idelalisib)

(271, 272), ibrutinib (273, 274), and lenalidomide (275). The

sequential application of BTK inhibitors and CAR-T cells seems

to provide synergistic effects in CLL treatment (276).

The combination of fludarabine and cyclophosphamide prior to

anti-CD19 CAR-T-cell infusion has been shown to improve CAR-

T-cell functionality and clinical outcomes, a phenomenon also seen

in other hematological malignancies (277). Studies suggest

favorable effects of these combinations on severe CAR-T-cell

associated side effects like CRS (278). Several advantages set

CAR-T-cell therapy apart from options like allo-HSCT: possibly

milder profile of adverse events, shorter duration of treatment, and

the prospect of long-term CAR-T-cell persistence and therefore

disease control (279).
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However, there is still a multitude of factors keeping CAR-T-cell

therapy from becoming a widely available and reliably applicable

therapy for CLL (280, 281). CAR-T-cell therapy could prove

especially viable for patients suffering from refractory or relapsed

disease, as well as those developing secondary malignancies or

suffering from intense symptoms (282). In a subset of patients,

CAR-T-cell therapy can offer a potential way to disease eradication

(283). Additionally, recent approaches like the killing of CLL cells

through targeting of the Lck-IP3R protein-protein interaction hint

towards other innovative methods of immunotherapy targeting in

CLL (284).
6 Classical Hodgkin-Lymphoma

6.1 Current state of treatment

Classical Hodgkin-Lymphoma (HL) is considered a highly

curable disease today. The majority of patients achieve deep and

long-lasting complete remission with standard therapy (285).

However, cases of refractory or relapsing disease still pose an

important problem (286). Furthermore, treatment-related

toxicities and side effects, especially in individuals over the age of

60 years, still prove life-threatening and therapy-limiting.
6.2 CD30 and the TME in HL

CAR-T-cell investigations in HL patients mainly focus on CD30

as a target antigen (287) due to the abundant expression on

malignant Hodgkin Reed-Sternberg cells and malignant B cells

(288, 289). Previously, this expression has successfully been

exploited through the antibody-drug conjugate (ADC)

brentuximab–vedotin (BV) targeting CD30 (290). CD30 plays an

important pathophysiological role in cell-morphology and

chromosomal instability (291). First phase I and II trials utilizing

anti-CD30 CAR-T cells showed substantial success in heavily pre-

treated patients with an overall response rate of 39-72% and mostly

tolerable side effects (292, 293).

Since these initial clinical trials, the RELY-30 study has shown

further improvements in the safety profile and efficacy of anti-CD30

CAR-T-cell therapy but also limited durability of responses with

36% 1-year PFS and additional relapses occurring after this point of

time (294). Kim et al. have also reported a decrease or loss of CD30

expression in relapse after targeting through different modes of

immunotherapy (295).

Since recent research has highlighted the importance of the

TME in HL, it has become a target of CAR-T-cell therapy

approaches (296, 297). Studies have investigated CAR-T-cell-

mediated targeting of CD19 (298) and CD123 (299) to influence

the TME of HL cells and induce a long-lasting immune response to

lymphoma cells. These substances could potentially be combined

with anti-CD30 CAR-T cells to achieve synergistic effects (300).

Such an effect has been shown in vitro for the combined targeting of

CD30 and CCR4 (301). The varying persistence of CD30 expression

on malignant cells could mean that antigenic escape is unlikely to
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occur in CAR-T-cell therapy (302). Like CD30, the expression and

signaling of PD-1 and PD-L1 is highly characteristic for Hodgkin

Reed-Sternberg cells and could prove a valuable target in HL

patients (303).
6.3 Outlook

Since CD30 has already been shown to be a potentially

targetable structure, CAR-T-cell research for HL focuses on

optimization of lymphodepletion regimens (304), improvement

and high-precision engineering of CAR-T cells (305, 306), and

the development of combinatorial regimens (307) with agents like

PD-1 inhibitors (308) or allo-HSCT (309). Thereby, CAR-T-cell

therapy can provide a path for refractory patients after BV and

checkpoint-inhibitor therapy who lack clear and defined therapy

options in current guidelines (310). Recent results from the

CHARIOT trial have shown a generally safe side effect profile for

CAR-T-cell therapy in a cohort of heavily pretreated HL

patients (311).

More clinical trials are needed, but anti-CD30 CAR-T-cell

therapy could prove to be a new tool in the treatment arsenal in

HL. It can provide an option for patients insufficiently responding

to conventional therapy (312). Reduction of toxicities, optimization

of CAR-design and combination regimens with other therapeutic

agents are further areas of promising research (313). The

integration of technologies like mass cytometry, single-cell RNA

sequencing, and monitoring of circulating tumor DNA promise

more detailed insights into the pathophysiology of HL and potential

new molecular targets (314).
7 Burkitt-Lymphoma

7.1 Current state of treatment

Burkitt-Lymphoma (BL) is a highly aggressive NHL and

commonly found in children and adolescents. BL cases are

categorized accordingly to their etiology into endemic, sporadic,

and immunodeficiency-associated (315). Long-term remission

through high-intensity chemotherapy is achieved in over 90% of

pediatric but only 75-85% of adult patients (316).

The application of intense chemotherapy regimens in adult

patients is especially limited by the occurrence of toxic side-effects.

Treatment failure among adult patients is common and occurs in

up to 35% of patients (3-year PFS of 64%) (317). Thus, new and

comprehensive treatment options for refractory and relapsed

disease as well as for special patient cohorts are needed.
7.2 Current research

Case reports have shown considerable success in the treatment

of relapsed and refractory BL cases (318–327), mostly utilizing

CAR-T-cell therapies targeting CD19. These reports include both

adult and pediatric BL cases and show substantial therapeutic
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responses in both patient groups. Despite this success, a recent

case series by Geerts et al. has also shown a case of BL disease

progression and patient death despite objective CAR-T-cell

expansion in vivo and adequate management of side effects (CRS

grade 2) (328). A recent case report has highlighted the possibility of

using unedited HLA-matched allogeneic CAR-T-cells, in this case

directed against CD20 and CD22, for the treatment of BL. Due to

persistent pancytopenia, the patient also received an allo-HSCT

from the same donor 55 days after application of the CAR-T-cell

therapy (329).

Hsieh and Rouce have comprehensively compiled three major

targets of research to make CAR-T-cell therapy usable in Burkitt-

Lymphoma and other pediatric hematologic malignancies: Tackling

the immunosuppressive TME, antigen escape mechanisms, and

optimizing CAR-T-cell efficacy and functionality (330). This was

further refined by the ACCELERATE study group to resistance

mechanisms, best tumor targets, possibilities of double-/triple-

targeting, and the evaluation of CAR-T-cell therapy in the context

of T-cell engagers, ADCs, and autologous HSCT (Figure 4) (331).

To tackle these challenges, Laurent et al. have employed high-

resolution investigations into the phenotype of post-CAR-T-cell

therapy cancers and have shown a highly variable decrease of one or

more B-cell markers in relapsed patients (332). These findings

indicate extensive genetic changes, remodeling and acquired

mutations in PI3K- and KRAS-pathways, leading to an impaired

B-cell differentiation.
FIGURE 4

Research approaches for making CAR-T-cell therapy useable for
Burkitt lymphoma as defined by the ACCELERATE study group.
These are the identification of novel target antigens and the
repurposing of those already in use for other hematologic
malignancies, multi-targeting CAR therapy to prevent antigen
escape as currently employed with CD19, CD20, and CD22.
Furthermore, CAR-T-cell therapy needs to be evaluated in the
context of combinational therapies e.g. sequential autologous HSCT,
T-cell engagers (TCEs), and antibody-drug conjugates (ADCs).
Challenging resistance mechanisms that need to be overcome
include the downregulation of targeted antigens, structural changes
in these antigens or the switch of myeloid linages.
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7.3 Combinatorial regimens

In line with these laboratory findings, Du et al. reported

promising outcomes of a pediatric patient treated sequentially

with anti-CD19, -CD22 and -CD20 CAR-T cells (319). This was

expanded upon by Zhang et al. in a clinical trial with 5 pediatric

patients each achieving complete remission through the sequential

application of anti-CD19, anti-CD22 and anti-CD20 CAR-T cells,

depending on histological tumor staining analyses (333). In the

largest trial of its kind in 2022, Liu et al. treated 23 patients with up

to 4 cycles of CAR-T-cell-therapy: 23 with anti-CD19, 13 of those

with anti-CD22, 6 of those with anti-CD20, and 1 patient with a

second anti-CD19 CAR-T-cell therapy (334). Over the course of the

four therapy cycles, 18 of 23 patients achieved complete remission

and 4 patients died due to rapid disease progression or CNS

involvement with intracranial mass progression.

Further studies have investigated the combination of anti-

CD19/CD22 CAR-T-cell therapy with allo-HSCT (335) and

showed an overall survival rate of 55.6% in a cohort of heavily

pretreated r/r BL patients. The investigators highlighted the

beneficial effects of early initiation of CAR-T-cell therapy in

combination with allo-HSCT. There is evidence that CAR-T-cell

therapy could also play a valuable role in bridging BL patients

towards allo-HSCT (336). Conversely, established therapeutic

approaches like radiation therapy are also investigated as possible

bridges towards CAR-T-cell therapy with the goal of reducing

tumor load in high-risk patients (337).

Like in other hematological malignancies, the combination of

established therapeutic agents with CAR-T-cell therapies is being

investigated in BL patients. This includes the histone deacetylase

inhibitor romidepsin that induced BL cell death in vitro and in vivo

mouse models when combined with anti-CD20 CAR-T cells (338).
7.4 Outlook

Translational approaches in CAR-T-cell design also include

targeting of EBV-associated structures like the abundantly found

gp350, as EBV-infection is frequently associated with BL (339). In

vivo studies in mouse models have so far shown limited success in

reducing EBV DNA load, tumor development and growth, and

inflammation parameters (340, 341). Further CAR-T-cell targets to

combat EBV in lymphoma tissue include latent membrane proteins

LMP1 and LMP2 (340), and Gb3 (342).

In conclusion, Burkitt-Lymphoma appears to be a promising

target for CAR-T-cell therapy. Especially the availability of CD30 as

a potential target, the possibility of employing sequential regimens

of CAR-T cells targeting different B-cell markers and substantial

response rates in initial clinical trials may provide hope for the

successful treatment of patients with relapsed or refractory disease.

Future research could offer the possibility of establishing CAR-T-

cell therapy in the context of other established therapeutics, and

larger and more diverse patient cohorts.
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8 Hairy cell leukemia

8.1 Current state of treatment

Hairy cell leukemia (HCL) is an uncommon type of B-cell NHL.

It rarely presents in a prolymphocytic, more aggressive variant

known as HCL-v. Both diseases can be controlled through

established therapy regimens including cladribine and

pentostatine as first-line therapies. More than 95% of patients can

be treated adequately with these therapies (343).

However, nearly 50% of all patients encounter disease relapse

within 10 years, often being unable to undergo first-line treatment

again due to novel mutations that induce resistance and the need for

more intensive therapeutic approaches (344). Currently, proposed

therapeutic options for r/r HCL include BRAF-inhibitors, BTK-

inhibitors and immunotherapy targeting CD22 (345). Further,

HCL-v patients are faced with inferior outcomes after standard

therapy lines (346). HCL can also arise from Richter-

transformation of CLL, a rare occurrence without defined

therapeutic pathways (347). Therefore, these patient groups can

potentially benefit from CAR-T-cell therapy (348).
8.2 Potential targets

A challenging aspect of CAR-T-cell therapy targeting HCL/-v is

the diverse expression profile of surface antigens on malignant cells.

While HCL cells usually express CD103, CD123, CD25, and CD11c

abundantly, other markers that have been targeted in other CAR-T-

cell trials like CD5, CD26 or CD38 are expressed very

heterogeneously (349). This is an additional difficulty in

differentiating HCL from other hematological malignancies and

can be addressed by technologies like flow cytometry (CD5, CD200)

(350, 351). Bhatti et al. have reported on 10 HCL cases with all of

them expressing CD11c, CD19, CD20, CD22, and CD123 (352).

HCL-v is often characterized by lower expression of CD25 and

CD123 (353). Furthermore, there are reports of CD10+/- biclonality

(354), CD103- cells (355), variable expression of CD123 on HCL-v

cells (356), or cases with expression of both CD38 and CD10 (357).

Maitre et al. have recently approached this problem through a

comprehensive gene expression analysis that could provide the

basis for identification of novel therapeutic targets (358). Another

potential target is ROR1 (359), already investigated for therapeutic

use in patients with CLL, MCL, and ALL (360). Current research

has also shown success in utilizing anti-CD22 immunotoxins,

proving this could be another experimental target of HCL/HCL-v

CAR-T-cell therapy (361).
8.3 Outlook

Overall, CD123 and more established CAR-T-cell targets like

CD19/20/22 are the most promising targets for CAR-T-cell therapy
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in HCL (362, 363). The generally low and at best variable expression

on the cells of the aggressive HCL-v is an important problem

keeping CAR-T-cell therapy from being implemented for the most

pressing cases of HCL. This can be addressed through

comprehensive analysis of antigen expression and diagnostics,

establishment of sequential therapy regimens and further research

into novel HCL-specific target antigens. According to current

knowledge, a full flow cytometric HCL/-v panel could include

CD5, CD10, CD11c, CD19, CD20, CD22, CD25, CD26, CD38,

CD103, CD123, and CD200 to comprehensively assess marker

expression and individual therapy options.
9 Waldenström’s macroglobulinemia

9.1 Current state of treatment

Waldenström ’s macroglobulinemia (WM), also called

Lymphoplasmacyt ic Lymphoma, is an indolent NHL

characterized by infiltration of multiple malignant lymphocytic

cells (plasma cells, plasmacytoid lymphocytes, lymphocytes) into

the bone marrow (364). These cells secrete monoclonal IgM and

show constitutive B-cell activation signaling (365). WM is

commonly treated with immune-chemotherapy or BTK-

inhibitors. These therapy lines often lead to remission but either

induce significant side effects (ICT) or necessitate constant therapy

(BTK-inhibitors) (366).

Currently available therapies are not curative for WM and no

consensus on the adequate treatment of relapsed or refractory

disease exists. Main therapy regimens include toxicity- and

progression-free-oriented application of differential therapy lines

(367, 368). Ahmed et al. have shown how diverse factors like

complex karyotype and refractoriness to multiple lines of therapy

significantly impact prognosis after auto-HSCT. Patients receiving

auto-HSCT still experience disease relapse in 46% of cases (369).
9.2 Potential targets

Palomba et al. have reported the treatment of three patients

using anti-CD19 CAR-T-cell therapy and clinical remission in all

patients but also disease recurrence 3 – 26 months after infusion

(370). Another case report has shown more promising results in a

patient suffering from histologically transformed disease after

treatment with anti-CD19 CAR-T-cell therapy. The patient

reached complete remission and remained in this state for 12

months up to the publication of the case (371).

Other investigated targets include NF-kB and MALT1.

However, their usability for CAR-T-cell therapy has not yet been

explored (372). CD40 is another promising target since it plays a

central role in shaping the TME and has an impact on WM cell

growth (373). Qiu et al. have recently proposed several distinct cell

lines in WM patients with a rare entity of CD3+/CD19+ cells with

“stemness” features (374). This cellular distinct and potentially

crucial subgroup could be a central target to effectively combat
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WM since CD19 is an established target antigen of CAR-T-cell

therapy in other diseases.

BCMA, the target antigen of currently approved CAR-T-cell

therapies in Multiple Myeloma has also been shown to be elevated

in the blood of WM patients (375). CD5 is expressed in up to 50% of

WM cases and could be a CAR-T-cell target in these patients (376).

Kaiser et al. have recently highlighted the role of CXCR4 in WM

and its possible use as a therapeutic target (377). Additionally,

CD138 has recently emerged as a potentially identifying feature of

WM tumor cells, associated with IgM peaks and MYD88 mutations

(378). Recent research has shown the role of nanoscale organization

of CARs and TCRs for CAR-T cells targeting CD138 with yet

unknown consequences (379). Future investigations can determine

whether these structures are suitable targets for CAR-T-cell therapy

in WM.
9.3 Outlook

Despite the limited research conducted so far in the field of

CAR-T-cell therapy in WM, the success of treating CLL with anti-

CD19 CAR-T cells sparked hope to translate these findings (380).

This hope is supported by recent investigations, indicating that T-

cell number, distribution, and functionality in WM patients are

conserved, in contrast to CLL patients (381).

Still, other potentially WM-specific targets could prove to be

even more suitable. Intra-tumor heterogeneity is of particular

interest in WM as it increases the difficulty of defining targets

sufficiently broadly expressed on tumor cells (364). Especially young

patients, who might tolerate the potential side effects of a CAR-T-

cell therapy better, could profit from the curative therapeutic

approach (382).
10 Discussion

10.1 Common challenges and approaches

In this review, our objective was to outline the potential uses of

CAR-T-cell therapy in emerging indications that extend far beyond

the hematologic diseases currently approved for treatment. We have

discussed the use of targets already established in different

malignancies, the identification of novel targets, and innovative

approaches of defining these.

In a recent review, Mishra et al. have highlighted antigen loss

after CAR-T-cell therapy as a major driver of treatment failure and

compiled several main reasons: Genetic alterations of antigens,

epigenetic modifications (methylation), development of

immunosuppressive escape mechanisms, clonal selection of

antigen-negative subclones, and antigen shedding into the TME

(383). Current research focuses on many of these mechanisms to

enhance and sustain CAR-T-cell functionality in vivo (384).

While many of the diseases we have addressed are already

approachable with currently available therapies, none of them

provide comprehensive treatment options to refractory or
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relapsed disease status. CAR-T cells have the potential to fill this gap

and provide a potential curative treatment option in many currently

incurable hematologic malignancies (385).
10.2 Integration of CAR-T-cell therapy into
clinical practice

While the potential side effects and costs of the technology still

hinder its extensive implementation into clinical practice, these

problems are being tackled and are expected to be resolved or at

least substantially improved in the near future (386, 387). To make

these advances available to patients and employ them for

improvement of care, CAR-T-cell therapy needs to be

economically feasible, inclusive, and access for all patient groups

must be ensured (388–390). A recently proposed approach to these

requirements is the “Cocoon Platform” by Lonza (Basel,

Switzerland) (391). A distinct advantage of CAR-T-cell therapy

over currently available treatment options such as tyrosine-kinase

inhibitors is that patients may experience sustained long-term

remissions after one single CAR-T-cell therapy and therefore are

spared the burden of continuous treatment regimens (255).

Further research highlights the potential application of CAR-T-

cell therapy in the context of combinatorial, bridging or sequential

treatment modalities. These types of regimens have been

implemented into clinical practice for a long time and promise a

personalized and highly refined therapeutic approach for each

individual patient. In comparison to this, several research

approaches highlight the possibility of establishing multi- or

“pan-leukemic” targets (392, 393). A promising candidate is

CD45, which has recently been investigated in an epitope base

editing approach. Through this modification, Wellhausen et al.

were able to design cells with the ability to engraft, persist and

differentiate in an in vivo model and were not attacked by anti-

CD45 CAR-T cells. This effect could be shown for models of AML,

B-cell lymphoma and T-ALL (394).

The recently developed YTB323 CAR-T-cell therapy, based on

the anti-CD19 tisagenleucel, is another particularly promising

approach. Through the novel T-Charge manufacturing platform,

this therapy can be provided to patients within less than 10 days

after leukapheresis (395). Potential benefits include an enhanced

clinical safety profile, high response rates and preservation of a

higher T-cell stemness. This final aspect is assumed to play a major

role in CAR-T-cell functionality and survival (396).

Future research is urgently needed to expand upon our current

knowledge of the applicability of CAR-T-cell therapy in other

diseases and particular clinical courses. Clinical research needs to

include currently underrepresented disease groups into CAR-T-cell

trials to broadly establish them in the clinical practice (397).
10.3 The role of AI in CAR-T-cell research

Artificial intelligence (AI) and machine learning (ML) are two

of the most fascinating topics in the currently evolving medical
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research landscape (398). Their effect on multiple disciplines cannot

yet be reliably estimated but early reports hint towards their

relevance in tackling biological and structural challenges (399).

Because of an intense attention to the topic, hematologic research

is also investigating potential uses of the technologies in the

diagnosis and treatment of hematologic malignancies.

In fact, there are several areas of CAR-T-cell therapy in which AI

and ML can benefit patients and clinicians. One key example might

be the prediction and assessment of adverse events like CRS (400–

402). Since early detection of an overbearing immune response is of

critical importance to adequately support patients, this could prove

beneficial to improve clinical outcome and therapy management.

Similarly, AI models can assess clinical parameters for their

prognostic value and predict long-term outcome (403). This

includes the close investigation of the crosstalk between CAR-T

cells and the human gut microbiome, a challenging task that

requires the collection, curation and handling of large datasets (404).

Identification of possible targets for CAR-T-cell therapy

represents another excellent challenge to be solved by AI.

Through multi-OMIC approaches, researchers have a previously

unknown amount of data at their disposal to investigate potential

targets for CAR-T-cell therapy (405). ML algorithms can aid in

filtering, clustering, and interpreting these data to assess

neoantigens or design TCRs (406, 407). Through the

implementation of multi-dimensional ML algorithms it is possible

to investigate large datasets on CAR-T-cell phenotype (408) as well

as correlations between cellular and clinical data (409).

As the production of CAR-T cells is highly elaborate and

requires multiple complex steps as well as close monitoring and

data collection for quality and process control, researchers are

employing AI to determine optimal production conditions and

workflows (410–412). Similar approaches have shown success in

other biological production systems. Since the clinical performance

of CAR-T-cell therapy is highly dependent on the quality of its

production, previous promising results in improving cell culture

and expansion can hopefully be translated to similar processes in

CAR-T-cell technology (413).

Gil and Grajek have recently outlined potential applications of

AI in CAR-T-cell therapy. These include: Improvement of

lymphodepletion regimens, identification of novel target antigens,

designing of new therapeutic molecules, and the construction of

predictive clinical models based on biomarkers, antigen loss, TME

and T-cell phenotype (414). Furthermore, AI can aid in the

improvement of gene editing technologies employed for CAR-T-

cell design, the combination of currently separately tested

approaches (expression of cytokines or transcription factors), and

the screening of large CAR-T-cell libraries (415).

In conclusion, AI can potentially address a number of the most

pressing issues in the application of CAR-T-cell therapy for

hematologic malignancies. Both clinical as well as experimental

problems can potentially be approached through AI and ML,

especially to harness large datasets, predict novel designs, and

improve high-precision workflows. This decade of CAR-T-cell

and AI research will show if the technology can live up to

these expectations.
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