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The role of midkine in
health and disease

Emely Elisa Neumaier, Veit Rothhammer*

and Mathias Linnerbauer

Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-
Nürnberg, Erlangen, Germany
Midkine (MDK) is a neurotrophic growth factor highly expressed during

embryogenesis with important functions related to growth, proliferation, survival,

migration, angiogenesis, reproduction, and repair. Recent research has indicated

that MDK functions as a key player in autoimmune disorders of the central nervous

system (CNS), such as Multiple Sclerosis (MS) and is a promising therapeutic target

for the treatment of brain tumors, acute injuries, and other CNS disorders. This

review summarizes themodes of action and immunological functions of MDK both

in the peripheral immune compartment and in the CNS, particularly in the context

of traumatic brain injury, brain tumors, neuroinflammation, and neurodegeneration.

Moreover, we discuss the role of MDK as a central mediator of neuro-immune

crosstalk, focusing on the interactions between CNS-infiltrating and -resident cells

such as astrocytes, microglia, and oligodendrocytes. Finally, we highlight the

therapeutic potential of MDK and discuss potential therapeutic approaches for

the treatment of neurological disorders.
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Introduction

Growth factors are essential for the development and functioning of the central nervous

system (CNS). As soluble molecules, they play vital roles in cell-to-cell communication and

regulate a multitude of functions, including cell proliferation and differentiation. One of

these growth factors is the heparin-binding growth factor midkine (MDK). MDK, together

with the structurally related growth factor pleiotrophin (PTN), belongs to the family of

neurite promoting growth factors and has originally been identified in embryonal

carcinoma (EC) cells in 1988 (1).

MDK is expressed in a small number of embryonic tissues, including the CNS. The

expression pattern of MDK during mouse gestation indicates that the growth factor is

required for the generation of epithelial tissue, remodeling of the mesoderm (2), and

neurogenesis (3). Early studies by Kadomatsu et al. (2) describe an upregulation of MDK

during midgestation in mouse embryos, while its expression in adult mice has initially only

been described in the kidney. The polypeptide MDK with a molecular weight of about 13

kDa (4) consists of a N-terminal domain, held together by three disulfide bridges and a

C-terminal domain, stabilized by two disulfide bridges (5). Notably, early studies have
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suggested that the neurite outgrowth promoting functions of MDK

are highly dependent on both the C-terminally located heparin-

binding domain and the sulfide bonds (6–8).

Recent research has indicated that MDK is highly upregulated in

response to various pathological conditions, both in the CNS and the

periphery (9, 10) (Figure 1, Table 1), and can be exploited as a

biomarker and therapeutic target (35, 36), highlighting the pivotal

role of the growth factor in the context of disease. In this review, we

will summarize the involvement and function of MDK in the context

of peripheral disorders and CNS pathologies, including brain injuries,

brain tumors, as well as neuroinflammatory and neurodegenerative

diseases. Furthermore, we will review existing therapeutic strategies

targeting MDK in neoplastic diseases and discuss the therapeutic

value of MDK for the treatment of CNS disorders.
Cellular sources of MDK

In the periphery, numerous cell types have been identified to

produce MDK under basal and pathological conditions (9). In

addition to monocytes, macrophages, and monocyte-derived

dendritic cells (mDCs), also non-hematopoietic cell types such as

endothelial cells are capable of producing MDK (4).
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Within the CNS MDK is mainly expressed during development

until midgestation, while its mRNA levels decrease in postnatal life

(4, 9). In mice MDK is mainly expressed by oligodendrocyte

precursor cells (OPCs), followed by fetal astrocytes, neurons, and

newly formed oligodendrocytes, while in humans fetal astrocytes

represent the major source of MDK in the CNS (9). Moreover, in

vitro studies show MDK expression by cultured neurons and

activated astrocytes, but not microglia (37).
Inducers of MDK expression

In monocytes, polymorphonuclear neutrophils (PMNs), and

endothelial cells, MDK expression is induced during hypoxia (38).

Binding of hypoxia-inducible factor-1a (HIF-1a) to hypoxia

response elements (HREs) in the MDK promotor activates

expression of the gene (Figure 1), while MDK in turn increases

HIF-1a expression in a positive feedback loop (39). In addition to

hypoxia, MDK expression is driven by the master regulator of pro-

inflammatory pathways, nuclear factor kappa light-chain enhancer

of activated B cells (NF-kB) (Figure 1), which can be activated by

reactive oxygen species (ROS), pro-inflammatory cytokines such as

tumor necrosis factor a (TNFa), interleukin (IL)-1b, as well as
FIGURE 1

MDK receptor candidates and signaling pathways. Midkine (MDK) is a multifunctional molecule, whose effects are probably regulated via different
receptor-ligand interactions, as well as complex formation of receptor candidates, and cross-talk between the receptors. Low density lipoprotein
receptor-related proteins (LRPs) and integrins are thought to build the core of the MDK receptor complex, while other candidates such as the
anaplastic lymphoma kinase (ALK) or the protein tyrosine phosphatase z (PTPz) might be recruited. This figure combines signaling pathways
discovered in different cell types under several pathological conditions and does not show the determined signaling of MDK in a specific cell type.
Binding of MDK to the ALK receptor induces the phosphorylation of the insulin receptor substrate-1 (IRS-1) and its interaction with the ALK receptor,
followed by the activation of several signaling pathways. Src kinase phosphorylation results in mitogen-activated protein (MAP)-kinase signaling,
which includes a phosphorylation cascade of the proteins Ras, Raf, Mek, and Erk, supporting cell proliferation. Another downstream effect of Src is
the phosphoinositide (PI)-3-kinase signaling, including Akt and mTOR activation, promoting survival and protein synthesis. MDK/ALK signaling also
induces the expression of nuclear factor kappa light-chain enhancer of activated B cells (NF-kB), a growth factor inhibited by IkB proteins until it
reaches the nucleus, where it stimulates cell survival. The core complex of LRP and integrins contributes to cellular survival and the recruitment of
neutrophils, while MDK binding to PTPz additionally promotes survival, as well as cell migration and negatively regulates Wnt signaling. Neurogenic
locus notch homolog protein 2 (Notch2) activation mediates the interaction between Hes1 and the Janus kinase 2 (Jak2)/STAT3 complex, inducing
tumorigenesis. The promotor of the MDK gene entails binding sites for NF-kB and hypoxia-inducible factor-1a (HIF-1a).
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bacterial components, such as lipopolysaccharide (LPS) (9), among

others. Together, both its regulation by hypoxia and pro-

inflammatory NF-kB signaling indicate the relevance of MDK

signaling in response to inflammatory stimuli.

While numerous studies have shed light on the role of MDK in

non-CNS diseases, the regulation of MDK in CNS pathologies is less

defined (Table 1). During development of experimental autoimmune

encephalomyelitis (EAE), a preclinical animal model of Multiple

Sclerosis (MS), T helper (TH) cells have been identified as MDK

producer cells (24). However, in glial cells it can be speculated that

similar processes drive the expression ofMDK. In these lines, hypoxic

conditions following ischemia, or the presence of pro-inflammatory

cytokines such as TNFa and IL-1b under neuroinflammatory

conditions (40, 41) may induce NF-kB-dependent upregulation of

MDK by astrocytes, microglia, or oligodendrocytes. Whether this

upregulation in fact occurs and whether it is part of a protective or

inflammatory activation state must be addressed by future studies.
MDK receptors and signaling

So far, several plasma membrane molecules have been identified

as MDK receptors, including integrins, proteoglycans, neurogenic

locus notch homolog protein 2 (Notch2) (42), ALK (43), low-

density lipoprotein receptor-related protein (LRP) (44), and protein

tyrosine phosphatase z (PTPz) (45) (Figure 1). Integrins with

MDK-binding properties include the heterodimers a6b1 and

a4b1, while the family of MDK-binding proteoglycans can be

subdivided into syndecans (46), glypican-2 (47), PG-M/versican

(48), and neuroglycan C (49).

Instead of binding to a single one of these receptors, MDK

exerts its multifaceted functions through binding to a

multimolecular receptor complex (Figure 1), with PTPz as the

most established component (4, 50). The formation of the

receptor complex, the arrangement of MDK-binding molecules,

and the crosstalk between receptor subunits coordinate the signal

transduction in response to MDK binding via several signaling

pathways, depending on the cellular context, thereby facilitating the

diverse functions of the growth factor (51) (Figure 1).
Protein tyrosine phosphatase z

The signaling cascade elicited through binding of MDK to the

receptor component PTPz has been associated to various functions

and cell types. Binding of macrophage migration inhibitory factor

(MIF) to its receptor CD74 on mature and malignant B cells leads to

an increased expression of MDK, which in turn increases B cell
TABLE 1 The major roles of MDK in pathological conditions.

Disease Effects Models References

Alzheimer’s
disease

Inhibits Ab fibril formation
and Ab-induced cytotoxicity

in vitro (11, 12)

Cardiac
ischemia-
reperfusion
injury

Prevents
myocardial apoptosis

in vivo (13)

Cerebral
infarct

Reparative neurotrophic
functions during
early phase

in vivo (14)

Gastric cancer Confers chemoresistance in vitro (15–17)

Glioblastoma Induces stem-like
properties of glioma
initiating cells; induces
cannabinoid resistance;
modulates
immunosuppressive
tumor microenvironment

in vitro
in vivo

(17–20)

Inflammatory
breast cancer

Recruits monocytes in vitro (21)

Leukemia Promotes B cell survival in vivo (22)

Melanoma Modulates tumor
microenvironment towards
tolerogenic and immune-
resistant states

in vitro
in vivo

(23)

Multiple
Sclerosis

Suppresses expansion of
Treg cells, deteriorating
disease course

in vivo (24, 25)

Neuroblastoma Promotes tumorigenesis in vitro
in vivo

(26, 27)

Neuromyelitis
optica

Correlates with IL-23 levels in vivo (28)

Pancreatic
cancer

Contributes to
chemoresistance,
proliferation and migration
of cancer cells

in vitro (15, 16, 26, 27)

Renal
ischemia-
reperfusion
injury

Promotes migration of
neutrophils
and macrophages

in vivo (29)

Rheumatoid
arthritis

Leads to activation and
migration of neutrophils
and inflammatory
leukocytes; induces release
of pro-
inflammatory cytokines

in vivo (18–20, 30, 31)

Systemic
lupus
erythematosus

Correlates with increased
IL-17 levels

in vivo (32)

Transient
forebrain
injury

Promotes tissue repair in vivo (33)

Traumatic
brain injury

Polarizes microglia towards
an anti-inflammatory state;
recruits neutrophils and
macrophages; increases

in vivo (34)

(Continued)
TABLE 1 Continued

Disease Effects Models References

apoptotic neurons around
lesions; potentiates
secondary injury
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survival by autocrine MDK-signaling through PTPz (22).

Furthermore, the receptor PTPz mediates MDK signals that

suppress osteoblast proliferation via negative regulation of Wnt

signaling (Figure 1) by dephosphorylation of b-catenin (52).

However, it is not known whether MDK itself is able to induce the

phosphatase activity of the receptor, or if further components of the

PTPz complex are needed to initiate dephosphorylation (51). Not only

in the periphery, but also within the CNS, PTPz has been shown to be

involved in several MDK-dependent signaling pathways, including the

promotion of neuronal survival (53) and the migration of neurons (45)

(Figure 1), which is especially important during neurogenesis (54, 55).
Anaplastic lymphoma kinase

The MDK/ALK signaling pathway is well established in diverse

tissues and has been elucidated in numerous studies (43, 56–59).

MDK binding to ALK results in phosphorylation of the insulin

receptor substrate-1 (IRS-1), leading to enhanced activation of Src

kinases (43), mitogen-activated protein (MAP)-kinase and

phosphoinositide (PI)-3-kinase signaling (60), as well as the

induction of the transcriptional activation of NF-kB (56)

(Figure 1). As mentioned above, NF-kB acts as central mediator

of inflammatory responses (61) and regulates fundamental cellular

processes including differentiation, proliferation, and survival (57).

In these lines, MDK/ALK signaling is especially involved in

neoplastic diseases (18, 58, 62, 63), as it initiates, for example, an

autocrine growth and survival signal via the suppression of caspases

(58), as well as the enhancement of B-cell lymphoma-2 (Bcl-2) (62),

an anti-apoptotic protein and oncogene. Both pathways counteract

anti-tumor immunity (64, 65), thereby implicating MDK signaling

in tumor resistance. In melanoma, MDK activates mTOR via a

similar signaling pathway (Figure 1), leading to an increased

expression of vascular endothelial growth factor receptor 3

(VEGFR3) and the stimulation of lymphangiogenic signals,

resulting in metastatic growth in lymph nodes and the lungs (63).

In the CNS, MDK-dependent ALK signal transmission in glioma

cells results in the activation of the Akt/mTOR1 axis (Figure 1),

preventing autophagy-mediated cell death by tetrahydrocannabinol

(THC), thereby contributing to the cannabinoid-resistance of

gliomas (18). While MDK negatively contributes to cancer

progression and metastasis formation via its anti-apoptotic and

growth-promoting effects in the peripheral compartment as well as

in the CNS, these functions may also have beneficial roles in the

context of injuries and tissue regeneration. It is conceivable that the

anti-apoptotic and proliferative effects of MDK possess the capacity

to mediate tissue-protection and ameliorate inflammatory and

demyelinating processes in the CNS (9, 66).
Low-density lipoprotein receptor-
related protein

In inflammatory diseases such as myocarditis, the interaction of

MDKwith the receptor LRP1 and members of the b2 integrin family

is critical for MDK-induced PMN recruitment (Figure 1) and
Frontiers in Immunology 04
neutrophil extracellular trap (NET) formation (67). Here, MDK

contributes to a process called NETosis (68), which results in

inflammation and tissue injury through direct damage (67). In

squamous cell carcinoma, MDK triggers phosphorylation and

thereby activation of paxillin and signal transducer and activator

of transcription (STAT) 1a pathways in an integrin-dependent

manner, resulting in the overexpression of genes implicated in cell

migration and tissue invasion (59).

In the CNS, binding of MDK to LRP1 has been shown to induce

cell survival in embryonic neurons (44) (Figure 1), while MDK-

signaling through the integrins a4 and a6 promotes neurite

outgrowth (69). Upon binding of MDK to the receptor

component LRP, MDK is internalized and transported to the

nucleus (70). The nuclear translocation of the growth factor is

enabled by the shuttle proteins nucleolin (71) and laminin binding

protein precursor (LBP) (72), and necessary for the promotion of

cell survival via the MDK/LRP signaling pathway (70) (Figure 1).

Similar to the anti-apoptotic effects of MDK/ALK signaling in the

CNS, MDK binding to LRP1 may thereby support regeneration and

re-myelination in response to CNS insult.
Neuroglycan C

In the CNS, the receptor neuroglycan C has been identified as

important MDK signal transducer involved in process elongation of

OPCs (49). These cells are not only important during synapse

formation, but also for the re-myelination of axons in

demyelinating diseases such as MS (73). Emerging literature on

OPCs furthermore describes their potential for the establishment

and remodeling of neural circuits (74), which supports the function

of MDK in the developing brain. The receptor neuroglycan C might

function in complex with LRP1 and integrins, which strongly bind

to one another and may form the core of the MDK receptor

complex in the CNS (69) (Figure 1).

In summary, the complex interplay of MDK receptor signaling

facilitates the intricate and context-dependent functions of the

growth factor in a broad variety of cell types, which regulate

numerous inflammatory and non-inflammatory functions

(Figure 1). Both, in the periphery and the CNS, MDK elicits pro-

inflammatory and anti-apoptotic effects, driving inflammation,

tumor progression, and metastasis. Nevertheless, upon injury or

trauma, increased MDK expression has the potential to positively

influence disease outcomes by promoting differentiation, reducing

cell death, and increasing regeneration.
MDK and its roles in injury, cancer,
inflammation, and autoimmunity

Besides its important role during development and

differentiation of various cell types (2), MDK has been shown to

be upregulated in various pathological conditions in the periphery

and the CNS, reaching from neoplastic diseases to inflammatory

diseases and injuries (Figure 2, Table 1).
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MDK in the context of neoplastic diseases

In the context of neoplastic diseases, increased MDK levels have

been demonstrated more than 20 years ago by several studies

covering various types of cancer (Figure 2). In human tissue

samples of prostatic (75) and hepatocellular (76) carcinomas,

increased protein levels of MDK have been detected via

immunohistochemical staining, while mRNA levels of MDK were

increased in human gastric carcinoma specimens (77). In vitro

studies suggest that MDK promotes proliferation and migration of

pancreatic cancer cells (15) and is furthermore contributing to

chemoresistance in ductal adenocarcinomas (16). These

observations are supported by more recent studies in the context

of breast cancer and melanoma, where MDK shapes the tumor

microenvironment and promotes tumor-resistance (21, 23).

Aside from its numerous roles in tumor-formation and

-resistance in peripheral tissues, MDK has also been implicated to

play a role in the development and tumorigenicity of brain tumors

(Figure 2). Among these, neuroblastomas belong to the most

prevalent malignant pediatric solid tumors (78), while gliomas are

the most frequent primary tumors of the CNS in adults (79).

In vitro studies using primary neuroblastomas and

neuroblastoma cell lines suggest that MDK not only promotes

peripheral neoplasms but is also involved in tumor growth and

differentiation in the CNS (80). This hypothesis has been supported

by reduced tumor growth in several MDK-depleted neuroblastoma

cell lines (26). Moreover, elevated MDK blood levels can be linked

to poor prognostic factors in neuroblastoma patients (81, 82),
Frontiers in Immunology 05
support ing the relevance of MDK in neuroblastoma

tumorigenesis. Similarly, increased MDK levels in the CNS

correlate with a poor prognosis and lower survival of

glioblastoma patients (83), indicating an involvement of the

growth factor in disease progression. A hallmark of glioblastomas

is their ability to relapse in patients within a certain cell population,

called glioma initiating cells (GICs), which exhibit stem-like

characteristics (19). Because MDK has been implicated to

promote the growth of neural stem cells and progenitor cells in

vitro (84), it is likely that MDK is also involved in glioblastoma

initiation. Studies with GIC cultures show increased MDK mRNA

and protein levels, while inhibition of MDK reduces the ability of

neurosphere generation by GICs, as well as the number of stemness

biomarkers in culture (19).

Overall, these and other observations (16, 17) underscore the

role of MDK signaling for chemoresistance and tumorigenesis in

the context of solid brain tumors. These findings not only

emphasize the relevance of MDK as a therapeutic target, but also

illustrate its potential as early diagnostic and independent

prognostic marker.

Although the functions of MDK in the context of solid tumors

inside and outside the CNS exhibit remarkable similarities, it still

remains unclear if the tumor promoting effects of MDK on

peripheral and central neoplasms underlie a common mechanism.

One conceivable common mechanism is mediated through the

proto-oncogene p53. MDK is known to harbor p53 binding sites,

where binding of the appropriate protein activates the transcription

of MDK in gliomas, while knockdown of p53 downregulates the
FIGURE 2

Involvement of MDK in various pathological conditions. The expression of Midkine (MDK) is increased in all shown conditions, while it has opposing
functions within injury, inflammation, and cancer. MDK influences the outcome by either promoting recovery or deteriorating the course of disease
and/or pathogenesis. Conditions written in red are central nervous system (CNS)-related injuries, brain tumors, or neuroinflammatory diseases.
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expression of mRNA and protein levels of MDK (20). In these lines,

it has been suggested that the p53-induced overexpression of

MDK in gliomas drives the anti-inflammatory polarization of

microglia, thereby remodeling the tumor immunosuppressive

microenvironment (20). Studies of low-grade gliomas (LGGs)

using neurofibromatosis type 1 (NF1) as a genetic model system

describe MDK as an upstream mediator regulating the activation of

T cells, the release of cytokines, and thereby tumor growth in NF1-

mutant murine and human neurons (85). Further reports describe

the tumorigenic role of MDK in the context of NF1 (86, 87),

indicating that MDK activation of T cells is a crucial mechanism

in NF1-LGG pathogenesis. Additional commonalities include the

control of MDK expression by NF-kB signaling and hypoxia.

Activation of both pathways is a defining feature of the tumor

microenvironment, irrespective of the tissue and cancer type (88). It

is therefore conceivable that MDK is part of a common response

mechanism to malignant tumors, and therefore potentially

represents a central target for therapeutic intervention.

Overall, these findings demonstrate the importance of MDK as

a central mediator of tumorigenesis, irrespective of tissue and cell

type. Uncovering the exact signals that drive MDK expression and

its transduction through its various binding partners in the tumor

microenvironment is therefore of highest interest to identify novel

therapeutic strategies that overcome tumor resistance.
MDK in the context of autoimmune and
inflammatory diseases

Besides its various functions in cancer, MDK has been described

as an important regulator of autoimmune and inflammatory diseases

(Figure 2). One of them is rheumatoid arthritis (RA), the most

common inflammatory arthritis affecting joints as well as potentially

other organs. The disease is characterized by synovial inflammation,

hyperplasia, and the production of autoantibodies followed by

cartilage and bone destruction (89). Main drivers of synovitis are

leukocyte accumulation and the production of pro-inflammatory

cytokines such as TNFa and IL-6 (89). MDK has been detected in

inflamed synovial tissue of RA patients but not in healthy controls

(90). Here, MDK leads to the activation and migration of neutrophils

into inflamed tissue by either acting as chemoattractant or by

inducing the release of pro-inflammatory cytokines including IL-8,

IL-6, and CCL2 (30). Notably, the migration of inflammatory

leukocytes into RA synovial tissue is suppressed in MDK knock-

out mice (31), where disease activity is diminished. Similar

observations have been made in the context of the autoimmune

disease systemic lupus erythematosus (SLE). Its pathogenesis is

characterized by the production of autoantibodies against nuclear

and cytoplasmic antigens affecting several organs. Patients undergo

periods of remission and relapse showing organ-specific symptoms

(91). In SLE patients, elevatedMDK plasma levels correlate with rash

and increased levels of IL-17, a pro-inflammatory cytokine produced

by TH17 cells (32). Increased levels of circulatingMDK have not only

been described in peripheral autoimmune diseases but also in other

inflammatory conditions like ulcerative colitis (UC) (92) and
Frontiers in Immunology 06
Crohn’s disease (CD) (93), two main forms of inflammatory bowel

diseases (IBDs) (Figure 2).

Additionally, MDK has been implicated in the regulation of

primary degenerative and inflammatory diseases of the CNS (28,

94) (Figure 2). Alzheimer’s disease (AD), for instance, is a complex

neurodegenerative disorder and one of the major causative factors for

cognitive impairment. Molecular hallmarks of its pathogenesis include

plaque formation by extracellular aggregates of b-amyloid (Ab)
peptides and intracellular neurofibrillary tangles made of

hyperphosphorylated tau (t) protein (95). While AD is not

considered a primary inflammatory disorder, it has become

increasingly clear that secondary inflammation is a key driver of

disease progression (96, 97). In these lines, increased MDK levels have

been found in serum and plaques of AD patients (94). These

observations match the increase in inflammatory markers in AD

patients and support the idea of a close interaction between amyloid

pathology and inflammation. In this context, MDK has been shown to

inhibit Ab fibril formation and Ab-induced cytotoxicity (11, 12),

highlighting the tissue-protective potential of the growth factor in AD.

In autoimmune CNS disorders like neuromyelitis optica

(NMO) and MS, increased levels of MDK have been associated to

a poor prognosis (28). This is in line with reports of a direct

correlation between MDK serum levels and IL-23 levels (98), a pro-

inflammatory cytokine that drives pathological functions of TH17

cells (99). Moreover, MDK mRNA expression in mice is highly

upregulated upon EAE induction and correlates with disease

progression and clinical symptoms (100). In vivo studies using

MDK-deficient mice describe an expansion of regulatory T (Treg)

cell populations upon EAE induction, which in turn reduces the

numbers of autoreactive TH1 and TH17 cells (Figure 3), resulting in

disease amelioration compared to control mice (25). Treg cell

development is regulated through the transcription factors STAT3

(24) and STAT5 (25) and based on a MDK-dependent suppression

of tolerogenic dendritic (DCreg) cells, which usually promote Treg

cell differentiation (24) (Figure 3). The functional relevance of MDK

in the context of EAE is further supported by observations of

decreased inflammatory infiltration in spinal cords of MDK-

deficient mice, concomitant with reduced disease severity

compared to controls (25). The beneficial outcomes of MDK

deficiency in EAE can be reversed by exogenous application of

recombinant MDK, which exacerbates disease severity and

indicates an overall detrimental function of the growth factor in

autoimmune neuroinflammation (25).

In conclusion, MDK plays important roles in the onset and

progression of autoimmune and inflammatory diseases in the

periphery and the CNS. MDK serum levels are elevated in

patients with inflammatory, autoimmune, and neurodegenerative

diseases, while in vivo studies reveal that MDK contributes to

inflammation via the induction of pro-inflammatory cytokines,

the recruitment and activation of inflammatory immune cells, as

well as the suppression of regulatory mechanisms (Figure 3). While

these data support the notion that MDK is an important mediator

of inflammation not only in peripheral pathologies but also

following CNS insult, future studies are needed to delineate

mechanisms and target cells in the CNS (Figure 3).
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MDK in the context of acute injury

Aside from neoplastic diseases and primary inflammatory

disorders, upregulation of MDK can also be observed in injuries

of peripheral organs such as the heart or the kidney (66, 101)

(Figure 2). Upon renal ischemia-reperfusion, a process frequently

leading to excessive tissue injury and destructive inflammatory

responses (102), MDK promotes the migration of neutrophils and

macrophages to the site of injury (29) while in cardiac ischemia-

reperfusion injury MDK prevents myocardial apoptosis (13).

Similarly, in the injured CNS, numerous functions of MDK have

been proposed. Traumatic brain injury (TBI) starts with primary

tissue damage directly caused by the insult, followed by secondary

tissue damage, which is induced by pathological processes after the

primary insult and leads to necrosis and apoptosis of cells in the CNS

(103). Major consequences of traumatic insults are blood brain

barrier (BBB) breakdown, subsequent infiltration of immune cells

into the brain (104), and neuroinflammation. In vivo studies with

wild type and MDK-deficient mice demonstrated that MDK-

deficiency does not affect astrogliosis following TBI (34),

confirming earlier results of in vitro experiments, where MDK

treatment of purified astrocyte and microglia cell cultures did

neither induce astrogliosis nor microgliosis (37). Astrogliosis is a

process in which astrocytes respond to CNS damage or disease by
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transcriptional remodeling and an altered activation state (105).

Depending on the severity and permanence of this state,

astrogliosis is associated to beneficial and necessary functions, but

can also lead to harmful effects by cellular hypertrophy, proliferation,

and the secretion of pro-inflammatory cytokines (106, 107). The

same is true for microglia, the tissue-specific macrophages of the CNS

(108). Following their activation, microglia can exert neurotrophic as

well as neurotoxic functions (108). However, while treatment of

microglia with MDK in vitro resulted in no major alterations, Takada

et al. (34) observed a shift to an anti-inflammatory microglia

polarization state during the acute phase of TBI in MDK-deficient

mice. In addition, the authors observed that MDK-deficiency leads to

a decrease in apoptotic neurons around lesions, thereby reducing

cerebral atrophy and neurological deficits after TBI (34). As the

growth factor also features chemoattractant properties, especially the

recruitment of neutrophils and macrophages (34, 109) (Figure 3), it is

conceivable that increased BBB permeability upon primary traumatic

insult allows MDK to amplify the recruitment of peripheral immune

cells and thereby potentiates secondary injury (34). Indeed, a

reduction in the transgression of immune cells into the CNS was

observed in MDK-deficient mice, supporting the notion that MDK

regulates immune cell infiltration in the context of TBI.

Aside from TBI, MDK is expressed in early stages of cerebral

infarct, a condition where the blood supply to the brain is disrupted,
FIGURE 3

Major functions of MDK in the context neuroinflammation. Within the brain, Midkine (MDK) is expressed by activated astrocytes or neurons and acts
as a chemoattractant for peripheral immune cells, such as neutrophils, macrophages, and lymphocytes. MDK promotes the expression of the
tyrosine phosphatase SHP2, which dephosphorylates signal transducer and activator of transcription (STAT) 3 and 5. STAT5 usually induces the
expression of the transcription factor forkhead-box-protein p3 (FOXP3) in an interleukin (IL)-2-dependent way, promoting the expansion of
regulatory T (Treg) cells. STAT3 is required for the IL-6-dependend inhibition of Foxp3 expression and might be involved in the induction of
tolerogenic dendritic cells (DCreg), which additionally promote a Treg cell expansion. Treg cells downregulate the interferon g (IFNg) expressing T
helper (TH) 1 and the IL-17 expressing TH17 cells. The pro-inflammatory cytokine IL-23 triggers pathological features in IL-17 producing T cells and
might be in correlation with MDK expression. All MDK-induced events lead to continuous neuroinflammation, while effects of MDK on central
nervous system (CNS) resident cells such as astrocytes, microglia, and oligodendrocytes is still unknown.
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leading to ischemia and hypoxia, and finally to necrotic tissue in the

brain. MDK has been detected at the sites of nerve damage, where it

seems to act as a reparative neurotrophic factor (14). These findings

align with the transcriptional regulation of MDK by HIF-1a
(Figure 1) and highlight the reparative potential of MDK in

hypoxia-driven disorders. In vivo studies in rat showed an

upregulation of MDK mRNA, as well as protein levels following

transient forebrain injury (33) and increased expression of MDK in

damaged areas of traumatic spinal cord injury in regards to tissue

repair (110).

These data collectively suggest that MDK is part of a central

inflammatory response mechanism that governs injury responses,

as well as numerous autoimmune-, inflammatory-, and cancer

pathologies (Figure 2, Table 1). Depending on the inflammatory

state and the microenvironment at the site of injury MDK exerts

opposing functions and either promotes the amplification or

suppression of pathological processes. Due to increased MDK

levels in several diseases, the growth factor may be of high

relevance as disease marker and target for drug development.

Especially in the CNS, where MDK may drive the infiltration of

peripheral immune cells and the pro-inflammatory activation of

glial cells during acute insult, its protective functions on microglia,

oligodendrocytes, and neurons underscore its therapeutic potential

for regenerative processes in response to acute CNS insult.

However, further studies are needed to clarify MDK signaling

pathways involved in CNS pathologies, but also cancer

progression, metastasis, inflammation, and other peripheral

pathological conditions.
MDK as a mediator of neuro-
immune crosstalk

The regulatory functions of MDK are indispensable during

development, where the growth factor mediates embryogenesis,

organogenesis, as well as neurogenesis (111). While in healthy

adults, MDK is only expressed in the kidney, several pathological

conditions are accompanied by an increase in MDK levels in the

periphery, as well as the CNS (10, 36) (Figure 2). In these lines, it is

becoming increasing clear that MDK is not only an important

mediator of disease processes within a specific compartment, but

also functions as mediator of neuro-immune cell-to-cell crosstalk.

While under homeostatic conditions, the CNS is shielded from

the periphery by the BBB, inflammation induced barrier

dysfunction may foster the MDK-dependent interaction between

CNS-resident and peripheral cell types. In these lines, the

infiltration of MDK-expressing immune cells through a leaky

BBB may stimulate context-specific MDK-signaling events in

CNS-resident cells, or vice versa (Figure 3). While the effects of

MDK on glial cells are not fully understood, MDK has been shown

to induce an anti-inflammatory polarization state in microglia in

vivo (34). Even though there are no direct effects on astrocytes

revealed so far (34), MDK-induced polarization of microglia might

regulate crosstalk between glial cells (112) and thereby indirectly

modulate the functions of astrocytes, as well as other CNS-resident
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cells, such as neurons and oligodendrocytes, which may exert the

described neuroprotective effects of MDK (84, 113). On the other

hand, MDK expressed by CNS-resident cells upon insult or

inflammation may act as a mediator of neuro-immune crosstalk

by promoting the recruitment of peripheral immune cells through a

leaky BBB into the CNS (Figure 3), thereby fueling inflammatory

processes within the CNS and ultimately leading to disease

deterioration and additional activation of glial cells. The

importance of MDK as a mediator of neuro-immune crosstalk is

furthermore exemplified by its role in the suppression of regulatory

functions within the CNS. Here, the secretion of MDK by CNS-

resident cells induces tyrosine phosphatase SHP2 expression, which

dephosphorylates and thereby inactivates STAT3 and STAT5. This

cascade results in the suppression of DCreg cells, and consequently

Treg cells, leading to increased numbers of effector T cells (Figure 3),

and the exacerbation of inflammatory processes in vivo (24, 25).

Similar mechanisms of MDK may contribute to the

development and pathogenesis of neoplastic diseases, where

neurons, microglia, macrophages, and T cells in the tumor

microenvironment control formation, growth, and progression of

malignant solid tumors (85, 114–118). Here, MDK not only recruits

peripheral immune cells, but also activates CD8+ T cells,

establishing a neuro-immune-cancer axis that promotes tumor

growth (85). The exact routes and mechanisms of crosstalk, and

how MDK derived from the periphery versus CNS-derived MDK

regulates inflammatory reactions still need to be addressed in

future studies.
MDK as putative biomarker

Due to the distinct expression of MDK in various pathological

conditions, especially malignancies and inflammatory diseases

(Figure 2, Table 1) the growth factor has been considered as a

putative biomarker (36, 119–121). While the potential of MDK as a

biomarker has been proposed for several cancer types and

inflammatory diseases, further studies are required to delineate its

specificity as a biomarker. In hepatocellular carcinoma (HCC),

MDK enables a discrete discrimination of patients with early

HCC from those with cirrhosis (122). The assessment of serum

and urinary MDK levels furthermore facilitates the early detection

of non-small cell lung cancer (NSCLC) (123) and aids clinical

decision making, as high MDK levels correlate with poor prognosis

in NSCLC patients (124). Recently, the growth factor MDK has

additionally been described as candidate biomarker in lung

adenocarcinoma, one of the most common types of lung cancer

(125). As MDK is a systemic lymphangiogenesis-inducing factor, its

detection might function as a prognostic marker for melanoma

patients (63). In brain tumors both MDK and PTN might be useful

as early diagnostic and independent prognostic markers, as MDK

overexpression correlates with the rapid progression of

astrocytomas (126) and a poor survival outcome in high-grade

gliomas (127). Studies in the context of autoinflammatory diseases

such as RA, SLE, UC, and CD have proposed MDK as a marker for

the detection of inflammatory disease activity (92, 93, 128, 129),

with a performance comparable to, and potentially superior to
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established disease activity markers like C-reactive protein (CRP)

(92, 93). Finally, a recent has described MDK levels in the

cerebrospinal fluid of Parkinson’s disease (PD) patients as a

supportive diagnostic biomarker (130), highlighting its potential

for other neurodegenerative disease such as MS or AD.
MDK as therapeutic target

Beyond its significance as a biomarker, the involvement of

MDK in numerous diseases, including injuries, malignancies, and

inflammatory disorders of the periphery and CNS (Table 1),

harbors significant potential as a therapeutic target. Depending on

the type of disease and the function of the growth factor within a

pathological condition, therapeutic approaches could consist of

MDK blockage or the exogenous supplementation of MDK.

In neoplastic diseases, MDK promotes tumor growth,

differentiation, and therapy-resistance. In these lines, MDK-

targeted strategies may have great therapeutic potential,

particularly in refractory cancer settings. Recent studies

demonstrate that blockage of MDK signaling by various

approaches rescues tumor resistance. For instance, the use of the

small molecule inhibitor iMDK (131), small interfering RNAs

(siRNAs) (132), or MDK blockage using anti-MDK monoclonal

antibodies (133) restores tumor apoptosis and inhibits tumor growth

in mice. A promising human MDK blockade system has already

been established in vitro using prostate cancer xenografts, where

synthetic siRNA in combination with the chemotherapeutic

paclitaxel (PTX) affects tumor cell proliferation, apoptosis, and

angiogenesis (132). Another way to target MDK is via an antisense

oligodeoxynucleotide molecule based on the secondary structure of

MDK mRNA, referred to as antisense oligoDNA, or morpholino

antisense oligomers. Treatment with antisense MDK suppresses

tumorigenicity in mouse rectal carcinoma cells and other xenograft

models in vitro and reduces tumor growth in nude mice in vivo

(134). A recent study precisely looked into the effects of MDKwithin

the HCC microenvironment and postulated MDK inhibition as

valuable therapeutic addition to anti-PD-1 immunotherapy in

HCC patients, as the standard treatment, sorafenib, leads to an

immunosuppressive tumor microenvironment due to increased

MDK expression (135). MDK-TRAP, a MDK-binding peptide

derived from the MDK receptor LRP1, inhibits, similar to anti-

MDK antibodies, the binding between MDK and LRP1, thereby

decreasing cell growth and colony formation in G401 cells and

CMT-93 cells (136). As MDK/LRP1 signaling contributes to

anchorage-independent tumor cell growth, its disruption might be

a promising cancer treatment approach, along withMDK-TRAP and

polyclonal antibodies. The blockage or inhibition of MDK-mediated

effects prior to or during chemotherapy might increase treatment

effectiveness and benefits patients who are not responding to

conventional treatments.

Therapies with siRNA, oligoDNA, and other drugs inhibiting

MDK have not yet been tested for CNS-related neoplastic diseases

but might represent enormous therapeutic potential for the

treatment of glioblastomas. While in neuroblastomas PTN

expression is linked to good prognosis, high MDK mRNA levels
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are detected in tumors with poor prognosis (80). This is of

particular interest, as knockout of PTN and its receptor ALK

exerts antitumorigenic effects in glioblastoma animal models

(137). Monoclonal antibodies directed against MDK may allow

targeting these tumorigenic effects in the CNS, however, current

candidates still lack the necessary efficacy (138, 139). Moreover,

RNA aptamers against MDK hold great potential for therapeutic

treatment of neuroblastomas (27). Aptamers are biochemical agents

that specifically recognize a particular target, usually a protein

(140). They bind their target with high affinity and function

similarly to antibodies, which is why they have been considered

as highly effective therapeutics. In vitro and in vivo studies with

tumor xenografts depict a suppressed growth of neuroblastoma cells

upon intratumoral administration of RNA aptamers specific for

MDK (27). The clinical efficacy of anti-MDK aptamers has

additionally been shown for autoimmune disorders of the CNS,

such as MS. Anti-MDK aptamers induce Treg cell expansion in vitro,

while treatment of EAE mice with MDK-specific RNA aptamers

results in a delayed disease onset and lower clinical scores (25). This

attenuation of autoinflammatory processes has also been observed

when anti-MDK RNA aptamers were administered post EAE onset,

once the disease is established, demonstrating its therapeutic

potential in a clinically relevant setting (25).

Collectively, the blockade of MDK harbors great potential as

therapeutic strategy in neoplastic and autoimmune diseases of both

the periphery and the CNS. Nonetheless, it is important to better

understand the upstream and downstream regulators of MDK

signaling in order to develop novel therapeutic strategies.

In contrast to MDK-targeting strategies that aim to reduce

MDK levels in target tissues, several approaches have been proposed

that incorporate distinct features of the growth factor or focus on an

exogenous or endogenous increase of MDK levels. In these lines,

MDK might be a candidate for cancer vaccine development, as it

has been shown that MDK-primed cytotoxic T cells are able to lyse

tumor cells (36). Another novel therapeutic strategy for peripheral

tumors expressing MDK is the promotor-based conditionally

replicative adenovirus therapy, which has been tested in

pancreatic cancer cell lines in vitro (141). This gene therapy

involves an oncolytic virus containing part of the MDK promotor,

named Ad-MDK. The virus is capable of killing tumor cells and

even though the growth factor MDK itself is not involved in this

kind of therapy, its solely expression in cancer tissues allows a

tumor-selective replication of the virus containing the MDK

promotor and might be a promising new cancer therapy (141).

As shown for pancreatic carcinomas, Ad-MDK gene therapy

enables glioblastoma-specific expression of oncolytic viruses,

highlighting the use of MDK for the treatment of malignant

glioblastomas (142). Gene therapy might also be a useful tool in

non-neoplastic CNS-affecting diseases as MDK is thought to be

involved in neural repair upon brain injuries. Studies in mice show

that the injection MDK encoding adenovirus after ischemic injury

decreases the infarct volume and protects against ischemic damage

(143, 144). Similarly, intrathecal administration of MDK promotes

functional recovery upon spinal cord injury in rats (37), supporting

the beneficial effects of elevated MDK levels following CNS insult

(113). Altogether, the endogenous or exogenous elevation of MDK
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levels in the CNS represents a promising treatment option for

various injuries of the nervous system. So far, multiple non-invasive

approaches for drug delivery into the CNS have been tested,

including intranasal administration (145–147), focused ultrasound

(148) or nanobiotechnology-based delivery techniques (149). These

approaches may harbor great potential for the exogenous elevation

or reduction of MDK levels in the CNS. Additionally, gene and

cellular therapies may represent useful long-term strategies for

numerous CNS-affecting disorders (150).
Conclusion

The multifunctional growth factor MDK is a central factor in

numerous pathologies (Table 1, Figure 2) and harbors great

potential as biomarker and therapeutic target (121). Depending

on disease, MDK exerts diverse functions that drive or suppress

disease progression. As we have discussed in this review, MDK

exerts tumorigenic functions by promoting tumor growth,

differentiation, and chemoresistance in neoplastic diseases (16, 26,

27, 78, 82). Additionally, MDK contributes to the onset and

progression of inflammatory and autoimmune diseases through

its chemoattractant properties (29–31, 90) and the suppression of

regulatory mechanisms (24, 25). While these mechanisms

collectively contribute to disease progression, it has become clear

that MDK can also exert tissue-protective functions (11, 12) that

attenuate neurodegeneration and support repair in the periphery

(13, 29) and CNS (34).

Altogether, these diverse functions allow a wide range of MDK-

centered therapeutic strategies. Numerous studies have already

demonstrated beneficial outcomes following MDK blockade in

inflammatory disorders and malignancies (25, 131–134).

The next step is now to evaluate these strategies in combination

with established therapies in order to increase treatment efficacy

and to overcome tumor-resistance. Moreover, as central mediator

of neuro-immune crosstalk, MDK has great potential as therapeutic

target in CNS disorders. While inhibition or blockade of MDK

signaling may be a promising option for neoplastic, inflammatory,

or autoimmune diseases affecting the CNS, endogenous or

exogenous increase of MDK levels could improve the outcome in

the context of acute CNS injuries and ischemia. In these lines,

particularly recently emerging opportunities of non-invasive drug

delivery into the CNS further support the therapeutic potential of

MDK-centered therapies in the treatment of CNS disorders (145–

149). Finally, beyond its functions as therapeutic target and a critical
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modulator of disease processes, MDK offers great potential as

putative biomarker in the context of various malignancies and

disorders (92, 93, 122–124, 127–129). Future studies will be

necessary to evaluate each individual benefit of MDK as a

biomarker and compare them to well established markers. In

summary, MDK unveils new therapeutic avenues that necessitate

further validation in future studies.
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