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Introduce: Ankylosing spondylitis (AS), rheumatoid arthritis (RA), and

osteoarthritis (OA) are three rheumatic immune diseases with many common

characteristics. If left untreated, they can lead to joint destruction and functional

limitation, and in severe cases, they can cause lifelong disability and even death.

Studies have shown that early diagnosis and treatment are key to improving

patient outcomes. Therefore, a rapid and accurate method for rapid diagnosis of

diseases has been established, which is of great clinical significance for realizing

early diagnosis of diseases and improving patient prognosis.

Methods: This study was based on Fourier transform infrared spectroscopy

(FTIR) combined with a deep learning model to achieve non-invasive, rapid,

and accurate differentiation of AS, RA, OA, and healthy control group. In the

experiment, 320 serum samples were collected, 80 in each group. AlexNet,

ResNet, MSCNN, and MSResNet diagnostic models were established by using a

machine learning algorithm.

Result: The range of spectral wave number measured by four sets of Fourier

transform infrared spectroscopy is 700-4000 cm-1. Serum spectral

characteristic peaks were mainly at 1641 cm-1(amide I), 1542 cm-1(amide II),

3280 cm-1(amide A), 1420 cm-1(proline and tryptophan), 1245 cm-1(amide III),

1078 cm-1(carbohydrate region). And 2940 cm-1 (mainly fatty acids and

cholesterol). At the same time, AlexNet, ResNet, MSCNN, and MSResNet

diagnostic models are established by using machine learning algorithms. The

multi-scale MSResNet classification model combined with residual blocks can

use convolutionmodules of different scales to extract different scale features and

use resblocks to solve the problem of network degradation, reduce the

interference of spectral measurement noise, and enhance the generalization

ability of the network model. By comparing the experimental results of the other

three models AlexNet, ResNet, and MSCNN, it is found that the MSResNet model

has the best diagnostic performance and the accuracy rate is 0.87.
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Conclusion: The results prove the feasibility of serum Fourier transform infrared

spectroscopy combined with a deep learning algorithm to distinguish AS, RA, OA,

and healthy control group, which can be used as an effective auxiliary diagnostic

method for these rheumatic immune diseases.
KEYWORDS
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GRAPHICAL ABSTRACT
1 Introduction

Ankylosing spondylitis (AS), rheumatoid arthritis (RA), and

osteoarthritis (OA) are three similar chronic inflammatory diseases.

AS is an autoimmune disease that affects tendon attachment points,

mainly manifesting as sacroiliac joint inflammation and chronic

spondylitis (1). It is more prevalent in young men. Conversely, RA is

a chronic autoimmune disease characterized by erosive arthritis (2),

with a high prevalence in women. OA, meanwhile, is a degenerative

joint disease with lesions in the cartilage (3), which presents with

degenerative changes in the cartilage, secondary synovitis, bone

metaplasia forming bony encumbrances, and, in more severe cases,

causing cystic changes and destruction of the subchondral bone. It is a

significant cause of disability in both the elderly and young people (4).

These three rheumatic diseases are commonmusculoskeletal disorders

worldwide, with the peak incidence of AS and RA occurring in young

and middle age, where patients have arthritis, spinal stiffness, and

deformity, ultimately leading to severe disability and, consequently, a

substantial financial burden on families. According to the literature,

osteoarthritis is the eleventh risk-ranked disability factor globally (5).

The increasing prevalence of OA poses a substantial challenge to the

health of middle-aged and elderly individuals. Since there is a lack of

adequate clinical cures forAS,RA, andOA, early screening remains the

only available option to alleviate the condition of patients.

In studies used to diagnose ankylosing spondylitis (AS), specific

markers such as human leukocyte antigen B27 (HLA-B27) and C-

reactive protein (CRP) are positive in 85-95% of AS patients (6).

However, in most other autoimmune disease patients, they also were

significantly positive (7, 8), indicating that they may not be reliable

indicators for diagnosing AS or determining the effectiveness of
02
treatment. The diagnosis of RA is based on the patient’s symptoms,

test results, family history, and assessment of risk factors. For example,

elevatedCRP andESR levels in serum tests (9) and the presence of RA-

specific autoantibodies (10) can contribute to the diagnosis.

Additionally, the use of ultrasound (11) and magnetic resonance

imaging (MRI) (12) has been helpful in monitoring and diagnosing

disease activity in RA patients. These diagnostic methods offer

advantages such as relatively low cost, high usability, and real-time

imagingcapability (13).However, it dependson theoperator’s skill and

requires rigorous training in measurement and quality assessment.

Currently, the gold standard for the diagnosis of OA mainly includes

X-ray imaging (plain X-rayfilm),MRI, routine clinical examination of

symptomatic joints (14), etc. X-ray imaging is considered safe, cost-

effective, and widely accessible. However, radiographs are not very

sensitive in detecting the early stages of OA (5), and interpreting the

images requires a skilled practitioner.

Serological biomarkers and medical imaging are the primary

diagnostic methods for three rheumatological immunological

diseases: AS, RA, and OA. However, these methods have

drawbacks, such as complexity, invasiveness, and reliance on the

operator’s skills. It is, therefore, necessary to identify a simple, rapid,

and non-invasive method to differentiate between AS, RA, and OA,

as well as healthy controls, to diagnose these diseases early.

In recent years, the application of FTIR spectroscopy for the non-

invasive, efficient, and rapid screening of rheumatic and immune

diseases has gained attention from researchers (15, 16). Fourier

transform infrared (FTIR) spectroscopy is a non-invasive, cost-

efficient, and highly available technology (17). It assesses the individual

biomoleculesofa samplebyanalyzing thevibrational androtational level

changes in infrared absorption (18). FT-IR spectroscopy can measure
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differences in serum composition and detect abnormalities in specific

molecules in proteins, lipids, nucleic acids, and other key markers of

pathogenesis (19). FTIRwas used for the diagnosis ofmany diseases and

material testing. For instance, Francesco et al. (20) discovered

microcalcifications in human ovarian plasma tumor tissues

containing amorphous calcium carbonate phosphate, employing

micro-Fourier transform infrared spectroscopy (micro-FTIR). Alla

et al. (21) combined FTIR with colonoscopy and found from spectral

analysis that spectral differences in the collagen fraction could be used

for early and rapid screening of colorectal cancer. Studies have utilized

FTIR to achieve earlier diagnosis of RA and OA, respectively (15, 16).

Still, there is a lack of studies on the differentiationof similar rheumatic

immune diseases. Highly accurate differentiation of AS, RA, OA, and

healthy controls is vital for early treatment. However, owing to the low

signal-to-noise ratio characteristic of most spectral signals (22), it is

difficult toobserve thedifferences between the spectra of several similar

rheumatic diseases, likely leading to poor diagnosis. Therefore,

designing a method to achieve high accuracy in diagnosing AS, RA,

and OA disorders using FTIR is vital.

Machine learning is an approach to analyzing features through

algorithms, learning the laws of data distribution, and making

decisions or predictions based on specific tasks. With the continuous

progress of computer technology research, the application of machine

learning combined with FTIR spectroscopy in medical research is

rapidly expanding. It can even replace the traditional methods used to

diagnose various diseases.However,when the distinctions between the

FTIRspectroscopyof thepieces are very small or evenchallenging tobe

observed by the human eye, the results achieved by simple machine

learning algorithms cannot meet the diagnostic requirements, e.g.,

Support Vector Machines, Principal Component Analysis, K-Nearest

Neighbors (23–25), and so on. Deep learning belongs to a class of

methods in machine learning which solves many problems that

traditional machine learning algorithms are ineffective at through its

complex model structure. Deep learning methods combined with

FTIR spectroscopy have been widely employed in disease screening.

For example, Rose G et al. (26) utilized attenuated total reflection

Fourier transform infrared (FTIR) spectroscopy to validate that the

Wasserstein generative adversarial network enhancement method

improves the accuracy of convolutional neural networks in

distinguishing pancreatic cancer from non-cancerous samples. Hu

et al. used convolutional neural networks combined with computed

tomography (CT) to detect osteoporotic vertebral compression

fractures (OVCF), achieving an accuracy of 81.70% on an

independent test set (27). Wang et al. used a dual-mode model (MP-

NN) to integrate serum metabolic fingerprints (SMFs) with protein

tumor marker carcinoembryonic antigen (CEA) for the diagnosis of

early lung adenocarcinoma and classification of lung nodules. Then

based onMP-NN, the three-modemodelMPI-RF,whichuses random

forest to integrate SMFs,CEAand image features, is superior to clinical

diagnosis in the classification of pulmonary nodules (28). Yang et al.

(29) classified the tissue transformation stages of esophageal squamous

cell carcinoma with high accuracy based on a one-dimensional

convolutional neural network (1-CNN) combined with micro-FTIR.

Chen et al. (30) used an improved multi-scale fusion convolutional

neural network on near-infrared spectral data to classify cumin and

cuminwith an accuracy of 100%. So far,most studies havebeen limited
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to classifying single diseases with healthy controls, and diagnostic

models lack network improvement and comparison. For this reason, it

is also interesting to design a deep learningmodel that ismore suitable

for classifying multiple rheumatologic diseases.

This study developed amulti-scale (MS)ResNet network structure

based on FTIR spectra to accurately classify AS, RA, OA, and healthy

controls. The model was designed to address two main challenges:

substantial noise interference in the spectralmeasurement process and

the high similarity among the three rheumatological diseases. To

effectively handle these challenges, the model incorporates three

multi-scale convolutional modules with different numbers of filters

and convolutional kernel sizes. These modules are responsible for

extracting features of different scales. Additionally, a residual block

(ResBlock) is used to overcome the problem of network degradation.

This block enables the extraction and fusion exploitation of local

features, reducingnoise interference in the spectral dataand enhancing

the model’s generalization ability. To ensure the superiority of the

proposedMSResNetmodel, three othermainstreammodels (AlexNet,

ResNet, and MSCNN) are selected for this experiment to compare

the results.

2 Materials and methods

2.1 Sample preparation

This study obtained 80 serum samples each from AS, RA, OA,

and healthy controls from the Department of Rheumatology and

Immunology of Xinjiang People’s Hospital. The serum samples

were centrifuged at high speed for 10 minutes at a temperature of 4 ,

and the supernatant layer was stored in a refrigerator at a

temperature -80 overnight. During the assay, serum samples are

thawed inherently at a consistent room temperature of 22 .

Subsequently, 5 mL of the sample was pipetted onto the FTIR

spectrometer. After 10 minutes of natural drying, the spectra were

collected. The samples for this study were obtained from the

People’s Hospital of Xinjiang Uygur Autonomous Region and

ethical approval was obtained (KY2021101507).

2.2 Fourier transform infrared
spectroscopy acquisition

The infrared spectra of serum were acquired by an FTIR

spectrometer (FTIR-850, Gangdong Scientific, China), with air as

the background, in the spectral range of 700-4000 cm-1, with 32

scans and a resolution of 4 cm-1. To reduce the noise interference in

the acquisition process, all the samples were acquired once at three

different positions, and the average value was taken as the infrared

spectrum of that sample. Finally, 80 FTIR spectra of each of the

serum samples from AS, RA, OA, and healthy control serum

samples were obtained in this study, totaling 320 spectral samples.

2.3 Classification model

2.3.1 AlexNet
AlexNet is a feed-forward neural network established on

Convolutional Neural Networks that mimics biology. It has

convolutional computation and a deep structure (29) and is widely
frontiersin.org
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employed in image and natural language processing, among other

areas. The network structure of AlexNet has convolutional primarily,

pooling, and fully connected layers. The convolutional layer extracts

information from the input data through filters (31), mapping local

features from the previous layer to the next layer. The two parts of the

convolutional layer, local connectivity, and weight sharing,

dramatically reduce the number of parameters and the

computational burden of complex nonlinear transformations. The

AlexNet model framework proposed in this study is shown in

Figure 1, which primarily includes three convolutional layers. The

filters are 32, 64, and 128, respectively, and the kernel size is set to 3.

Behind each layer, a batch normalization layer, and a max-pooling

layer with a kernel of 2 are connected. The Flatten layer then one-

dimensional the multi-dimensional input, reduce overfitting using the

Dropout layer, and output the classification results through two

Dense layers.

2.3.2 ResNet
As deep learning models are applied in more complex domains,

the depth of the network layers is increasing. During the

backpropagation process, the gradient gradually diminishes,

making the weight update of the shallow network almost
Frontiers in Immunology 04
ineffective. This increases training difficulty for the deep model,

known as the gradient vanishing problem (32). To solve this, He

et al. (33) proposed the ResNet model, which achieved significant

results in the 2015 ImageNet image recognition competition. The

ResNet model is based on the traditional CNN model and

introduces the “residual block”. This block allows information to

bypass one or more layers in the network, reaching the output

directly. The ResNet model enables faster convergence and better

performance by allowing the network to learn the residual function

and make minor parameter updates. The structure of the Residual

Block (ResBlock) used in this experiment is shown in Figure 2. The

main branch consists of two convolutional layers and a Batch

Normalization layer. There is also a shortcut branch, which has

only one convolutional layer, and its parameters are the same in

each ResBlock structure. Finally, the extracted multi-scale features

are fed into the Flatten layer and classified by the Dense layer.

2.3.3 MSCNN
As a particular type of neural network that incorporates

convolutional computations, CNN has a strong capability for feature

extraction. The network’s structure, characterized by parameter sharing

and local connectivity, helps to reduce computational load, thereby
FIGURE 2

ResNet framework structure diagram: including one convolutional layer and three ResBlock layers, where the convolutional layer has a kernel size of
9, 24 filters, and a maximum pooling layer kernel size of 3. The convolution kernel size in all three ResBlock layers is 3, and the number of filters is
32, 64, and 128, respectively. Finally, using average pooling to extract overall features.
FIGURE 1

AlexNet framework structure diagram: consisting of three convolutional layers, with 32, 64, and 128 filters, and a kernel size of 3. After each layer, a
batch normalization layer and a maximum pooling layer with a kernel size of 2 are connected, with a Dropout value of 0.4 to prevent
model overfitting.
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enhancing CNN’s generalization ability in various application domains.

However, traditional CNN models tend to lose important information

from the original data during training (34). Additionally, extracting

multi-scale features proves challenging, resulting in reduced efficiency.

MSCNN builds on the concept of multicolumn DNN to extract multi-

scale signals. This is achieved using three parallel convolutional layers

with varying sensory field sizes. The structure of these three

convolutional layers remains the same, comprising a Conv1d layer, a

BatchNormalization layer, and a pooling layer. The multi-scale features

are then merged in the Concatenate layer. Furthermore, the features

extracted by the three convolutional layers are inputted to the Flatten

layer, with overfitting addressed by incorporating the Dropout layer.

Finally, the classification results for the spectral data are obtained

through the two Dense layers. The MSCNN network framework is

shown in Figure 3.

2.3.4 MSResNet
The MSResNet model proposed in this paper is designed based

on ResNet, concerning the MSCNN model feature extraction,

combining multi-scale information extraction with a residual

structure to achieve a high-accuracy diagnosis of diseases. This

multi-scale convolutional kernel design has been proven to work

better in fields such as image recognition (35, 36). The MSResNet

network framework is shown in Figure 4, where three convolutional

kernels of different sizes are used instead of a single convolutional

kernel to extract feature information at different scales. The fused

multi-scale features are input into the ResNet structure to enhance

the model implementation using the unique residual design.
2.4 Spectral analysis

A total of 320 patients were included in this study, including 80

patients in theAS, RA,OA, andHCgroups,with an average age of 40.5

± 6.0 years old and a male to female ratio of 1.1:1. There was no

statistically significant difference in age and gender among the four

groups, as shown in Table 1. Figure 5 shows FTIR spectra of serum

samples from AS, RA, OA, and healthy controls. The measured

spectral wave number interval is 700-4000 cm-1, a wave number

range containing a wealth of information on biomolecular

fingerprints, such as proteins, lipids, carbohydrates, and nucleic

acids in serum, identifying the disease category. The spectral curves
Frontiers in Immunology 05
of the four types are similar, with the primary distinction being the

magnitude of the curve fluctuations. Figure 6 shows the average

spectral comparison of serum samples from three types of diseases

and healthy controls (HC). The characteristic peaks of serum spectra

are mainly at 1078, 1245, 1400, 1542, 1641, 2940, and 3280 cm-1, and

Table 2 lists the tentative material assignments for these major FTIR

peaks. The most substantial characteristic peaks are at 1641 cm-1

(amide I) and 1542 cm-1 (amide II) (37, 38), which represent the

stretching andbendingvibrationson the amideC=Oaswell as theN-H

groups of proteins, respectively (39), the broadband at 3280 cm-1 also

corresponds to the N-H group, but it is a stretching vibration (40) and

is referred to as the amideAmode; the vicinity of 1420 cm-1 represents

the region of proteins, phosphatemolecules, and fatty acids (16), and it

has been illustrated that this wavelength is related to proline and

tryptophan inproteins;1245cm-1 represents amide III, the asymmetric

P=O stretching in PO2 (25); 1078 cm-1 represents the region of

carbohydrates (15); and the area of 2940 cm-1 is dominated by fatty

acids and cholesterol, among other substances (41).
2.5 Experimental setup

This experimental dataset consists of Fourier transform infrared

spectra of serum samples from patients with AS, RA, OA, and healthy

controls, and the four types of data were classified by AlexNet, ResNet

network, multi-scale convolutional neural network, and multi-scale

ResNet network. In addition, most of the typical medical studies of

infrared spectroscopy are based on small datasets, insufficient training

data can result in providing less valid information, andmodel training

is prone to overfitting. To alleviate overfitting, five-fold cross-

validation is used in the training process to improve the model’s

generalization ability. The data set is divided into the training set and

the test set in a 7:3 ratio, and the training set is used for cross-validation.

It is randomlydivided intofive, four for trainingandone for validation.

The training process batch size was set to 8, epoch to 200, optimizer to

Adam, and learning rate to 0.0001. To compare the performance of the

different models more intuitively, the experiments were compared by

the subjects’work characteristic curve (ROC) and area under the curve

(AUC), accuracy, sensitivity, precision, and specificitymetrics. ROC is

aprobability curve that shows the classificationabilityof amodel curve.

The AUC value is expressed as the area under the ROC curve; a larger

AUC indicates a better classification model performance.
FIGURE 3

MSCNN framework structure diagram: including three parallel receptive fields, using convolution kernels of sizes 3, 7, and 9 to extract features of
different scales. Each parallel convolution layer consists of Conv1d layers, BatchNormalization layers, and pooling layers. Integrate multi-scale
features in the Concatenate layer.
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2.6 Classification results

The classification results of the four models, namely AlexNet,

ResNet, MSCNN, and MSResNet, are presented in Figures 7A, B.

Figure 7A displays the ROC curves of the models, with all models

achieving AUC values exceeding 0.9. The highest AUC value, 0.98,

is obtained by MSResNet. Figure 7B illustrates the accuracy,

sensitivity, precision, and specificity metrics of the models’

classification. The specificity values for all four models exceed 0.9.

However, the other three metrics, namely accuracy, sensitivity, and

precision, show poorer results for AlexNet and ResNet compared to

MSResNet. MSResNet demonstrates the best performance across all

metrics, with values of 0.8854, 0.8749, 0.8829, and 0.9617 for

accuracy, sensitivity, precision, and specificity, respectively. To

further evaluate the models’ classification on the four types of

samples, Table 3 presents the classification accuracy and average

value for each model. MSResNet achieves the highest average

accuracy of 0.8749 and performs better in classifying the two

types of samples, AS and HC. Comparing the evaluation metrics

of all the models, it can be concluded that MSResNet exhibits the

most effective classification for the four types of samples, namely

AS, RA, OA patients, and Healthy Controls.
3 Discussion

AS, RA and OA are all common chronic inflammatory diseases

that cause joint and bone abnormalities, often resulting in severe

disability. They are the leading causes of chronic disability

worldwide. However, if diagnosed early and treated promptly, the
Frontiers in Immunology 06
likelihood of disability or life-threatening damage can be greatly

reduced. Unfortunately, there is currently no validated and

unambiguous method to differentiate between AS, RA, OA, and

healthy individuals. Therefore, there is a critical need for affordable

and reliable detection methods, particularly in the early stages of

these diseases. In vibrational spectroscopy, the chemical bonding of

molecules in a sample can be examined without the need for

labeling (42). This technique enables the distinction between

diseased and healthy individuals by identifying specific wavefronts

that are believed to be associated with disease specificity. Through

the analysis of these distinct peaks, it is possible to identify disease-

related chemicals, including proteins, nucleic acids, carbohydrates,

and lipids. These specific regions in the spectrum can be considered

as unique “fingerprints” of the disease. Overall, vibrational

spectroscopy holds promise as a potential method for the early

detection of AS, RA, and OA, as it allows for non-invasive and

accurate identification of disease-specific markers (43). In this

study, the first attempt was made to design an MSResNet

network structure based on a multiscale and residual structure to

efficiently differentiate sera from AS, RA, and OA patients as well as

healthy controls by Fourier transform infrared spectroscopy and

spectral analysis. By comparing with three other mainstream

models (AlexNet, ResNet, MSCNN), MSResNet was found to

have better diagnostic performance.

During the experiment, common and specific discriminatory

waveforms were identified for the four samples through spectral

analysis (Table 1). The common waveforms were observed because

these diseases share certain common features and are all chronic

joint inflammatory diseases. The specific waveforms were not

readily apparent in the analysis, and the main difference among
TABLE 1 Age, gender, and statistical information of the samples.

Indicator AS group (80) RA group (80) OA group(80) HC group c2/t P

Age (years) 39.4 ± 8.2 39.8 ± 5.9 41.6 ± 3.2 40.8 ± 5.2 2.149 0.094

Gender (female/male) 32/48 38/42 43/37 42/38 3.741 0.291
frontier
FIGURE 4

MSResNet framework structure diagram: using three convolutional kernels of different sizes instead of a single kernel to extract feature information
at different scales. Then input the fused multi-scale features into the ResBlock block to improve model performance.
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the four samples was the peak size of the common waveforms. For

example, peaks were observed at 1641 cm-1 (amide I), 1542 cm-1

(amide II), 3300 cm-1 (amide A), 1420 cm-1 (proline and

tryptophan), 1245 cm-1 (amide III), 1078 cm-1 (carbohydrates),

and 2940 cm-1 (fatty acids and cholesterol). These substances have

been identified in previous studies as signaling molecules for cell

growth, differentiation, and apoptosis. It has been demonstrated

that they induce synovial cell apoptosis by modulating diverse
Frontiers in Immunology 07
signaling pathways (44). Additionally, using electrospray

ionization mass spectrometry for synovial tissue analysis, it has

been found that amide levels are elevated in patients with RA and

OA, and reduced in patients with AS (45). The relative intensity

increase observed between the Raman bands located at 1241 cm-1and

1269 cm-1 (amide III doublet) by Takahashi et al. may be associated

with structural changes under type II collagen loading. This suggests a

higher content of disordered collagen in the cartilage of osteoarthritis

(OA) patients (46). This is indeed evidence of collagen defects leading

to abnormal cartilage structure. This finding indicates that current

spectroscopic methods may contribute to identifying and

quantitatively assessing the early manifestations of osteoarthritis. In

addition, a study on non-targeted lipidomics analysis of synovial fluid

and serum from rheumatoid arthritis (RA) patients at different

disease activities and clinical stages (from pre-clinical to active to

sustained remission) revealed that the lipidomic profile in RA joint

fluid is correlated with the degree of inflammation and the severity of

synovitis. Changes in amide levels can predict the therapeutic

response to drugs (47). These results suggest that monitoring

amide levels may aid in disease identification, predicting the

evolution from pre-clinical to definitive disease, and assessing

disease activity and treatment outcomes.

This study also revealed significant differences in four groups at

1420 cm-1 (proline and tryptophan). Amino acid metabolism is

considered a key regulator of both innate and adaptive immune

responses (48). Proline, abundant in the body and second only to

glutamine and alanine, constitutes 50% of collagen in the body,

approximately 30% of the body’s total protein. As collagen is a

major component of cartilage, it plays a crucial role in constructing

the cartilage tissue framework, supporting joint loading, and
FIGURE 6

Comparison of average spectra of serum samples from ankylosing
spondylitis (AS), rheumatoid arthritis (RA), osteoarthritis (OA), and
healthy controls (HC).
FIGURE 5

Average spectra (lines) and area of spectral regions (shaded) for all samples for ankylosing spondylitis (AS), rheumatoid arthritis (RA), osteoarthritis
(OA), and healthy control (HC) serum samples.
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protecting and repairing damaged joint cartilage. Abnormal proline

metabolism can lead to a reduction in collagen, resulting in

decreased resistance of connective tissues, abnormal bone

collagen metabolism, and the onset of chronic orthopedic diseases

such as OA and RA. Hydroxyproline, a metabolic product of

proline, serves as a marker for collagen degradation (49). On the

other hand, tryptophan, an essential amino acid in the human body

(50), has metabolites with immune, metabolic, and neuroregulatory

functions in biology, making it a therapeutic target for various

diseases. As early as the late 1950s, scholars proposed the use of the

tryptophan content in synovial fluid to distinguish between

inflammatory and non-inflammatory joint diseases. This is

particularly relevant in the tryptophan metabolism pathway

mediated by rate-limiting enzymes indoleamine-2,3-dioxygenase1

(IDO1), indoleamine-2,3-dioxygenase2(IDO2), tryptophan-2,3-

dioxygenase (TDO), and kynurenine monooxygenase (KMO).

Studies have found that changes in serum tryptophan are closely
Frontiers in Immunology 08
related to disease progression, with the progression of RA leading to

decreased tryptophan levels due to IDO1-induced tryptophan

degradation (51), providing important theoretical basis for

identifying diagnostic and therapeutic biomarkers for RA. In OA

patients, increased protein hydrolysis may produce more free

tryptophan in the intestines (52), leading to an overall increase in

tryptophan and its metabolites. Additionally, research indicates that

tryptophan metabolites indole-3-acetaldehyde and indole-3-acetic

acid are involved in the occurrence and development of

spondyloarthritis (SPA) (53). These research findings suggest that

abnormal proline and tryptophan metabolism play crucial roles in

the pathological mechanisms of RA.

Finally, this study observed differences in the peak at 2940 cm-1

(fatty acids and cholesterol) among the four groups, consistent with

previous research. Studies have demonstrated the involvement of

lipid metabolism in the onset of RA and AS. Abnormalities in lipid

metabolism in immune cells contribute to the invasion and

migration of synovial tissues in RA patients, promoting synovial

inflammation, as well as cartilage and bone erosion. In RA patients,

the synovium shows significantly higher levels of palmitic acid, total

saturated fatty acids, long-chain MUFA, and/or total MUFA

compared to osteoarthritis and healthy control groups.

Conversely, in AS patients, the concentrations of many lipids

decrease (54, 55). In summary, the above studies indicate that

FTIR optimized with machine learning algorithms could serve as a

convenient, rapid, and economical detection method for

monitoring changes in substances such as amino acids and lipids

in patients. This approach holds promise for disease diagnosis and

prognosis research.

Many studies have reported the application of spectroscopic

techniques in rheumatic diseases. Lee et al. (56) measured by

Raman micro spectroscopy that the mineralization of

subchondral trabecular bone (SCTB) tissues in osteoarthritis

regions in knee osteoarthritis was markedly lower than that of the
A B

FIGURE 7

(A) plots the ROC curve of the model, and the AUC value represents the area under the ROC curve. The larger the AUC value, the better the
generalization performance of the model. (B) shows the four evaluation index values of accuracy, sensitivity, precision, and specificity of model
classification. The higher the accuracy value, the better the classification performance of the model.
TABLE 2 Peak positions and tentative assignments of major FTIR bands.

Wavenumber
(cm-1)

Corresponding substance

3280 the N–H group, a stretching vibration called the amide
A mode

2940 Fatty acids and cholesterol

1641 Amide I, protein and stretching and bending vibrations
on the amide C=O

1542 Amide II, stretching and bending vibrations on the N–
H groups

1420 proline and tryptophan

1245 Amide III, asymmetric P=O stretching in PO2

1078 Carbohydrate region
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corresponding regions in control individuals, further demonstrating

the potential value of SCTB for targeted therapies in OA. Cao et al.

(57) utilized a multivariate dimensionality reduction method and a

machine learning algorithm to analyze the correlation between

spectra l di fferences and cl in ical and immunologica l

manifestations in RA patients. Prada et al. (41) developed the first

prediction model for LDA based on FTIR with diagnostic accuracies

of 97% and 85% for two diseases, namely Crohn’s disease (CD) and

spondylarthritis (SpA), respectively. Collection of blood samples is

non-invasive and simple, therefore spectroscopy-based disease

diagnosis is easily reproducible and cost-effective. To this end,

this experiment designed a multiscale combined residual block

MSResNet model based on FTIR spectra to achieve high-

performance classification of AS, RA, OA, and HC. The model

effectively combines the multiscale module in a multiscale

convolutional neural network with the ResNet model. The

multiscale module consists of three convolutional layers with

different numbers of filters and convolutional kernel sizes, which

facilitates the extraction of multiscale and multilevel features. On

the other hand, the residual block in the ResNet model avoids the

deep model network degradation problem. With these designs, the

MSResNet model achieves the extraction and fusion of local

features of the four samples, which mitigates the effects brought

by the noise of spectral data to enhance the generalization ability of

the model diagnosis.
4 Conclusions

In this paper, we propose a robust method capable of

differentiating between patients with AS, RA, and OA, as well as

healthy controls. Firstly, the FTIR of the four serum samples was

measured using a spectrometer, and then a multiscale residual

convolutional neural network (MSResNet) was constructed to

classify the spectral data. The model mainly consists of a

multiscale module and a residual block, the multiscale module

uses three sets of convolutional layers with different specifications

to extract richer multiscale feature information, followed by a

residual block used to solve the network degradation problem

brought by the simple deep model. In addition to this, this study

also conducts comparison experiments with three other models

(AlexNet, ResNet, and MSCNN). The experimental results

show that using a multi-scale feature fusion model outperforms

the traditional ResNet framework that extracts features using
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only one scale, and the multi-scale combined residual block

model also outperforms the simple MSCNN model. This

fully demonstrates the superiority of our model for high

similarity spectral classification, which enables non-invasive, fast,

and low-cost identification of four types of data, namely

ankylosing spondylitis, rheumatoid arthritis, osteoarthritis, and

healthy control group, by extracting their multi-scale and multi-

level features from the spectral data. The spectral analysis also

revealed that amides, proline, and tryptophan are likely to be

spectral “biometric fingerprints”, and thus FTIR may be a

promising tool for the study of rheumatic diseases as a rapid,

low-cost, and accurate biomarker identification method, and may

also provide effective information for prognostic examinations.

Although this article has detailed and validated the effectiveness

of using FTIR method to diagnose several autoimmune diseases,

early detection systems using FTIR combined with deep learning

algorithms still require deeper and more extensive validation for

treating other diseases.
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