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The breast cancer tumor microenvironment (TME) is dynamic, with various immune

and non-immune cells interacting to regulate tumor progression and anti-tumor

immunity. It is now evident that the cells within the TME significantly contribute to

breast cancer progression and resistance to various conventional and newly

developed anti-tumor therapies. Both immune and non-immune cells in the TME

play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune

evasion, and resistance to anti-tumor therapies. Consequently, molecular and

cellular components of breast TME have emerged as promising therapeutic

targets for developing novel treatments. The breast TME primarily comprises

cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently,

numerous clinical trials targeting specific TME components of breast cancer are

underway. However, the complexity of the TME and its impact on the evasion of

anti-tumor immunity necessitate further research to develop novel and improved

breast cancer therapies. Themultifaceted nature of breast TME cells arises from their

phenotypic and functional plasticity, which endows them with both pro and anti-

tumor roles during tumor progression. In this review, we discuss current

understanding and recent advances in the pro and anti-tumoral functions of TME

cells and their implications for developing safe and effective therapies to control

breast cancer progress.
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GRAPHICAL ABSTRACT
Introduction

Breast cancer is the most common and frequently diagnosed

cancer in women worldwide, with more than 2 million new breast

cancer cases reported annually (1). Globally, breast cancer is the

leading cause of cancer deaths in women (2, 3). Based on gene

profiling, breast cancer can be classified into five molecular subtypes

- Luminal A, Luminal B, Human epidermal growth factor receptor 2

(HER2), Basal-like, and Triple-negative breast cancer (TNBC) (4).

Although these classifications are not static, ongoing research may

lead to refinements or the discovery of new subtypes. Molecular

classification plays a crucial role in tailoring treatment strategies for

breast cancer patients, helping oncologists choose the most effective

therapies based on the specific molecular characteristics of the

tumor (5). Additionally, the TNM staging system proficiently

evaluates patients by effectively assessing the extent of the tumor

(T), involvement of lymph nodes (N), and presence of metastasis

(M). Due to differences in molecular characteristics of breast cancer

sub-types, the use of biomarkers, histologic grade, HER2

expression, hormone receptor, and multigene panels have now

been incorporated into the conventional TNM staging (6). The

tumor microenvironment (TME) of breast cancer plays a central

role in tumor progression, immune evasion, and resistance to

conventional anti-cancer therapy (7). Breast TME mainly

comprises cancer, immune, and stroma cells. Apart from cancer

cells, the cellular components of breast TME can be broadly

classified as immune cells (myeloid, innate lymphoid, and

lymphocytes), stromal cells (fibroblasts and adipocytes), and

vasculature cells (endothelial cells and pericytes) (Graphical

Abstract). The various cellular components of breast TME exhibit

intricate and dynamic interactions that significantly impact cancer

progression, metastasis, immunosuppression, and resistance to both
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conventional and emerging immunotherapies (8, 9). The complex

molecular and cellular interplay among the TME constituents

provides essential nutrients, oxygen, and growth factors that

facilitate efficient tumor cell proliferation and progression

(10, 11). The surrounding stroma’s cellular, genetic, structural,

functional, and epigenetic alterations profoundly impact the

plasticity and morphogenesis of epithelial cells, thereby

contributing to tumorigenesis (12). Recent breakthroughs and

extensive studies from preclinical studies (Table 1) and clinical

trials (Table 2) have indicated that alterations in breast TME

signatures can serve as valuable prognostic indicators and aid in

the development of innovative anti-cancer therapies (27).

Consequently, there has been a notable shift towards targeting the

key components of the TME in the development of novel

treatments (27, 28). In this review, we discuss the current

understanding of cancer, stromal, vasculature, and immune cell

interactions within the breast TME and their implications for

developing novel, safe, and effective breast cancer treatments.
Breast TME

Breast TME is highly plastic and undergoes constant changes

and stage-specific adaptations depending on numerous cancer cell-

intrinsic and extrinsic factors. These alterations in the TME are

characterized by networks of cytokines and growth factors,

disrupted signaling pathways, and modified molecular signatures

in the stroma (29). Extensive research on TME characterization has

highlighted the crucial role of communication between tumor cells

and stroma in driving breast cancer oncogenesis, progression, and

metastasis (Figure 1) (30, 31). The breast tumor stroma comprises

various components, including fibroblasts, immune cells,
frontiersin.org
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endothelial cells, adipocytes, and pericytes (32). Throughout the

progression of breast cancer, the stroma undergoes significant

changes, including the formation of cancer-associated fibroblasts

(CAFs), infiltration of immune cells, inflammation, angiogenesis,

and remodeling of the extracellular matrix (ECM) (33, 34). These

alterations disrupt the integrity of the basement membrane,

facilitating the spread of tumor epithelial cells into the stroma

(35). Since these various molecular and cellular components have a

direct influence on breast cancer progression, they represent

attractive targets for therapeutic development. The immune cells

within the breast TME play a critical and dynamic role in cancer

progression and anti-tumor immunity (36). Most immune cells are
Frontiers in Immunology 03
plastic in their functional phenotype and can adapt in response to

local TME factors, allowing them to play dual pro or anti-tumor

roles (37). Effector immune cells infiltrating the TME can directly

eliminate neoplastic cells expressing neo-antigens on their surface

and suppress tumor progression (Figure 2) (38). However, tumors

employ numerous immune evasion strategies to impede immune

cell infiltration and hinder their effector functions within the TME

(37). The immune cell repertoire within the breast TME can be

broadly classified as myeloid, innate lymphoid, and lymphoid cells.

Myeloid cells include myeloid-derived suppressor cells (MDSCs),

tumor-associated neutrophils (TANs), tumor-associated

macrophages (TAMs), dendritic cells (DCs), mast cells (MCs),
TABLE 1 Selected pre-clinical studies showing the suppression of tumor progression by targeting TME-associated cells and effector molecules.

Model Agent Target Antitumor Effect Ref.

BALB/c mice Radiotherapy CXCL16, a chemokine that
binds to CXCR6 on Th1 and
activated CD8 effector T cells

Increased the migration of CD8+CXCR6+activated T cells to tumors (13)

67NR mouse Combination therapy
(Radiotherapy
+ Immunotherapy)

Immune checkpoints CTLA-4
and PD-L1

Radiation in combination with anti-CTLA-4 and/or anti-PD-L1 blockade
stimulates CD8+ T cell-mediated anti-tumor immunity

(14)

4T1 mouse Combination therapy
(Immunotherapy
+ chemotherapy)

Immune checkpoint Suppression of MDSCs leads to regression of tumor cells (15)

BALB/c mice Administration of the Toll-
like receptor (TLR) 7/8
agonist 3M-052

TLR 7/8 Enhances interferon-driven tumor immunogenicity and suppresses
metastatic spread in preclinical triple-negative breast cancer

(16)

MDA-MB-
231 xenograft

Knockdown of lysyl oxidase
(LOX) b-aminopropionitrile
(BAPN), miRNA-142-3p

LOX inhibition Overcome chemoresistance in TNBC (17)

4T1 tumor-
bearing mice

Doxorubicin DC, CD44+

Cancer stem cells
Immunotherapy (18)

Mammary
tumor-
bearing mice

Macrophage recruitment
blockade + Paclitaxel

TAM Reprogram the TME to decrease primary tumor progression, reduce
metastasis, and improves survival by CD8+ T-cell–
dependent mechanisms.

(19)

4T1-Neu
mammary
tumor-
bearing mice

Docetaxel MDSC Docetaxel treatment polarized MDSCs toward an M1-like phenotype (20)

MDA-MB-
231 xenograft

Eribulin TME vasculature Vascular remodeling: Improved perfusion Increased microvessel density.
Decreased mean vascular areas.
Fewer branched vessels in tumor tissues,

(21)

MCF-
7 xenograft

Paclitaxel CAF Improved local drug accumulation (22)

BALB/c Neu-
transgenic
mouse

Local delivery of IL-21 TAM Identified that abundant TAMs are a major extrinsic barrier for anti-
Her2/neu Ab therapy and present a novel approach to combat this
extrinsic resistance to skew TAM polarization from M2 to M1

(23)

MCF7 breast
cancer cells

B7-H3 Knock-down DC (B7-H3/CD 276) Inhibit the proliferation of CD4+ and CD8+ T cells.
Inhibit the release of IFN-g by decreasing mTOR signaling

(24)

KBP-mice PD-L1 inhibitors PD-L1 PD-L1 blockade reverts the expression of PD-L1 in macrophages and
synergizes with paclitaxel to reduce tumor growth in TNBC

(25)

C57BL/6 mice
and nude mice

5-Fluorouracil (5FU) MDSC 5FU selectively induced MDSC apoptotic cell death leading to IFN-g
production by tumor-specific CD8+ T cells infiltrating the tumor and
promoting T cell-dependent antitumor responses in vivo

(26)

MDA-MB-
231 xenograft

Capecitabine + Eribulin TME vasculature Decreased hypoxia-associated protein expression of VEGF (21)
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etc. Natural killer (NK) are innate lymphoid cells with cytotoxic

effector functions and play a crucial role in anti-tumor immunity.

Lymphoid cells include B lymphocytes and numerous subsets of T-

lymphocytes that play a central role in tumor-antigens-specific anti-

tumor immunity (39).
Frontiers in Immunology 04
In subsequent sections, we will briefly discuss the interplay of

immune and non-immune (stromal and vasculature) cells and

how these complex interactions can be strategically targeted to

develop novel, safe, and highly effective therapies for breast

cancer patients.
TABLE 2 Selected clinical trials on breast TME-related targeting modalities (https://www.clinicaltrials.gov/).

Strategy/Rationale Condition Intervention Identifier Outcome measures Status/
Stage

To quantify CD4 and CD8 in
other to identify biomarker
changes in the immune
microenvironment induced by
neoadjuvant chemotherapy

TNBC Analysis of a list of biomarkers before
and after sequential treatment with
FEC100 or EC100 then taxane, and
paclitaxel weekly

NCT04368468 Identifying biomarkers present in the
residual disease would be a criterion to
guide the choice of post-neoadjuvant
adjuvant systemic treatment, so as to
personalize it.

Completed

To evaluate the effects of
orally administered reparixin
on the TME, cancer stem cell
(CSC) markers, and cytokine
inflammation markers

HER2-
metastatic
breast cancer

Fixed dosage of Paclitaxel+ three
increasing dosage of Reparixin
were used

NCT02001974 Explores the safe dose limit in treating
MUC1-positive advanced breast cancer

Phase 1

To evaluate the role of soluble
immune checkpoints in
predicting the response to
neoadjuvant therapy

Breast cancer Immune checkpoint measurement NCT05519397 Measurement of sCD25 (IL-2Ra), 4-
1BB, B7.2 (CD86), Free Active TGF-b1,
CTLA-4, PD-L1, PD-1, Tim-3, LAG-3,
Galectin-9

Completed

To differentially compare the
breast TME between Luminal
A and TNBC with and
without Radiation Treatment

Luminal A
and TNBC

The mean percent change in TILs in
tumor tissue from initial core biopsy
samples will be compared with
pathology samples from definitive
surgery after irradiation between the
two different breast cancer sub-types

NCT03165487 Identifying these differences in proteins
may allow them to be used in the future
as markers to predict the likelihood of
tumors recurring.

Recruiting

To determine the clinical
response in patients with
HER2/neu-positive stage I-III
breast cancer and bone
marrow micrometastases
treated with the drugs
of interest

HER2/
neu-positive

Bevacizumab, Trastuzumab,
Carboplatin, Docetaxel

NCT00949247 To study how well giving docetaxel and
carboplatin together with trastuzumab
and bevacizumab works in treating
patients with stage I, stage II, or stage
III breast cancer and bone
marrow micrometastases.

Early
Phase 1

To evaluate the T Cell
response to a peptide-based
vaccine in patients with
breast cancer

Breast cancer Biological: 9 Peptides from Her-2/neu,
CEA, & CTA

NCT00892567 To study the concentrations of
Persistent Organics Pollutants in both
adipose tissue and serum samples from
breast tumor patients

Phase 1

To evaluate the impact of
single dose versus three doses
of Stereotactic Radiation
Therapy (SBRT) prior
to surgery

Early-stage
breast
carcinoma

Radiation: Stereotactic body radiation
followed by lumpectomy

NCT02212860 Immune priming: (Quantify TILs, PDL-
1, neutrophils, and macrophages)
Measure angiogenesis (VEGF),
proliferation (Ki67), hypoxia (HIF1/
HIF2), and invasion (SDF-1) markers

Completed

To evaluate the effects of MK-
3475 (Pembrolizumab) on the
breast
tumor microenvironment

TNBC Merck 3475 Pembrolizumab NCT02977468 To determine if immune modulation
therapy with MK-3475 will increase
TILs in newly diagnosed TNBC tumors
will alter the expression of immune
tolerant markers [including PD-L1],
within the primary tumor.

Phase 1

To evaluate the effect of
Palbociclib plus Letrozole in
Hormone receptor-positive
residual disease after
neoadjuvant chemotherapy

Hormone
Receptor
(HR) Positive/
HER2
Negative

Palbociclib, Letrozole NCT04130152 Study the changes in TILs and PDL-1
following treatment with palbociclib
plus letrozole, after
neoadjuvant chemotherapy

Early
Phase 1

To comparatively evaluate the
efficacy, safety, and
pharmacokinetics of
atezolizumab (MPDL3280A)
administered with
nab-paclitaxel

TNBC Atezolizumab (an anti-PDL1 antibody)
+ Nab-Paclitaxel

NCT02425891 Atezolizumab plus nab-paclitaxel
prolonged progression-free survival
among metastatic TNBC in the
intention-to-treat population and the
PD-L1–positive subgroup.

Phase 3
fro
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Myeloid cells in breast TME

Myeloid-derived suppressor cells
Myeloid cells, derived from hematopoietic stem cells in the bone

marrow, play a crucial role in initiating innate and adaptive immune

responses (40). However, these cells undergo impaired differentiation
Frontiers in Immunology 05
during cancer progression, resulting in immature phenotypes with

reduced phagocytic capacity and immunosuppressive function (41).

MDSCs are prominent cell types in the breast TME that rapidly

proliferate and promote tumor progression, angiogenesis, and

metastases (42, 43). When activated, MDSCs contribute to

immunosuppression and cancer invasiveness through increased
FIGURE 2

Cells in breast TME regulate the induction of robust anti-tumor immunity. The TME contains a range of anti-tumor cells including TILs, DCs and
macrophages in the breast playing a key role in the breast cancer suppression. The expression of these cells within the breast cancer TME and
understanding their anti-tumor function may enhance the discovery of new markers associated with specific subtypes leading to earlier diagnosis
and better clinical outcomes.
FIGURE 1

The interplay of mediators aid immunosuppression in breast TME. The TME contains a range of resident cells playing a key role in the progression
and metastasis of breast cancer cells. These resident cells and their associated secretory elements and receptors including cytokines, chemokines,
and stimulatory growth factors are shown. Cells in the TME exhibit a diverse network of mediators that actively engage in promoting an
immunosuppressive TME.
frontiersin.org
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production of reactive nitrogen species (RNS), reactive oxygen species

(ROS), and arginase 1 (ARG1) expression (44, 45). Human MDSCs in

the bloodstream can be classified into two types: granulocytic MDSCs

(G-MDSCs) and monocytic MDSCs (M-MDSCs) (46). G-MDSCs are

further categorized based on cell surface marker expression as

CD11b+CD14-CD66+ and CD11b+CD14-CD15+. Similarly, M-

MDSCs are characterized by the cell surface markers

CD11b+CD14+CD15- (47). MDSCs exhibit low expression of

Human Leukocyte Antigen–DR isotype (HLA-DR) and CD14, the

cell surface receptors essential for proper immune responses to

antigens, resulting in an immune response defect (43, 48). The

activation and recruitment of MDSCs in the TME is mediated

through increased production of specific chemokines, cytokines, and

factors, including IL-4, IL-6, IL-10, IL-12, IL-13, CCL5, CCL2, CXCL2,

CXCL5, CXCL12, vascular endothelial growth factor (VEGF)-A,

transforming growth factor (TGF)-b, and granulocytic-colony

stimulating factor (G-CSF) in TME (49–52). These molecules are

critical in shaping the tumor microenvironment and promoting

MDSC-mediated immune suppression. MDSCs have been found to

play a crucial role in the immunosuppressive microenvironment by

facilitating the development of CD4+Foxp3+ regulatory T (Treg) cells

and promoting immunosuppressive phenotype in macrophages (53,

54). Additionally, MDSCs express CD40, increasing Treg-mediated

tumor immune tolerance (55). CD40, a member of the tumor necrotic

factor (TNF) receptor superfamily, is expressed on antigen-presenting

cells (APCs), while its ligand (CD40L) is primarily expressed on

activated T and B cells (56). The interaction between CD40 and

CD40L promotes the development of adaptive immunity (57). When

exposed to increased stimulation by IFN-g, G-MDSCs upregulate the

expression of CD40 andMHC II, leading to the induction of Tregs and

the suppression of T cell proliferation (55). MDSCs also contribute to

angiogenesis, maintain cancer stem cells (CSCs), and inhibit CD8+ T

cell activation through the expression of nitric oxide synthase 2 (NOS2)

and ARG1 (58, 59). Using microarray analysis, Hix et al. compared the

low-aggressive TM40D and highly aggressive TM40D-MD mouse

mammary carcinoma cells and discovered a positive correlation

between tumor-recruited CD33+ myeloid cells and the progression of

human breast cancer from DCIS to IDC (60). Additionally, they found

a significant association between CD33+ MDSCs and poor prognosis

and worsened overall survival (OS) in the ER- subtype (61).

Furthermore, the transcriptional factor deltaNp63 enhanced the

recruitment of MDSCs and correlated with poor prognosis and

metastasis in TNBC (62). A pre-clinical study revealed the major

role of CXCR2+ MDSCs, a subtype of MDSCs, in breast cancer

metastases (63). Moreover, MSDCs indirectly regulate immune

response and hinder cancer immunotherapy by interacting with

other components of the TME (64). The critical role of TME

MDSCs in causing immunosuppression and resistance to cancer

immunotherapies during breast cancer progression underscores the

need for further comprehensive studies to successfully develop

innovative immunotherapies.

Tumor-associated neutrophils
Neutrophils, comprising 50-70% of circulating leukocytes,

represent the body’s primary defense against infections (65).
Frontiers in Immunology 06
Additionally, they play a crucial role in tumor progression by

infiltrating the TME. The TME regulates the recruitment and

polarization of neutrophils, allowing them to develop either an anti-

tumor (N1) or pro-tumor (N2) phenotype in response to cytokines

present in the TME (66, 67). N1 polarized neutrophils exhibit a robust

immune profile characterized by elevated levels of TNF-a, CCL3,
ICAM-1, and reduced arginase expression. On the other hand, N2

TANs overexpress several chemokines, including CCL2, CCL8,

CXCL1, CXCL2, etc (68). The increased NADPH oxidase activity of

N1-like neutrophils leads to the generation of cytotoxic ROS, which can

effectively target tumor cells (69). Despite the critical role of neutrophils

in the TME (70, 71), further studies are warranted to investigate

molecular and cellular networks that drive immunosuppressive

phenotype in neutrophils in TME. Studies have demonstrated the

preferential migration of neutrophils into specific breast tumor

subtypes, such as hormonal negative ductal adenocarcinoma and

TNBC (72). Additionally, TGF-b has been shown to promote the N2

phenotype in neutrophils infiltrating the TME (66). TANs in the

TNBC TME are a source of proangiogenic factors and matrix

metalloproteinase (MMP)-9, a protease crucial in ECM remodeling

(73). MMPs and gelatinase B/MMP-9 actively degrade the extracellular

matrix, promoting tumor invasiveness and metastasis (74, 75). MMP-9

also contributes to angiogenesis and tumor progression by releasing

VEGF-A and inhibiting anti-angiogenic molecules (70). TANs’

inability to express tissue inhibitors of metalloproteinase-1 (TIMP-1)

enhances the angiogenic potential of neutrophil-derived MMP-9 in the

TME, unlike cells expressing the MMP-9/TIMP-1 complexes (76).

Recent findings have shown that in the presence of CD90, TIMP-1

expressed by TANs induces epithelial-mesenchymal transition (EMT)

in breast cancer, facilitating metastasis (77). As a result, a significant

reduction in the spread of cancer has been observed through CD90

blockade (77). Several strategies can be employed to target TANs,

including preventing neutrophil migration to tumors, hindering their

polarization into N2-type, and targeting neutrophil-associated

mediators (71, 78). However, further studies are warranted to

characterize TANs’ pro-tumoral role during breast cancer

progression properly.

Mast cells
MCs demonstrate a vital role in both innate and adaptive

immunity. Positioned within epithelial and mucosal tissues

throughout the body, MCs effectively regulate various immune

and non-immune cell types, including T and B lymphocytes,

endothelial cells, fibroblasts, macrophages, and DCs (79). Notably,

MCs exhibit a dual function in breast cancer progression (80). Their

ability to produce anti-tumoral cytokines, such as IL-1, IL-4, IL-6,

and TNF-a facilitates CD8+ priming and maturation (81).

Conversely, MCs can assume pro-tumor roles by increasing the

production of immunoregulatory molecules, including IL-8,

fibroblast growth factor (FGF)-2, TGF-b, VEGF-A, CXCL8, and
CXCL16 (82). Such effector molecules released by MCs hinder

immunity, degrade the ECM, and enhance tumor vascularization,

thus modifying the TME (82, 83).

In the context of breast TME, MCs actively promote cell

proliferation, invasiveness, and metastases, ultimately correlating
frontiersin.org
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with a poor prognosis (84). Additionally, MCs are crucial in

promoting angiogenesis through secretion of angiogenic cytokines

(85). MC stabilizer, disodium cromolyn, has demonstrated its

ability to induce an anti-tumor effect by effectively inhibiting the

production of VEGF and platelet derived growth factor (PDGF)

(86). The infiltration of humanMC subpopulations within the TME

can be classified based on their expression of the proteases chymase,

tryptase, or tryptase-chymase (87). The involvement of chymase

and tryptase in ECM remodeling and the production of angiogenic

factors highlights their significant role in promoting invasiveness

(88). The functions of tryptase and chymase MCs in breast cancer

are specific to subtypes. Research by Glajcar et al. revealed a

significantly higher presence of the MC tryptase-chymase subset

in luminal A and B tumors compared to HER2+ and TNBC,

indicating relevance in these subtypes (89). Various studies have

also shown the contribution of tryptase+ MCs to tumor progression

in TNBC and luminal A breast cancer (89, 90). Although MC

stabilizers and protease inhibitors have been successfully used in

other cancers, their clinical effectiveness in breast cancer remains

uncertain (91). Conversely, a recent report suggested the increased

infiltration of MCs is associated with lower tumor grade, reduced

tumor proliferation, and decreased HER2 overexpression (92).

Further studies are needed to fully comprehend MC function and

explore their potential as therapeutic targets in breast cancer.

Tumor-associated macrophages
TAMs are abundant immune cells within the TME (93).

Human blood monocytes undergo differentiation into naïve

macrophages (M0) and subsequent polarization into M1 and M2

phenotypes mediated by IFN-g and IL-4, respectively (94, 95).

M1 macrophages are highly phagocytic and are associated with

CD4+ polarization towards IFN-g producing Th1 cells (95). M1-like

macrophages possess the capability to induce acute inflammatory

responses through the production of inflammatory cytokines and

chemokines such as IL-2, IL-12, IL-23, TNF-a, CXCL3, CXCL 5,

CCL8, CCL15, as well as reactive nitrogen and oxygen

intermediates, which exert antitumor effects (96, 97). Resident

macrophages play a critical role in host defense (98). However,

macrophage populations in TME adapt to an anti-inflammatory,

M2-like phenotype (99). The recruitment of TAMs to the TME is

promoted by stromal and tumor cells’ production of chemokines

and growth factors (100). Peripheral blood monocytes derived from

the bone marrow are recruited to the tumor site and undergo

differentiation into TAMs (101). The CSF is an integral factor in

regulating the recruitment of macrophage populations (102). The

recruitment of peripheral blood monocytes to the tumor site is

facilitated through chemokine receptors expressed on monocytes

and chemokine gradient in TME. One such example is the binding

of CCL2 to CCR2 and CCR5 receptors on monocytes, leading to

monocyte recruitment to the TME (103). Another example is the

binding of CCL20 to CCR6 receptors (104).

In breast cancer, the polarization of monocytes to TAMs is

influenced by various factors, including tumor-derived factors

produced by breast cancer cells and other cells in the TME (105).

Monocyte differentiation into TAMs is mediated by VEGF-A and
Frontiers in Immunology 07
IL-4 (106). M2 TAM differentiation can occur through IL-4 secreted

from Th2 cells and IL-10 derived from Tregs (107). IL-10 inhibits

the production of pro-inflammatory chemokines by macrophages

and promotes the self-polarization of TAMs (108). Furthermore,

alternative M2 activation of TAMs is elicited by IL-34 and IL-13

derived from Th2 cells, eosinophils, or basophils (102). These

macrophages serve as a significant source of proteolytic enzymes

that facilitate the destruction of the ECM and promote neoplastic

cell invasion (74).

TAMs contribute to immune evasion by producing IL-10, EGF,

and TGFb (99, 109). The EGF produced by TAMs actively

stimulates the proliferation of breast carcinoma cells (110),

whereas TAM-produced IL-10 promotes the accumulation of

tumor cells at distant sites (111). Furthermore, TGFb originating

from TAMs enables monocyte efflux (112). Also, TAMs facilitate

tumor cell growth, angiogenesis, metastasis, and immune evasion

by recruiting Tregs (113). TAMs can also establish cancer stem-cell

niches, leading to tumor chemotherapy resistance (114). In TNBC,

TAMs consistently activate hepatic leukemia factor (HLF)

through the IL-6-TGF-b1 axis. HLF transactivates gamma-

glutamyltransferase 1 (GGT1), which promotes ferroptosis and

cisplatin resistance, ultimately driving malignancy in tumor cells

(115). High infiltration of TAMs is associated with a worsened

prognosis in breast cancer patients (116). TAMs and DCs play a

pivotal role in inducing and regulating effector T cell and Treg

responses within the TME, thereby influencing resistance to

recently developed immune-checkpoint blockade (ICB) therapies

(93). The Wnt/b-catenin pathway is critical for several biological

processes (117). However, its dysregulation has been associated

with the development of cancer and other diseases. TAMs and DCs

activate the Wnt/b-catenin pathway to induce immune tolerance,

inhibiting effector T-cell responses and promoting regulatory T-cell

responses (118). Consequently, targeting the Wnt/b-catenin
pathway holds promise for effective therapeutic interventions in

breast cancer (119). Research on TAMs has led to the development

of macrophage-focused treatment approaches, which are currently

undergoing clinical trials for breast cancer (120). These strategies

involve suppressing macrophage recruitment, reprogramming

TAMs towards an anti-tumor phenotype, and enhancing

macrophage-mediated phagocytosis or tumor cell killing (100, 116).

Dendritic cells
DCs are critical in maintaining immune surveillance and

achieving a delicate equilibrium between protective immunity and

immune tolerance (121). However, tumors exploit these

mechanisms to regulate anti-tumor immunity (122). DCs can be

categorized into various subsets based on their location, phenotype,

and antigen presentation abilities (123). As professional APCs, DCs

are pivotal in initiating and activating anti-tumor T cell responses in

tumor-draining lymph nodes and the TME (124). During breast

cancer progression, DCs engage in phagocytosis of apoptotic tumor

cells, process and present tumor antigens on MHC-I and MHC-II

molecules, migrate to local lymph nodes, and present antigens to

naive CD4+ and CD8+ T cells to elicit an anti-tumor immune

response (125, 126). Additionally, DCs in the TME secrete
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chemokines and cytokines that play a crucial role in recruiting and

activating effector CD4+ and cytotoxic CD8+ T cells for effective

anti-tumor immune responses (127).

Transcriptional profiling has identified specific subsets of DCs

in both normal breast tissue and breast TME (128). While the

nomenclature and classification of DCs in the TME can be complex,

DCs in TME can be broadly classified into three subsets, including

plasmacytoid DCs (pDCs), monocytic DCs (moDCs), and

conventional DCs (cDCs), which are further classified as cDC-1

and cDC-2 (129, 130). pDCs play a significant role in cross-

presenting tumor antigens on MHC-I molecules to initiate

cytotoxic CD8+ T Lymphocytes (CTL)-mediated anti-tumor

responses (131). pDCs also secrete large amounts of type I

interferons (IFN-a/b) (131). Recent studies have shown that

pDCs in breast TME promote Treg responses, negatively

impacting prognosis and survival rates (132, 133). Additionally,

gene expression analysis has revealed that pDC-related genes are

among the top genes associated with an increased risk of breast

cancer metastasis (134). However, other studies have contradicted

these findings, highlighting a better prognosis and increased

survival linked to pDCs (135–137). Circulating monocytes can

differentiate into moDCs within the TME and are primarily

responsible for inducing CD4+ T cell-mediated responses (138).

However, the immunosuppressive TME often leads to a tolerogenic

phenotype in moDCs, increasing pro-tumor Treg responses (139).

cDC-1 and cDC-2 in the TME play a critical role in capturing tumor

antigens to activate CD8+ and CD4+ effector T-cell responses (134).

cDC-1 can be identified by the expression of markers such as IRF8,

BDCA3, BATF3, CLEC9A, and CD103 (140). They produce

cytokines (IL-12, IL-15, IFN-b) and chemokines (CXCL9 and

CXCL10) to mount a robust immune response (128). In the

luminal and TNBC subtypes, cDC-1 has been associated with

improved disease-free survival (DFS) and positive patient

outcomes through its activation and expansion of CD103,

enhancing the tumor response to therapeutic programmed death-

ligand 1 (PD-L1) and BRAF inhibition (141, 142). cDC-2 express

various markers such as IRF4, CD11b, SIRPa, CLEC10A, and
CD1C, and produce IL-1b, IL-6, IL-8, IL-12, TFN-a, CCL3, and
CXCL8 to activate anti-tumor T cell responses (143, 144).

DCs have been found to exhibit a dual pro-tumoral and anti-

tumoral role depending on the cytokine milieu in the TME and

their maturation state (145, 146). For instance, immature DCs

support angiogenesis in rapidly growing angiogenic tumors, while

mature DCs suppress angiogenic characteristics (147). Additionally,

infiltration of mature DCs in primary tumors is associated with

reduced metastasis and improved clinical outcomes (148). The

increased expression of CD83, a marker for mature DCs, is

strongly linked to improved survival in node-positive tumor

patients, particularly in TNBC patients with mature CD11c+ (149,

150). Moreover, the presence of CD83+ in the peri-tumoral region

of IDC lesions suggests a potential role for mature DCs, while

immature CD1a+ DCs are found at tumor edges (151). Previous

studies indicate that the immature DC phenotype promotes

primary tumor progression to IDC (148, 152). Furthermore,

elevated levels of pro-tumor molecules like VEGF-A and

prostaglandin E2 in the TME hinder DC maturation, thereby
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inhibiting T-cell proliferation (153, 154). In response, therapeutic

strategies targeting VEGF-A, such as anti-VEGF-A antibodies like

bevacizumab, have shown promise in promoting T cell and DC

infiltration in TNBC (155). Extensive research has unveiled the

pivotal role played by Wnt/b-catenin signaling in the advancement

of breast cancer, spanning both tumor cells and immune cells (156).

The upregulation of Wnt ligands triggers the activation of canonical

b-catenin signaling in DCs, thereby facilitating the generation of IL-

10, TGF-b, and retinoic acid (RA) synthesizing enzymes (122, 157).

This augmented production of immunoregulatory molecules by

DCs within the TME fosters the development of Treg responses,

overshadowing Th1 and CTLs (156, 158). These findings

underscore the potential of targeting DCs in breast cancer

progression as a viable therapeutic strategy, capable of stimulating

robust anti-tumor immunity and suppressing regulatory T-

cell responses.
Innate lymphoid cells in breast TME

Natural killers
NKs are innate lymphoid cells that can directly eliminate tumor

cells by releasing anti-tumor cytokines and cytolytic granules (159).

Their development primarily occurs from hematopoietic stem cells

(HSCs) in the bone marrow, although other origin sites, such as the

thymus and liver, have been proposed (160). Essential

transcriptional factors for NK cell precursors include Nfil3, Id2,

and Tcf1, while maturation relies heavily on Smad4, Tox, Eomes,

Gata3, T-bet, and Runx3 (161–163). Cytokines also play a crucial

role in NK cell development and maturation (164–166). For

example, IL-7 is responsible for generating CD122+ NK

progenitors from HSCs, while IL-15 is critical for the

development of NKs from CD122+ NK progenitors into mature

NKs (mNKs) (167, 168). Additionally, IL-17 modulates the

activities of IL-15 (166). Functionally, mNKs can be differentiated

into two major subtypes: CD56brightCD16dim NK subtypes, which

make up approximately 90% and are involved in cytotoxicity, and

CD56dimCD16bright NK subtypes, which make up the remaining

10% and are responsible for antibody-dependent cell-mediated

cytotoxicity (ADCC) (169). Unlike T-lymphocytes, NK cells

recognize target cells expressing aberrant cell surface proteins,

such as virus-infected or tumor cells, through their Fc receptors

(170). The binding of NK cell Fc receptors to antibody-coated target

cells leads to targeted killing through ADCC. Moreover, NK cells

can eradicate cells that lack or display diminished MHC class I

molecules on their cell surface, a common strategy that cancer cells

employ to avoid CTL responses (171).

Tumor-infiltrating NK cells engage in immunosurveillance

using a combination of activating and inhibitory receptors,

effectively identifying and eliminating target cells while sparing

healthy ones (172, 173). This process is facilitated by the production

of various cytokines and chemokines, including TNF-a, IFN-g, IL-
2, IL-12, IL-21, IL-15, IL-18, CXCR3, and granulocyte-macrophage

colony-stimulating factor (GM-CSF), which actively promote anti-

tumor immunity (174, 175). Additionally, the receptors on NK cells

can selectively target tumor cells by recognizing growth factors like
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PDGF, thereby triggering the release of IFN-g and TNF-a to inhibit

tumor growth (176). Although NK cells exhibit anti-tumor

capabilities, they can also produce immunosuppressive cytokines

that hinder anti-tumor immunity. NK cells secrete angiogenic

factors like VEGF-A and angiogenin, which contribute to the

progression of breast cancer (177). A recent study uncovered a

new mechanism of cancer immune evasion, which involves

inhibiting NK cells’ cytotoxic granule machinery by chitinase-3-

like protein 1 (CHI3L1) (178). This protein, synthesized by tumor

cells, plays a significant role in inflammation, tissue injury, and

remodeling responses (179). Analysis conducted in vitro revealed

elevated levels of CHI3L1 in the sera of trastuzumab-resistant

patients compared to responders (178). CHI3L1 inhibits NK cell

cytotoxicity and ADCC by disrupting the cytotoxic machinery,

preventing lytic granule polarization to the immune synapse, and

hindering downstream JNK signaling, a crucial process for cancer

cell apoptosis (180). Furthermore, administering CHI3L1 in vivo

weakens the control of NK cell-sensitive tumors while blocking

CHI3L1 in conjunction with ADCC effectively treats HER2+

xenografts in mice (178).

NK cell exhaustion has been observed in an immunosuppressive

TME and characterized by reduced activating receptors, decreased

production of effector cytokines (181), impaired signaling/

transcriptional pathways, hypoxia (182), low pH (183),

upregulation of inhibitory receptors like NKG2A, TIM-3, PD-1,

TIGIT, LAG-3, KIR (184, 185), and the presence of Tregs (186),

Bregs (187), and MDSCs (188). This NK cell exhaustion phenotype

presents a significant obstacle to developing NK cell-targeting

immunotherapies. However, new strategies are being developed to

combat NK cell exhaustion and enhance their anti-tumor function.

For example, IL-21 treatment increases IFN-g and granzyme B levels

through Tim-3+PD-1+NK cells, reversing NK cell exhaustion (189).

This highlights the potential therapeutic approach of using IL-21 to

restore NK cell immunity function (190). In addition, IL-15 plays a

crucial role in NK cell proliferation and survival (191). However,

repetitive exposure to IL-15 during cancer treatment can diminish

viable cell cycle signaling, decreased tumor control, and reduced fatty

acid oxidation, resulting in NK cell exhaustion (192–194).

Alternatively, an immunotherapy with membrane-bound IL-15

(mbIL15) is proposed (193, 195). By linking the human IL-15 gene

to the CD8a transmembrane domain gene, mbIL15 can be created.

NK cells expressing mbIL15 have been shown to activate cell cycle

signaling and exhibit higher cytotoxicity against leukemia,

lymphoma, and sarcoma in vitro and in vivo mouse xenograft

tumor models (193). Expression profiling of NK cells can help

identify dysfunction and exhaustion markers relevant to each

breast cancer subtype. However, further studies on NK cell

exhaustion in breast cancer are necessary.

Moreover, TME has demonstrated the capacity to modify the

functionality and phenotype of NK cells (196). In a recent study by

Mamessier et al., the dysfunctional tendencies of tumor-infiltrating

NK cells in invasive and non-invasive breast cancer were

characterized (197). Their findings unveiled a gradual reduction

in the expression of NK cell activating receptors, such as NKp30,

NKG2D, DNAM-1, CD16, CD226, and 2B4, as breast cancer

progressed. Conversely, there was an upregulation of the
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inhibitory receptor NKG2A, which diminishes NK cell cytotoxic

function and evasion of NK cell-mediated anti-tumor immunity

(197, 198). Another study revealed a decline in the levels of NKp46,

a lysis receptor responsible for direct tumor cell elimination, within

the TME compared to normal cells (199). Immunotherapies

targeting NK cells encompass various strategies to improve their

activity, including promoting ADCC with mABs (200), blocking

inhibitory signals (201), utilizing cytokines to augment NK cell

proliferation and cytotoxicity through CAR NKs (202), IL-15 (203),

and adoptive transfer of NK cells (204). In recent years, adoptive cell

therapy strategies have emerged as a promising approach for

utilizing NK cells (205). These immunotherapies entail the

isolation, activation, and expansion of immune cells, which are

then reintroduced into patients to combat tumor cells. A

noteworthy application of this technique involves equipping NK

cells with cancer-targeting CARs (206). However, the potential of

engineered NK cells is hindered by immunometabolism limitations

caused by factors such as hypoxia and cytokine stimulation in the

TME (194, 207). Further studies are needed to understand how NK

cell immunometabolism in TME regulates their anti-

tumor properties.
Lymphoid cells in breast TME

T- lymphocytes
Tumor-infiltrating lymphocytes (TILs) in TME regulate the

induction of robust anti-tumor immunity, immunosuppression,

efficacy of ICB therapy, cancer metastasis, and resistance to novel

combinational ICB therapies (208). The TILs found in the TME

primarily consist of CTLs, B cells, NK T cells, and CD4+ T helper

cell subsets, including IFN-g-producing CD4+ (Th1) cells, IL-4-

producing CD4+ (Th2) cells, Foxp3+CD4+ regulatory T cells (Tregs)

(209). Recent advancements in sub-type classification of TILs, using

techniques such as flow cytometry, genomic approaches (single-cell

RNA-seq, 10X genomic sequencing), and ICB therapies targeting T

cells, have resulted in an increased emphasis on identifying TILs

and potential immunological prognostic biomarkers specific to

different subtypes of breast cancer (210, 211). Despite the ability

of Th1 and CTLs to stimulate strong anti-tumor immunity, the

TME employs various immune evasion strategies to suppress the

infiltration, activation, and effector functions of CTLs and Th1 cells,

inhibiting host anti-tumor effector responses. One extensively

studied mechanism involved in this process is the upregulation of

inhibitory receptors on T cells and higher expression of inhibitory

ligands by tumor cells and APCs within the TME (212). APCs

define the T cell differentiation and activation through tumor

antigen presentation on MHC molecules to T cell receptors

(TCR), expression of CD80 and CD86 ligands, which bind to co-

receptors (such as CD28, ICOS, PD-1, CTLA4), and secretion of

specific cytokines that define the fate of T cell differentiation (213).

These co-signaling receptors can stimulate or inhibit T cell

activation and effector functions. Examples of inhibitory receptors

include PD-1, CTLA-4, LAG3, and TIM-3 (214). These receptors

are crucial in maintaining immune balance and preventing

excessive T cell activation during infections. However, tumors
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highly promote the expression of co-inhibitory receptors on T cells

in TME to promote immune evasion. PD-1, for instance, binds to

PD-L1 or PD-L2 ligands expressed by various immune cells or

cancer cells to facilitate immune evasion (214). PD-1 possesses an

inhibitory immunoreceptor tyrosine-based inhibition motif (ITIM)

and immunoreceptor tyrosine-based switch (ITSM) motif in its

cytoplasmic tail (215). When T cells engage with tumor cells and

APCs, PD-L1 phosphorylates ITIM/ITSM, resulting in the

recruitment of TCR-phosphorylating kinase, cytosolic tyrosine

phosphatases (SHP-1 and SHP-2), and the inhibitory tyrosine

kinase (216). As a result, the PI3K/Akt and Ras/MEK/Erk

pathways necessary for initiating T cell activation are weakened.

Recent research has shown the potential of blocking the PD-1/SHP-

2 interaction as a novel approach to PD-1 inhibition (217).

Accordingly, several monoclonal antibodies (mAbs) targeting PD-

1 (pembrolizumab and nivolumab) and PD-L1 (atezolimumab)

interaction have received FDA approval for the treatment of

various lethal cancers including metastatic melanoma, Hodgkin’s

lymphoma, head and neck squamous cell carcinoma, and breast

cancer, among others (218).

In breast TME, infiltrating T cells demonstrate an upregulation of

PD-1, while APCs (DCs and macrophages) and tumor cells exhibit

higher expression of PD-L1 (219). The expression of PD-1 on CD4+

TILs is correlated with the invasiveness of breast cancer (220).

Moreover, recent studies have shown decreased CD4+ and CD8+ T

lymphocyte infiltration in DCIS and IDC breast cancer subtypes

(221). These findings suggest that the reduced number of T

lymphocytes in TME contributes to the transition of TNBC and

HER2+ cancer subtypes from DCIS to IDC, resulting in a poor

prognosis and worsened overall survival (OS) (222). Another recent

study revealed the efficacy of CD3-HAC, a bifunctional fusion protein

engineered to target EA1-mesenchymal stromal cells against

metastatic breast cancer (223). CD3-HAC specifically binds to PD-

L1-positive tumor cells to attenuate the impact of PD-1/PD-L1 on T

cells exposed to MDA-MB-231, leading to enhanced T cell activation

and stimulated lymphocyte-mediated lysis both in vitro and in vivo

(223). In addition to immune evasion, the heightened expression of

PD-1 on T cells indicates T cell exhaustion. CD8+ T cell exhaustion

was initially identified in mice infected with chronic lymphocytic

choriomeningitis virus (LCMV) infection (224). In this condition, the

chronic presence of viral antigens constantly activates and stimulates

CD8+ T cells, resulting in a decline in their effector functions (224,

225). In the TME, immune cells experience continuous stimulation

from tumor antigens (226). Consequently, their metabolism and

transcription profile change, ultimately leading to functional

exhaustion (227). Immune cell exhaustion in TME is characterized

by persistent tumor antigens stimulation, reduced proliferation

capacity, enhanced inhibitory receptor expression, and decreased

production of effector cytokines such as IL-2, TNFa, or IFN-g (228).
In a comprehensive cohort study of breast cancer patients, it was

discovered that despite the prevalence of T lymphocytes in IDCs, a

significant portion of T cells exhibited reduced activity or were

inactive due to exhaustion. These exhausted T cells displayed

heightened expression of co-inhibitory receptors, PD-1 and CTLA-

4, and diminished levels of active anti-tumor T cell subsets, CD62-L
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and CD127 (229). Phenotyping and functional analysis studies

unveiled a distinctive T cell differentiation subset associated with

exhaustion (230). It was observed that the underlying transcriptional

mechanisms differed between effector T cells and exhausted T cells

(231). This distinction was reflected in the expression of phenotypic

markers, with effector CD8+ T cells exhibiting high levels of CD44

and killer cell lectin-like receptor subfamily G member 1 (KLRG1),

while exhausted T cells displayed low or intermediate levels of these

markers (232). Conversely, inhibitory receptor markers were highly

expressed on exhausted T cells compared to effector CD8+ T cells

(231). Additionally, exhausted T cells exhibited disparate expression

of the transcription factors EOMES and T-bet, whereas effector CD8+

T cells expressed both simultaneously (233). The TME plays a critical

role in inducing functional exhaustion in CD8+ T cells by promoting

the cell surface expression of CD39, an immunosuppressive molecule

(234). CD39+CD8+ T lymphocytes displayed an exhausted phenotype

characterized by reduced production of IFNg, TNF-a, and IL-2 and

increased expression of co-inhibitory receptors such as PD-1 and

CTLA-4. Targeting CD39+ appears promising in restoring T cell

function and as a potential therapeutic intervention (234, 235).

Revitalization of exhausted CD8+ T lymphocytes can be achieved

through the inhibition of PD-1:PD-L1 interaction (236), CTLA-4

(237), and LAG-3 (238). Clinical studies that block the PD-1/PDL-1

inhibitory pathway to restore CD8+ T cell ability to proliferate and

carry out its cytotoxic functions have been reported in other cancers.

For instance, while pembrolizumab and atezolizumab are effective

PD-1/PDL-1 inhibitors in second-line advanced non-small cell lung

cancer (NSCLC), avelumab and durvalumab were effective in late-

phase clinical testing (239). Another clinical study proposed donor

lymphocyte infusion (DLI) targeting T cell exhaustion in hematology

malignancy (240). In a clinical study, their findings reveal that

patients who received DLI had a significant increase in CD8 cell

counts, while the levels of CD4 T cells and B cells remained

unaffected, indicating the potential of DLI to reverse CD8+ T cell

exhaustion (241). However, the use of DLI alongside other T cell

exhaustion revitalization methods has been suggested (242). While

research on T cell exhaustion in breast cancer subtypes remains

limited, future investigations aimed at revitalizing exhausted T

cells and enhancing active T lymphocyte proliferation hold

immense potential for the development of safe and effective

immunotherapies against breast cancer.

The presence of regulatory T lymphocytes (Tregs), specifically

the Foxp3 expressing subtype, is associated with a negative

prognosis in breast cancer patients (243). Tregs express co-

inhibitory receptors such as PDL-1, CTLA-4, and PD-1, which

promote local immunosuppression and contribute to the spread of

breast cancer (244, 245). Targeting Tregs can lead to a breakthrough

in immunotherapy. Current strategies developed to inhibit Tregs’

harmful impact in the TME include inhibiting their recruitment,

favoring their transformation into effector CD4+ T-cell subsets,

blocking their expansion, depleting Tregs, and impeding their

suppressive function (246). Further research and clinical trials are

needed to fully understand the dynamics of T cell exhaustion and

explore the use of combination therapies that can enhance T cells’

effector and cytotoxic functions.
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B- lymphocytes
B lymphocytes are primary mediators of humoral immunity. In

the induction of adaptive immunity, B cells stimulated by antigens,

along with the assistance of helper T cells, undergo differentiation

into antibody-secreting plasma cells, initiating adaptive immune

responses (247). In tumors, B lymphocytes are commonly found in

the lymph nodes and invasive margins (248). Their impact on

tumor onset and progression can be positive, negative, or passive

(249). Upon activation by antigens, B cells undergo differentiation

into antibody-secreting plasma cells. There are five subtypes of

human immunoglobulins (Ig): IgG, IgA, IgM, IgD, and IgE (250).

Among these five Ig types, IgG accounts for approximately 75% of

the antibodies found in human serum (251). Despite being highly

preserved, IgG is classified into four, namely IgG1 – IgG4, which

exhibit varying effector functions based on their interaction with

Fcg receptors (FcgR) (252). Activation of FcgR-expressing cells

triggers ADCC and phagocytosis of tumor cells (253). Conversely,

when expressed by tumors, IgG-FcgR interaction can promote

tumor progression (254, 255). A study conducted by Ma et al.

revealed an abundance of IgG-expressing cancer cells in 68 breast

cancer cases, encompassing 40 primary cancers and 28 metastatic

cancers (256). Their findings demonstrated that IgG-expressing

breast cancer cells exhibit more aggressive biological behavior,

indicating the progression and metastasis of breast cancer.

Moreover, the formation of circulating immune complexes (CICs)

from the Ag-Ab complex can activate FcgR on myeloid cells, leading

to the generation of MDSCs (257). These MDSCs effectively

suppress the anti-tumor function of CD4+ and CD8+ T cells (42).

B cells actively induce tumor cell apoptosis by producing granzyme

B, a potent cytolytic molecule (258). These granzyme B-producing

B cells can perform vital effector and regulatory functions during

immune responses (258). Notably, granzyme B derived from

carcinoma sources has been observed to effectively eliminate

tumor cells in vitro (259). However, it is worth noting that the

presence of granzyme B in breast tumor tissue can degrade the

TCR-zeta subunit in the TCR, thereby impeding TCR assembly,

expression, and anti-tumor signaling. This phenomenon occurs

particularly in continuous antigen exposure and chronic

inflammation (260). Moreover, the production of cytokines such

as IL-2, IL-4, IL-6, IL-7, IFN-g, IFN-a, TNF-a, CCL7, and CCL28

can stimulate an anti-tumor response (261, 262). These vital

molecules are crucial in B cell maturation, differentiation, and

survival (261). Notably, CCL28 and CCL27 direct the migration

of plasma cells to mucosal sites during breast cancer anti-tumor

response, correlating with improved prognosis (263). Conversely,

other chemokines produced by B cells like CCL5, CCL20, and CCL1

are known to attract TAMs, Tregs, and MDSCs and induce EMT in

breast cancer cell (264).

The immunosuppressive B cell subtype, Bregs, produce IL-10,

IL-35, IL-15, and TGF-b cytokines that suppress CD8+ T-cell

cytotoxicity, Treg recruitment, and M2/Th2 polarization (265–

268). A study with a mouse 4T1 model of breast cancer

demonstrated that the secretion of IL-10 by B lymphocytes acts in

a TGF-b-dependent manner to promote the conversion of naive

CD4+ T cells to Foxp3+ Tregs (269). Also, a chemokine, CXCL13,
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functions to recruit B cells to TME, where they differentiate into

Bregs and stimulate EMT in tumor cells (270). A study showed that

nano-trapping CXCL13 reduces Bregs differentiation, leading to

prolonged cancer-free survival (271). Bregs-specific phenotype PD-

1-PD-L1+CD19+ has been reported to exert the greatest suppressive

effects on T effector cells (272). Two separate groups, Campbell et al.

and Miligy et al. in 2017, revealed that B cells with phenotypes

CD19+, CD24+, and CD38+ were correlated with increased tumor

proliferation and risk of recurrence in breast cancer subtypes ER-,

PR- and HER2+ (273, 274). The findings from their studies also

suggested that CD20+ is a prognostic marker for better patient

outcomes. Conversely, numerous studies have shown that Foxp3+

Tregs also express CD20+ and can be indicative of poor prognosis in

breast cancer (273–277). Hence, conducting in-depth research to

accurately define and differentiate the CD20+ anti-tumor role in B

cells and the pro-tumor role in T cells is necessary.
Stromal cells in breast TME

Cancer-associated fibroblasts
CAFs are heterogenous cells that demonstrate their significance

in various aspects of breast cancer, including growth, metastasis,

response to treatment, and resistance to anti-cancer therapies (278).

These cells derive from a range of sources, including normal

fibroblasts, myofibroblasts, mesenchymal cells, stellate cells,

fibrocytes, pericytes, smooth muscle cells, preadipocytes, or bone

marrow-derived cells (279). Additionally, recent research by Flores

et al. has identified CD34+ stromal cells/telocytes as another origin

of CAFs, particularly in the invasive lobular carcinoma (ILC)

subtype (280). Throughout tumor progression, CAFs contribute

to the production of crucial structural proteins like elastin and

collagen type I-V, which are involved in basement membrane

formation (281), inflammation (282), epithelial differentiation

(283), and angiogenesis (284). Moreover, CAFs produce MMPs,

which are responsible for the degradation of the ECM and play a

role in ECM homeostasis (285). Increased proliferation and

secretion of growth factors, immunomodulatory factors, and

ECM proteins have also been observed in CAFs and linked to

their role in breast cancer (286). These CAF-specific markers can be

used to identify breast cancer biomarkers and hold significant

importance in diagnosis, prognosis, and the development of novel

therapeutic approaches against breast cancer (287, 288). CAF

biomarkers are not exclusive to CAFs, thereby requiring a

comprehensive characterization to accurately define CAFs.

Notably, biomarkers such as a-SMA, vimentin, desmin, cadherin-

11, integrin a1b1, and MMPs are utilized for identifying CAFs

originating from myofibroblast (286). However, there remains a

lack of clear understanding regarding the detailed characterization

of pro-tumor phenotypes of CAFs and their associated biomarkers.

Initial studies employing SNP array analyses, multi-gene

sequencing, and whole exome sequencing have reported the

absence of somatic mutations in CAF phenotypes (289, 290).

Subsequent findings have suggested somatic mutations and loss of

heterozygosity as indicative of CAFs in the tumor stroma (291, 292).
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Furthermore, additional reports have demonstrated that epigenetic

modifications, such as DNA methylation, may be responsible for

maintaining the CAF phenotype and contributing to cancer cell

growth and progression (293, 294). Hence, further studies are

required to precisely characterize the pro-tumor properties

of CAFs.

CAFs secrete growth factors such as TGF-b, EGF, FGF-2, TNF-a,
platelet-derived growth factor (PGDF), and VEGF-A, and express cell

surface and extracellular matrix proteins (295, 296). Extensive

research links CAFs to breast cancer progression, with studies

showing that CAFs secrete SDF-1/CXCL12 and HGF, both of

which promote breast cancer growth and metastasis (297). HGF

activates c-Met on tumor cells, leading to enhanced metastasis, while

SDF-1 facilitates tumor growth and angiogenesis through the CXCR4

receptor on breast carcinoma cells. These functions promote the

transition of breast carcinoma from ductal carcinoma in situ (DCIS)

to invasive ductal carcinoma (IDC) (297). Recent targeting of HGF/c-

Met interaction has emerged as a significant breakthrough in breast

cancer therapy (298). Additionally, SDF-1 secretion by breast CAFs

contributes to the proliferation of breast cancer stem cells

(CD44+CD24-) and the induction of drug resistance (299, 300).

Therefore, targeting SDF-1 holds great promise for breast cancer

therapeutics. Furthermore, CAFs play a crucial role in immune

evasion by regulating the miR-92/PD-L1 pathway during breast

cancer progression (301, 302). Molecular profiling of CAFs in

breast tissue and carcinoma has identified differentially expressed

genes (DEGs) that can serve as diagnostic and prognostic biomarkers

and be targeted for developing new therapies (303, 304). Notably,

high PDGF expression by CAFs indicates a shorter median survival

for breast cancer patients (305).

Numerous oncogenic and immune cell signaling pathways

within the TME cross-regulate CAFs and immune cells

(Figure 3), promoting tumor progression, immunosuppression,

and drug resistance (306). These pathways encompass TGF-b/
Smad, Wnt/b-catenin, EGFR, TGF-b, PI3k/AKT/mTOR, JAK/

STAT3, etc (307). Shangguan et al. previously demonstrated that
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inhibiting the TGF-b/Smad signaling pathway in human bone

marrow mesenchymal cells hinders their differentiation into CAFs

(308). Additionally, suppressing the EGFR signaling pathway, a

crucial factor in EbbB/HER subtype metastasis has shown potential

to inhibit CAF-associated cancer stemness (309). Therapies

targeting CAFs have proved effective in overcoming treatment

resistance in HER2+ breast cancer, with increased expression of

NK-IL2RS, NK, and NKT cell signatures before treatment

correlating with improved response to anti-HER2 mAbs-based

therapy (310). Therapeutic targeting of CAF signaling pathways

within the TME presents a promising approach for achieving breast

cancer remission. Considering the significant role of CAFs in breast

cancer metastasis and the complexity of cancer cell molecular

signatures (311), further research and clinical trials are imperative

to establish their potential utility in breast cancer prognosis and

therapeutic intervention.

Cancer-associated adipocytes
CAAs are adipocytes that actively reside near cancer cells,

promoting crucial communication by releasing factors that can

induce localized and systemic effects (312). Adipocytes in the TME

can change in response to signals from cancer cells, leading to the

formation of CAAs. These CAAs may release fatty acids into the

surrounding tissue which can be taken up by breast tumor cells (313).

The increased demand for energy and building blocks for rapidly

dividing cancer cells makes fatty acids a valuable substrate for their

metabolic needs. Within the TME, fatty acids undergo b-oxidation
and serve as the principal source of ATP which promotes tumor

survival and proliferation (314). Breast cancer cells can utilize fatty

acid oxidation (FAO) as a metabolic pathway to oxidize fatty acids

and generate energy. This process becomes particularly relevant in

situations where other energy sources, such as glucose, are limited.

Enhanced fatty acid metabolism, including FAO, has been associated

with increased tumor aggressiveness in breast cancer (315). Fatty

acids not only serve as an energy source but also play a role in various

signaling pathways that can influence cell survival, proliferation, and
FIGURE 3

CAFs-immune cell interplay contributes to breast cancer progression. Interaction of CAFs with immune cells via the production of cytokines and
soluble factors create an immunosuppressive TME, which enhances the progression of cancer to metastasis.
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invasiveness. Fatty acids can also activate specific lipid signaling

pathways within tumor cells leading to changes in gene expression

and metabolic pathways (316, 317). For instance, fatty acids can

activate peroxisome proliferator-activated receptors (PPARs) beside

other nuclear receptors, which can regulate genes involved in lipid

metabolism, inflammation, and cell growth (318). PPARs are a group

of nuclear receptors that play a crucial role in the regulation of fatty

acid metabolism and energy homeostasis (319). Activation of PPARs

occurs when ligands, such as fatty acids or their derivatives, bind to

the receptors. Once activated, PPARs form heterodimers with

retinoid X receptors (RXRs) and bind to specific DNA sequences

called PPAR response elements (PPREs) in the promoters of target

genes (320). This binding regulates the transcription of genes

involved in lipid metabolism, energy homeostasis, and

inflammation (321). In hormone receptor-positive breast cancer,

estrogen receptor-positive (ER+) tumors can be influenced by

adipose tissue-derived factors. Fatty acids and other adipokines

may affect the growth and behavior of ER+ breast cancer cells

(322). Although all adipose depots can secrete inflammatory

factors, such as TNF, IL-6, IL-1b, and TGF-b (323) obese visceral

adipose primarily releases excessive fatty acids, cholesterol,

triglycerides, hormones, and adipokines, closely associated with

metabolic dysfunction and unfavorable cancer outcomes (324).

Additionally, adipocytes can contribute to chemotherapeutic drug

resistance, as their co-culture with fibroblasts can deactivate the

effectiveness of anti-cancer drugs by metabolizing them into less

potent secondary metabolites (325). Understanding the metabolic

interactions between CAAs and breast cancer cells, specifically

involving fatty acids and FAO, has implications for developing

targeted therapies. Researchers are exploring ways to disrupt these

metabolic pathways as potential strategies to inhibit tumor growth

and improve treatment outcomes.

Furthermore, TME’s plasticity allows for transdifferentiation, a

process whereby cells undergo a significant shift in their identity,

thereby acquiring new transcriptional or morphological characteristics

typical of a different cell lineage. Microenvironmental cues including

neighboring cells, extracellular matrix, blood vessels, and immune cells

can induce shifts in cancer cell phenotypes (326). Emerging research

has shown that cancer cells, can exhibit plasticity and undergo

transdifferentiation, which can contribute to tumor heterogeneity

and complicate treatment strategies (327). Despite these challenges,

researchers are exploring ways to harness lineage plasticity for

therapeutic purposes. In a research conducted by Ronen et al, to

capitalize on the plasticity of cancer cells, breast cancer cell

differentiation was redirected towards a non-malignant and non-

proliferative adipocyte fate (328). In this study, the utilization of

Rosiglitazone and an MEK inhibitor as part of the therapy appears

to be particularly effective against aggressive characteristics of

breast cancer cells, consequently inhibiting metastasis. The

transdifferentiated adipogenesis-induced cancer cells, MTDECad

and 3T3-L1 cells formed become functional post-mitotic adipocytes

which have comparable characteristics with functional adipocytes. For

instance, both differentiated cell types express the adipocyte-specific

markers C/EPBa, PPARg2, and fatty acid binding protein 4 (FABP4),

and they secrete the adipocyte-specific adipokine adiponectin (328).

Therapeutic strategies need to consider the evolving nature of cancer
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cells and the potential for phenotypic changes under different

microenvironmental conditions. Generally, CAA significantly

influences various aspects of breast cancer, including risk,

progression, migration, metastasis, and resistance to existing

treatments (329). Therefore, targeting the interaction between

adipose tissue and breast cancer may be a promising approach to

overcoming immune tolerance and drug resistance.
Vasculature cells in breast TME

Endothelial cells
ECs are a constitutive part of the cardiovascular system and are

critical to homeostasis, angiogenesis, and immune response (330). They

regulate the passage of substances through tight cell junctions and line

the basement membrane of capillaries (331). ECs, along with a basal

lamina and strategically positioned pericytes, form the structure of

blood vessel walls (332). ECs facilitate intravasation, allowing cancer

cells to migrate into the blood vessel lumen, a critical step in cancer

metastasis (333). Tumor growth relies on a blood supply, and during

rapid growth, tumors stimulate neovascularization by weakening the

basement membrane of existing blood vessels (334). Upon the

secretion of angiogenic factors like VEGF-A, PDGF, hypoxia-

inducing factors (HIF-1), and MMPs, the basement membrane

degrades. This basement membrane degradation triggers the

migration of endothelial cells and pericytes to the tumor region,

contributing to TME angiogenesis (334). Additionally, tumor-

associated hypoxia, mediated by HIF-1a and HIF-2a, plays a role in
malignant conversion and metastasis, as well as influencing immune

cell functions within the TME (335). Schneider & Miller’s study

revealed that angiogenesis precedes the progression of mammary

hyperplasia to malignancy in breast cancer (336). They demonstrated

that transfection of tumor cells with angiogenic stimulatory peptides

promoted tumor growth, invasiveness, and metastasis (337). Clinical

outcomes have substantiated the efficacy of anti-angiogenic therapy as

a viable treatment approach. However, the use of antiangiogenic drugs

in conjunction with conventional chemotherapy in metastatic breast

cancer has shown limited clinical impact on overall survival (337). It is

essential to conduct further studies by addressing potential obstacles,

such as toxicity, drug resistance, and alternative angiogenesis

mechanisms, in order to optimize the effectiveness of anti-angiogenic

therapies in breast cancer progression.

Recently, correlation between neurogenesis and angiogenesis in

breast TME has been linked to aggressive breast cancer breast cancer

(338). Tumors release neurotrophic factors that can initiate

innervation, a process that imitates angiogenesis (339). Hence, tumor

neurogenesis is intricately linked to metastasis, as the presence of

ingrown nerve endings can release neurotransmitters that significantly

enhance the development of metastatic cells (339). In an

immunohistochemistry analysis of carcinoma breast tissues, it was

observed that protein gene product (PGP) 9.5 protein was present in

61% of IDC tissues compared to fibroadenoma and DCIS, particularly

in ER-negative and node-negative subtypes (340). PGP 9.5, a ubiquitin-

carboxyl hydrolase, is an enzyme expressed throughout the stages of

differentiation in nerve tissue of mice brains and is a useful marker for

detecting central nervous system damage (341). Likewise, in both ER-
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negative and node-negative subgroups of breast IDC, a significant

association was observed between PGP 9.5 expression and higher

microvessel density (MVD), compared to less expression of PGP 9.5

and MVD identified in DCIS. The analysis reveals a clear correlation

between neurogenesis and angiogenesis, particularly in ER-negative

and node-negative subtypes of breast cancer (340). In a human breast

cancer cohort study, a significant association between neurogenesis,

consolidated neuro-angiogenic signature, and high-grade breast cancer

features was observed (342). Single cell-based spatial mapping with

imaging mass cytometry was used to identify the colocalization of

neural and vascular structures, indicating the presence of neurovascular

niches within tumor tissue. Cancer cells can release various signaling

molecules, including growth factors and cytokines, that play a role in

recruiting both sprouting axons (microaxons) and endothelial cells

(microvessels) to the TME (343). This phenomenon is referred to as

neurotropism, and it has been observed in several types of cancers,

including breast cancer (343, 344). The exact mechanisms by which

cancer cells influence axon recruitment are still an area of active

research. The coexistence and potential coregulation of microaxons

and microvessels suggest a complex interplay between neural and

vascular elements within the tumor stroma.

Pericytes
Pericytes are mural cells that envelop blood vessels and reside

adjacent to the endothelial cells lining the capillaries. Pericytes play

a crucial role in the development and stabilization of the vasculature

through TGF-b signaling activation (345). Also, pericytes actively

enhance the physical stability and support of endothelial tubule

function during the initial phase of angiogenesis by co-occupying

endothelial tubules (346). Within the TME, the tumor vasculature

serves multiple functions, such as supporting tumor growth and

facilitating metastasis to distant organ sites (347). Notably, breast

cancer is a highly vascularized tumor with extensive pericyte

coverage (347). Targeting angiogenesis during breast cancer

progression can be approached by inhibiting the vessel-stabilizing

properties of vascular pericytes (348, 349). Depleting pericytes has

been shown to increase intra-tumoral hypoxia and lung metastasis

in advanced-stage hypoxic tumors with pre-established vasculature

(348). The presence of perfusion defects in breast cancer blood

vessels is associated with vessel dilation, tortuosity, and inadequate

perivascular coverage (347, 350). This abnormal vascular system is

partly attributed to morphological and molecular alterations in

pericytes and significant population heterogeneity (347). The

presence of pericytes in the primary TME impedes cancer

progression and metastasis (350). Distinguishing pericytes can be

achieved through morphological characteristics and molecular

markers, including a-SMA, desmin, PDGFR-b, CD248, NG2, and
angiopoietin-2 (349, 351). Many of the pericyte markers are used in

several studies to calculate the mean microvascular pericyte

coverage index (MPI). For instance, a-SMA expression in breast

cancer yielded an estimated MPI range of 32%-80%. Other markers

such as NG2, PDGFRb, desmin, and CD248 have also been

employed for MPI measurement (351). Other markers such as

NG2, PDGFRb, desmin, and CD248 have also been applied in MPI

measurement (350). Many anti-angiogenic treatments involve
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targeting endothelial cells or proangiogenic factors to suppress

neovascularization cause tumor cell death. In the context of anti-

angiogenic treatments, simultaneously targeting both endothelial

cells and pericytes has been suggested (352). According to some

studies, non-selective elimination of pericytes may not provide

benefits but may instead promote tumor aggressiveness and

metastasis. Therefore, gaining a comprehensive understanding of

pericyte heterogeneity in response to changes in the TME can

inform effective pericyte targeting strategies (351, 353).
Conclusion and future directions

The current research findings on the interaction between the TME

and cancer cells have significantly advanced our understanding of their

crucial roles in cancer progression and treatment response.

Traditionally, treatment strategies for breast cancer predominantly

focused on promoting tumor cell death. However, the emergence of

immunotherapy has revolutionized cancer treatment by incorporating

anti-tumor immune responses and targeting TME cells. Successful

research of some clinical trials targeting breast TME has provided a

promising outlook for utilizing these cells in cancer therapies (Table 2).

The cells within the breast TME can either act against or promote

tumor cells; in certain conditions, they may exhibit dual roles. The

ability of TME cells to switch from anti-tumor to pro-tumor functions

poses a significant challenge for immunotherapy. The anti-tumor and

pro-tumor functions of these cells primarily depend on specific

mediators such as cytokines, chemokines, and growth factors in

TME. The interplay between these mediators generated by the

cellular components modulates the TME towards either an anti-

tumor or an immunosuppressive environment. Despite the initial

findings on breast TME, future studies should focus on

understanding the evasion of anti-tumor immunity and exploiting

TME cell mediators to target cancer cells. Immunotherapy has emerged

as a critical component in the treatment of various types of cancer,

including breast cancer.

ICB therapies have shown remarkable efficacy when used alone or

in combination with other treatment modalities. Reprogramming

CTLs through ICB immunotherapies has been successful, but the

resistance caused by TAMs to recently developed ICB therapies

remains challenging. Therefore, there is a need for targeted inhibition

of TAMs to enhance tumor cell-killing capacity, as well as further

investigation into repolarizing TAMs towards an anti-tumor

phenotype. Moreover, the emerging field of immunometabolism and

understanding how TME regulates metabolism in immune cells to

suppress anti-tumor immunity is crucial to developing novel

immunotherapies and overcoming resistance against conventional

and ICB therapies. The potential of adoptive immunotherapy,

specifically equipping NK cells with cancer-targeting CARs, is

hindered by immunometabolism. Extensive research is required to

understand how regulating the metabolism of NK and other immune

cells in TME can promote their anti-tumor activities. Furthermore,

there is a pressing need for further investigation into the recovery of

exhausted T-cells and NK cells to promote their effector functions. The

complexity and heterogeneity of TME cells, such as the CAFs and
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pericytes, present challenges in their proper characterization. The

recent advances in next-generation sequencing, metabolomics, and

bioinformatics, which study cancer progression at both tissue

and single-cell levels, can be employed to identify novel breast

cancer stage-specific biomarkers, functional phenotype of immune

and non-immune cells in TME, resistance to cancer therapies,

and development of novel targeted immunotherapies. Such

investigations will lead to improved stage-specific breast cancer

diagnosis, the development of innovative TME cell-specific targeted

immunotherapies with fewer side effects, and overall improved quality

of life and survival for women with highly metastatic breast cancer.
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