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Polygenic risk associated with
Alzheimer’s disease and other
traits influences genes involved
in T cell signaling and activation
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Julie Schneider3,4,5, David A. Bennett3,4, Wassim Elyaman1,2*
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1Department of Neurology, Columbia University, New York, NY, United States, 2The Taub Institute for
Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States,
3Rush University Medical Center, Rush Alzheimer’s Disease Center, Chicago, IL, United States, 4Department
of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States, 5Department of
Pathology, Rush University Medical Center, Chicago, IL, United States, 6College of Physicians and Surgeons,
Columbia University, The New York Presbyterian Hospital, The Gertrude H. Sergievsky Center, New York,
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Introduction: T cells, known for their ability to respond to an enormous variety of

pathogens and other insults, are increasingly recognized as important mediators of

pathology in neurodegeneration and other diseases. T cell gene expression

phenotypes can be regulated by disease-associated genetic variants. Many

complex diseases are better represented by polygenic risk than by individual variants.

Methods: We first compute a polygenic risk score (PRS) for Alzheimer’s disease (AD)

using genomic sequencing data froma cohort of Alzheimer’s disease (AD) patients and

age-matched controls, and validate the AD PRS against clinical metrics in our cohort.

We then calculate the PRS for several autoimmune disease, neurological disorder, and

immune function traits, and correlate these PRSswith T cell gene expression data from

our cohort. We compare PRS-associated genes across traits and four T cell subtypes.

Results: Several genes and biological pathways associated with the PRS for these

traits relate to key T cell functions. The PRS-associated gene signature generally

correlates positively for traits within a particular category (autoimmune disease,

neurological disease, immune function) with the exception of stroke. The trait-

associated gene expression signature for autoimmune disease traits was

polarized towards CD4+ T cell subtypes.

Discussion: Our findings show that polygenic risk for complex disease and

immune function traits can have varying effects on T cell gene expression

trends. Several PRS-associated genes are potential candidates for therapeutic

modulation in T cells, and could be tested in in vitro applications using cells from

patients bearing high or low polygenic risk for AD or other conditions.
KEYWORDS

polygenic risk score, Alzheimer’s disease, T cells, gene expression, genotype phenotype
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1 Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative

condition that afflicts millions of Americans. While AD pathology

has long been known to include aberrant aggregation of amyloid

beta peptide and tau protein, it is also linked to inflammation and

other immune processes. T cells comprise part of the adaptive

immune response to pathogens and other biological insults.

Recently, T cells in AD patients have shown a high degree of

clonal expansion, a less diverse T cell receptor repertoire, increased

infiltration into the cerebrospinal fluid (CSF) and brain

parenchyma, and upregulation of genes involved in cytotoxicity,

inflammation, immunosenescence, and response to certain

chemokines (1–3). Researchers have previously detailed how T

cell gene expression changes are correlated with individual genetic

variants, some of which are associated with AD and other diseases

(4–11). Several of these studies also profile T cells at various stages

of differentiation or activation using flow-assisted cell sorting or

single-cell RNA-sequencing, and show that many genotype-

dependent gene expression changes are specific to particular T

cell subtypes or activation states. However, aggregating the effects of

many genetic variants may better capture genotype-phenotype

correlation in complex disease, especially if these variants have

been previously linked to disease risk. Thus, we now focus on

correlating polygenic risk scores (PRSs) for AD and other

conditions with T cell gene expression data, building on research

using PRSs to better understand AD and related phenotypes.

While novel approaches to PRS studies are accelerating, few

studies have correlated PRSs with gene expression at this stage (12–

14), and no studies, to our knowledge, have correlated a PRS for any

disease with T cell gene expression. Because our patient cohort

consists of AD patients and age-matched healthy controls from the

Religious Orders Study and Memory and Aging Project (15), we

first calculate a PRS for AD, validating it against diagnostic data and

neuropathological measurements. We then correlate gene

expression data from four T cell subtypes with the PRS for AD,

and with PRSs for 13 other immune cell, autoimmune disease, and

neurological disease traits. We differentiated these T cell subtypes

between CD4+ vs. CD8+ and naïve vs. memory populations, to

better capture the reality of cell type-specific or state-specific effects

of genetic variants on gene expression that has been shown in other

studies (6, 8–11).
Abbreviations: Ab, Amyloid beta; AD, Alzheimer’s disease; ALS, Amyotrophic

lateral sclerosis; ANOVA, Analysis of variance; ClinAD, Clinical diagnosis of

Alzheimer’s disease; CNS, Central nervous system; CPM, Counts per million;

CSF, Cerebrospinal fluid; DGE, Digital gene expression; DNA, Deoxyribonucleic

acid; Eqtl, Expression quantitative trait loci; GO, Gene ontology; Gpath, Global

pathology score; GSEA, Gene set enrichment analysis; GWAS, Genome-wide

association study; LD, Linkage disequilibrium; MAF, Minor allele frequency; Mb,

Megabase; MRI, Magnetic resonance imaging; MS, Multiple sclerosis; pathoAD,

Pathological diagnosis of Alzheimer’s disease; PBMC, Peripheral blood

mononuclear cell; PET, Positron emission tomography; PD, Parkinson’s

disease; PRS, Polygenic risk score; RNA, Ribonucleic acid; ROC, Receiver

operating characteristic; ROSMAP, Religious Orders Study/Memory and Aging

Project; SNP, Single nucleotide polymorphism; TCR, T cell receptor.
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We aim to understand the differential gene expression in T cells

at different polygenic risk levels for AD and other disorders. We

hypothesize that disease-relevant genes and pathways will be

differentially expressed with respect to polygenic risk for disease.

We expect that our dataset, involving four T cell subtypes, will

highlight differences in PRS-associated genes across T cell subtypes

and disease traits. Our findings highlight biological pathways and

other mechanisms of polygenic risk for disease, which can aid in

hypothesis generation for future targeted studies of T cell behavior

in AD and other conditions. They also provide interesting

comparisons to previous genotype-phenotype correlation studies

using T cell RNA-sequencing data (4–11).
2 Materials and methods

2.1 Study participants

Study participants come from the Religious Orders Study (ROS)

and Memory and Aging Project (MAP), described in detail elsewhere

(15). Briefly, ROS enrolls Catholic priests, nuns, and brothers,

without known dementia, aged 53 or older from more than 40

groups in 15 states across the USA. MAP enrolls men and women

without known dementia aged 55 or older from northeastern Illinois.

Peripheral blood mononuclear cells (PBMC) from 96 ROSMAP

participants were used in this study. 48 participants were clinically

and/or pathologically diagnosed with AD, while 48 participants

without dementia served as controls. Brain tissue from each

participant was analyzed post-mortem to detect pathological signs

of neuritic plaques and neurofibrillary tangles.
2.2 Sample preparation, RNA-sequencing,
and genotyping

PBMCs were isolated by Ficoll gradient centrifugation,

then sorted by high-speed flow cytometry into the following T cell

subtypes: CD4+CD45RO-, CD4+CD45RO+, CD8+CD45RO-, and

CD8+CD45RO+. Because CD4+ T cell subtypes such as Th1,

Th2, Th17, and regulatory T cells are best distinguished by

intracellular markers that cannot be detected prior to fixation and

permeabilization, and to ensure sufficient post-sorting cell counts for

RNA extraction, we chose to forgo isolation of CD4+ T cell subtypes

beyond the presence or absence of CD45RO. Total RNA was

extracted using buffer TCL (Qiagen), then RNA-seq libraries were

prepared according to the Single Cell RNA Barcoding and

Sequencing method originally developed for single-cell RNA-seq

(16), adapted for extracted total RNA. RNA libraries were collected

on a single 384-well plate and sequenced on the Illumina HiSeq using

the High-throughput 3’ Digital Gene Expression (DGE) library (16).

Genes with maximum count value of at least three and non-zero

values in over twenty percent of samples were included in differential

expression analysis. Expression values were normalized to counts per

million (CPM). The EdgeR package in R (17) was used to conduct

differential expression, and Voom transformation (18) was applied to
frontiersin.org
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gene expression data. DNA for genotyping was extracted from whole

blood or frozen post-mortem brain tissue and genotyped using the

Affymetrix GeneChip 6.0 platform. Quality control of genotyping

data was done with PLINK (19) (http://pngu.mgh.harvard.edu/

~purcell/plink/), and imputation was done with MACH software

(version 1.0.16a).
2.3 Polygenic risk score calculation

Summary statistics files from genome-wide association studies

were used as the base data. Duplicate SNPs were removed from base

data files, as were ambiguous SNPs for which the effect allele and

other allele were complementary nucleotides (C with G or A with

T), using PLINK (19). For summary statistics whose coordinates

were found on genome build 38, LiftOver (http://genome.ucsc.edu)

was used to convert these coordinates to genome build 37, to match

the target data. For traits with missing odds ratio values in the

summary statistics, these were calculated from the beta values by

using the exp() function in R. For traits with missing beta values,

beta values were estimated using the sample size, Z-score, and allele

frequencies. The estimated beta values were then converted to odds

ratio values using exp().

Genomic data from ROSMAP participants was used as the

target data. These data were stored as three separate batches

(ROSMAP_n1686, ROSMAP_n381, and ROSMAP_BU) due to

separate genotyping batches, and initially processed individually

by cohort. Quality control of target data was done with R and

PLINK (19). First, SNPs were filtered to exclude those with a minor

allele frequency (MAF) less than 0.01, a Hardy-Weinberg

Equilibrium test p-value under 1 x 10-6, and SNPs missing in at

least 1% of participants. Individuals missing over 1% of SNPs in

their genotyping data were also excluded at this stage. We then

pruned highly correlated SNPs using a window size of 200 variants,

a step size of 50 variants at a time, and filtered out any SNPs with an

LD r2 value above 0.25. Participants with heterozygosity F

coefficients greater than three standard deviations from the mean,

with differences between reported sex and sex chromosomes, or

with a first or second degree relative in the sample, were excluded.

After these quality control steps on individual batches, we used

PLINK to merge ROSMAP_n1686, ROSMAP_n381, and 15

participants from ROSMAP_BU. We limited the inclusion of

participants from ROSMAP_BU to participants with T cell gene

expression data whose AD PRS was not an outlier in the overall

distribution. This was because of the high number of unique SNPs

in the ROSMAP_BU cohort relative to ROSMAP_n1686 and

ROSMAP_n381, which we suspect is due to low-quality

imputation of rare variants. In the merged dataset, we excluded

SNPs with MAF < 0.01 and SNPs missing in at least 5% of

participants. The merged dataset was then used as target data in

further PRS calculation.

We used PRSice-2 (20) for PRS calculation. PRSice-2 uses the

standard C+T approach, meaning that PRSice-2 first performs

clumping of input variants using parameters of a 250 kb window,

p-value threshold of 1, and r2 value threshold of 0.1. The user also

inputs one or more p-value thresholds, such that the software will
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only include SNPs with a p-value below the threshold in PRS

calculation. The software also automatically performs strand-

flipping for SNPs whose alleles mismatch between base and target

data. The software then adds the effects of individual SNPs

as weighted by odds ratio for PRS calculation. We used age and

sex as covariates. For the AD PRS, clinical AD diagnosis was used as

the input phenotype, and SNPs within 1 Mb of the APOE locus

were excluded as input in PRS calculation. Including genotyping

batch as an additional covariate did not change the calculated

PRSs. We input a range of p-value thresholds for SNP inclusion

from 5 x 10-8 to 1, yielding a set of PRS scores as output for

each individual.
2.4 Validation of AD PRS against clinical
and pathological data

The pROC package (21) was used to calculate receiver operator

characteristic (ROC) curves for the AD PRS against clinical AD

diagnosis and against pathological AD diagnosis, at each SNP p-

value threshold. We also used this package to calculate the

predictive value of the AD PRS from the area under the ROC

curves, to determine which p-value threshold yielded the highest

predictive value. We compared the distribution of AD PRS scores at

this p-value threshold between AD and non-AD participants using

student’s T test. We also ran comparisons of the AD PRS at this p-

value threshold against Braak score using nonparametric one-way

ANOVA, and quantitative pathological measurements (amyloid

plaque burden, tau tangle burden, and global pathology

measurement) using linear regression with age, sex, clinical AD

status, pathological AD status, and the first ten principal

components from genotyping data as covariates.
2.5 Detection and pathway analysis of PRS-
associated genes

Genotyping data and T cell RNA-sequencing data were

available for 78 participants, with one participant excluded whose

AD PRS was an outlier. For each trait and each T cell subtype, we

ran linear regression of gene expression counts against PRS scores

to detect PRS-associated genes using the lm() function in R. For

covariates, we used age, sex, AD diagnosis (clinical and

pathological), and the first 10 principal components from

genotyping, with no interactions between covariates. Genes

expressed in fewer than 20% of participants, or with a maximum

expression count under 3, were excluded from PRS association

analyses. Because non-AD traits did not have relevant phenotypic

data for PRS validation, we used the same p-value threshold (p = 1)

as the optimum PRS for all traits. For pathway analysis of PRS-

associated genes, we used Gene Set Enrichment Analysis (GSEA

(22)) separately for each T cell subtype and each trait. GSEA was

run using the t-value from the PRS-gene association as the ranking

metric, using the default value of 1,000 permutations and restricting

the gene sets to those with 15-200 genes, using the GO Biological

Processes 2022 database (23). We then detected biological pathways
frontiersin.org
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which were significantly over-represented or under-represented at a

significant level of 0.05, after correcting for false discovery rate.

Figures were generated using the ComplexHeatmap (24), cowplot,

and ggplot2 (25) packages in R.

Genes associated with the PRS for AD were compared to a

published single-cell RNA-sequencing dataset of peripheral blood

from AD patients and healthy controls (26). We downloaded this

dataset from the Gene Expression Omnibus (accession number

GSE181279) and processed the data using the Seurat package in R

(27). We first conducted a standard quality control and data

normalization and transformation workflow for each individual in

the dataset, then integrated the Seurat objects using the top 5000

highly variable genes as integration features. In the integrated object,

we removed cells with over 15%mitochondrial genes, cells containing

under 200 or over 3000 genes, and cells containing over 10,000

unique molecular identifiers, leaving 36,209 cells. We then reran

quality control, normalization, transformation, and dimensionality

reduction with principal component analysis, and clustered the cells

with a resolution of 0.8. We identified clusters with high expression of

CD3E and re-clustered them as T cells, rerunning the same quality

control steps as in the integrated object, leaving 26,515 T cells. We

then examined expression of canonical T cell subtype markers in each

cluster to define clusters of CD4+ naïve, CD4+ memory, CD8+ naïve,

and CD8+ memory T cells, corresponding to the four T cell subtypes

in our PRS dataset. We used the FindMarkers function to detect

differentially expressed genes between the AD subjects and healthy

controls for the four T cell subtypes.
3 Results

3.1 Calculation and validation of a
polygenic risk score for AD

We first used PRSice-2 (20) to calculate a genome-wide polygenic

risk score for AD, for 2051 individuals in ROSMAP. We used the

summary statistics from the Kunkle et al., 2019 (28) genome-wide

association study (GWAS) for SNP effect sizes excluding SNPs in the

APOE locus (see Methods). PRSs were calculated using SNPs

associated with AD at p-value thresholds ranging from 5 x 10-8 to

1 (all SNPs), and PRS distributions at each threshold were

standardized to have a mean of 0 and standard deviation of 1. For

individuals with clinical or pathological AD diagnostic data, we

computed the predictive value of the AD PRS for each p-value

threshold (see Supplementary Figure 1). Using SNPs at a p-value

threshold of 0.75 or 1 resulted in the highest predictive value of the

PRS. We also found that the AD PRS correlated significantly with

other measures of AD neuropathology, including Braak staging of tau

pathology, amyloid burden, tau tangle burden, and global pathology.
3.2 Correlation of gene expression with
PRSs for AD and other traits

Prior to correlating PRS with gene expression, we

hypothesized that individuals in our cohort could possess
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genetic risk variants for other neurodegenerative disorders as

well. Because other neurological disorders, such as epilepsy and

stroke, involve acute damage to the blood-brain barrier with

potential infiltration of peripheral immune cells into the CNS

(29, 30), polygenic risk for these conditions could be linked to T

cell-mediated neuroinflammation. We also hypothesized that T

cell gene expression trends could be affected by polygenic risk for

traits related to immune function or autoimmune disease, even

without clinical presentation of these conditions in our cohort.

Thus, we computed PRSs for common traits or diseases in these

categories, including lymphocyte counts (31), white blood cell

counts (31), C-reactive protein levels (31), ulcerative colitis (32),

Crohn’s disease (32), multiple sclerosis (33), rheumatoid arthritis

(34), systemic lupus erythematosus (35), type 1 diabetes (36),

Parkinson’s disease (37), amyotrophic lateral sclerosis (38),

epilepsy (39), and stroke (40). The GWAS studies used as base

data in PRS calculation did not distinguish between phenotypic

subtypes in disease cases, with the exception of rheumatoid

arthritis, which additionally analyzed variants in seropositive

patients after the case-control comparison.

78 participants with PRSs calculated from genotyping array data

had T cell RNA-sequencing data from blood samples. One of these

participants was excluded because their AD PRS was an outlier at the

PRS distribution for p = 1, leaving 77 participants for correlation

between PRSs and gene expression. Demographics for these

participants, including AD diagnostic information, are given in

Table 1. Each participant had bulk RNA-sequencing data from the

following T cell subtypes, sorted using flow cytometry: CD4+CD45RO-

, CD4+CD45RO+, CD8+CD45RO-, and CD8+CD45RO+. The

CD45RO marker was used to separate putatively naïve from

memory T cell populations to distinguish PRS-associated genes by T

cell differentiation state, although a subset of memory T cells are now

known to lose CD45RO expression and re-express CD45RA (41). In

these participants, we computed the PRSs using all independent SNPs

in the genome (p-value threshold of 1), since we did not have

phenotypic data for PRS optimization, and the optimal PRS for AD

was derived from the higher p-value thresholds.We then correlated the

PRSs with T cell gene expression (see Methods for quality control
TABLE 1 Summary of demographics for patients with data used for PRS-
associated gene calculation.

Number of genotyped subjects with
RNA-sequencing 77

Mean age at blood draw ± SD 79.9 ± 6.06

Women 54
(70.1%)

Number of autopsies 51
(66.2%)

Number of AD diagnoses based on pathology 30
(39.0%)

Number of AD diagnoses based on clinical signs 29
(37.7%)

Number of both clinical and pathological AD diagnoses 16
(20.8%)
fro
ntiersin.org

https://doi.org/10.3389/fimmu.2024.1337831
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dressman et al. 10.3389/fimmu.2024.1337831
measures used at this stage). 46 of our sequencing participants also

have brain RNA-sequencing data from a recent publication (13),

although we focus only on T cell gene expression here. A listing of

all PRS-associated genes by trait and T cell subtypes is found in

Supplementary Table 1.

Genes with a nominally significant relationship with the PRS

are shown on the heatmap in Figure 1. Overall, 5961 genes (of 6139

genes passing minimum expression thresholds) were associated

with the PRS for at least one trait in at least one cell type. We

compared genes associated with the PRS for AD to a published

single-cell RNA-sequencing dataset of peripheral blood

mononuclear cells in AD patients and healthy controls (26). After

identifying cell clusters from the single-cell data analogous to the

four T cell subtypes in our dataset (see Supplementary Figure 2A),

we found genes in these clusters with differential expression in AD

patients versus controls. Of the genes found in both datasets that

were significantly associated with the AD PRS in our cohort, 4-33%

of them were upregulated with high AD PRS in our dataset and with

AD status in the single-cell dataset, depending on the T cell subtype.

These genes include MAPK1 in CD8+CD45RO+, which represses

interferon signaling and is a key mediator of signaling pathways that

promote cell proliferation and differentiation (42), C1QBP in

CD4+CD45RO+, which promotes T cell survival and

proliferation (43), and several genes involved in downstream

signaling of the T cell receptor, such as DBNL in CD4+CD45RO-

, NFATC2 in CD4+CD45RO+, and ITSN2 in CD8+CD45RO+ (

(44–46), see Supplementary Figures 2B-F). For a full listing of genes

differentially expressed in AD patients for each of the four T cell

subtypes in the comparison dataset, see Supplementary Table 2).

About 50% of PRS-associated genes were significantly

associated with the PRS in four or more trait/cell type
Frontiers in Immunology 05
combinations (see Supplementary Figure 3 for breakdown of trait

overlap across and within cell types). Interestingly, several

autoimmune disease traits feature almost all significant PRS-

associated genes in an inverse relationship with the PRS (as seen

by cells colored blue), regardless of the cell type, suggesting a

pattern of downregulated genes in individuals with high polygenic

risk for these conditions. 364 genes were nominally associated with

the PRS for over ten traits across T cell subtypes. Among them were

genes that play a role in T cell memory and activation, T cell

receptor signaling, and cytokine response. These include TRAT1,

SLA, IL10RA, MAF, and CXCR4. CXCR4 has potential disease

relevance as a chemokine receptor that could mediate infiltration of

T cells into the central nervous system (CNS) (47, 48). Interestingly,

SOD1, a gene with risk variants for ALS (49), was associated with

the PRS for several non-ALS traits in our cohort.

We further compared PRS-associated genes across traits by

calculating the Pearson’s correlation coefficient of the effect size of

PRS association for any two traits within each T cell subtype. As

expected, genes associated with the PRSs for lymphocyte and white

blood cell counts were highly correlated in all four T cell subtypes

(see Figure 2, quantification in Supplementary Table 3). Within a

particular trait category (immune function, autoimmune diseases,

and neurological disorders), significant correlations between trait-

associated gene expression patterns were generally positive. Trends

in correlation coefficients also remained the same across T cell

subtypes, with few exceptions. However, the gene expression

signature associated with the PRS for stroke was negatively

correlated with other neurological conditions such as Parkinson’s

disease, amyotrophic lateral sclerosis, and epilepsy.
3.3 Pathway analysis of PRS-
associated genes

To interrogate the functional connections of PRS-associated

genes, we used Gene Set Enrichment Analysis (22) (GSEA) to detect

biological pathways in the GO Biological Processes database (23)

over-represented or under-represented by genes from our dataset.

Input genes for GSEA were ranked by the t value for association

with the PRS. Pathways with a false discovery rate q-value under

0.05 are shown in the dot plots in Figure 3 organized by cell type

and colored by trait (significant GSEA pathways can also be viewed

in Supplementary Table 4). Interestingly, some of these pathways

relate to functions without a strongly established biological

connection to disease pathology. For example, the “presynaptic

endocytosis” and “synaptic vesicle recycling” pathways, which we

would expect to be potentially dysregulated in some neurological

disorders, are significant among genes positively associated with the

PRS for systemic lupus erythematosus.

Closer interrogation of several pathways revealed genes

involved in T cell and other immune cell functions. For “substrate

adhesion-dependent cell spreading”, associated with the PRS for

AD in CD4+CD45RO+, genes included C1QBP and ITGA4. The

“hematopoietic stem cell differentiation” pathway, associated with

the PRS for ALS in CD4+CD45RO- T cells, includes pro-

inflammatory interleukin genes IL1A, IL1B, and IL6, and the
FIGURE 1

Heatmap of genes nominally associated with the PRS for one or
more traits. Annotation rows above the heatmap show cell type, trait
type, and trait, matching the color legends at the right. Each row of
the heatmap is a gene, and each cell is colored by the strength and
direction of the association with the PRS (shown by the color legend
at bottom right), or gray if the association is insignificant.
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FIGURE 2

Heatmap comparison of PRS-associated genes across traits. The heatmap summarizes results of Pearson’s correlation test between PRS-associated
genes for any two traits (boxes above yellow diagonal) or the numbers of genes significantly associated with the PRS (p < 0.05) shared between any
two traits (boxes below the yellow diagonal). Traits are listed above and to the left of the heatmap, colored according to trait categories as in
Figure 2. Each box in the heatmap reflects four values, for CD4+CD45RO- (top left), CD4+CD45RO+ (top right), CD8+CD45RO- (bottom left) and
CD8+CD45RO+ (bottom right). Boxes for Pearson’s correlation tests are darker red for r values approaching 1, darker blue for r values approaching
-1, and white if insignificant after Bonferroni multiple testing correction with n = 91. Boxes comparing overlap of significant PRS-associated genes
are darker green for higher numbers of shared genes between two traits. For quantification, see Supplementary Table 3.
A B

C

FIGURE 3

GSEA of PRS-associated genes by T cell subtype. Dot plots show pathways significantly over- or under-represented after multiple testing correction
for (A) CD4+CD45RO-, (B) CD4+CD45RO+, and (C) CD8+ subtypes. Trait is shown by color (see legend at right), q-value after multiple testing
correction is shown by position on the x-axis, and shape denotes whether the t-value sign for the pathway is negative (circle, meaning the pathway
is under-represented) or positive (triangle, meaning the pathway is over-represented). Statistics of significant GSEA pathways are found in
Supplementary Table 4.
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CXCR4 chemokine receptor that may spur T cell migration into

CNS tissue, especially during neurodegenerative disease (3). SELL, a

gene that allows naïve T cells to exit the bloodstream into peripheral

lymph nodes (50), is part of the “response to interferon alpha”

pathway associated with the PRS for C-reactive protein levels in

CD4+CD45RO- (presumably naïve) T cells in our data.

These findings better elucidate T cell functional changes for

disorders whose relation to T cell biology is less understood, such as

AD or epilepsy. Pathway analysis also sheds light on potential T cell

mechanisms for traits whose connection to adaptive immunity is

well known, such as lymphocyte counts or C-reactive protein levels.

Finally, these data imply that the extent and nature of T cell activity

in disease pathology may depend in part on individual polygenic

risk for these conditions.
3.4 Comparing abundance of PRS-
associated genes between CD4+ and
CD8+ T cell subtypes

Some conditions feature pathological mechanisms that are

unique to a particular T cell subtype or favored by one T cell

subtype over another. Many autoimmune disease traits, for

example, are driven more by CD4+ T cell-mediated pathology

than CD8+ (51), while recent single-cell sequencing research in

neurodegenerative disease patients has highlighted mechanisms of

inflammation and cytotoxicity in CD8+ T cell clusters (2, 3, 52). We

sought to determine whether similar patterns existed in our

genotype-phenotype correlation studies, based on the abundance

of PRS-associated genes in CD4+ and CD8+ T cell subtypes by trait.
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Figure 4 shows that autoimmune disease traits (ulcerative colitis

through type 1 diabetes) have most PRS-associated genes in CD4+

T cell subtypes, pairing well with previous observations of CD4+ T

cell involvement in these conditions (51). However, when only

considering genes inversely related to the PRS (denoted by a

negative t-value and shown in the rightmost column), several

traits have the majority of these genes in CD8+ T cell subtypes.

For individuals with high polygenic risk for autoimmune disease,

this suggests a shift towards a downregulated gene expression

pattern in CD8+ T cells, even as CD4+ T cells ramp up

expression of many genes. Lymphocyte and white blood cell

count traits have a higher percentage of all PRS-associated genes

in CD8+ T cell subtypes. For several traits, the relative percentage of

genes in CD4+ versus CD8+ T cell subtypes differs widely by the

t-value sign (for quantification, see Supplementary Table 5).

We looked further into PRS-associated genes on the extreme

ends of the t value distribution for traits where gene enrichment in

CD4+ vs. CD8+ T cells differed by t value sign. Genes in CD4+ T

cells with a negative t value for association with the PRS included

HAVCR1 in Crohn’s disease. CD4+ genes inversely associated with

the PRS for Parkinson’s included DOCK8 and CD59. Among CD8+

genes that scaled proportionally with the PRS for Parkinson’s

disease, top genes included GZMM and IL2RB. Genes related to

the PRS for C-reactive protein levels include IL16, IL10RA, CASP1,

and PPM1A. PPM1A, while upregulated in CD4+ T cells of

individuals with high PRS for C-reactive protein levels, is

downregulated in CD8+ T cells for the same individuals in our data.
4 Discussion

Our experiments show that T cell gene expression

phenotypes can change with respect to polygenic risk for disease.

We calculated a PRS for AD in our cohort and estimated its

predictive value for disease, then calculated PRSs for 13 other

diseases and traits. Correlating PRSs with gene expression, and

determining PRS-associated genes with high overlap across

traits and T cell subtypes, detected genes involved in key aspects of

T cell signaling and activation. We explored how PRS-associated T

cell transcriptomic signatures compared between traits, and biological

pathways and processes represented by PRS-associated genes. Finally,

we found that several traits displayed differential polarization of their

PRS-associated genes towards CD4+ or CD8+ T cell subtypes, even

when considering the direction of association between the PRS and

gene expression. While several groups have previously detailed

changes in T cell gene expression related to individual genetic

variants, our analyses here show that many disease-associated

variants can have an aggregate effect on T cell transcriptomic

phenotypes as well.

The predictive value of the AD PRS in our cohort for disease status

provided helpful confirmatory results in light of other PRS studies. Just

as we detected associations between the AD PRS and measures of AD

pathology, polygenic risk for AD has been shown elsewhere to correlate

with neuropathological phenotypes such as higher amyloid burden as

measured with positron emission tomography (PET) (53, 54), volume

loss in brain regions such as the hippocampus and entorhinal cortex as
FIGURE 4

Comparing enrichment of PRS-associated genes between CD4+
and CD8+ T cell subtypes. Heatmap showing the relative abundance
of all PRS-associated genes (left column), genes with a positive t-
value (middle column), or genes with a negative t-value (right
column) in CD4+ or CD8+ T cell subtypes. Cells are colored red
when most genes are in CD4+ T cell subtypes, and blue when most
genes are in CD8+. Quantities associated with this heatmap are
available in Supplementary Table 5.
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seen onMRI (55, 56), and levels of phosphorylated tau or amyloid beta

in plasma or cerebrospinal fluid (57–59). Less understood is the way

immune cell behavior is shaped by disease-associated genetic variants

in aggregate.While our dataset derives from a primarily AD participant

cohort, T cell gene expression changes were observed in association

with the PRS for eighteen other traits. Just as other studies have shown

PRS-associated changes in cognitive performance at ages far below the

typical onset of AD (53, 56), our gene expression findings suggest that

T cell transcriptomic identity could be altered by a genetic landscape

predisposing to conditions like lupus or epilepsy, even without

clinical signs.

Correlating transcriptomic phenotypes across traits in our dataset

generally showed that traits within a particular category, such as

autoimmune disease, had positively correlated gene expression

patterns. Some exceptions exist, as for stroke, whose PRS-associated

gene expression profile correlated poorly with other neurological

conditions. Dissecting the relationship between PRSs across traits, or

PRS-associated phenotypes, could be informative in other cohorts. We

know that the overall genetic architecture of several autoimmune disease

traits features a notable degree of overlap (60), as do several subtypes of

dementia (61). Our study suggests that PRS-associated T cell genes may

reveal similar polygenic risk-mediated phenotypes across several related

disease traits. For autoimmune disease traits, this overlap could reflect

common T cell autoreactivity mechanisms regardless of the antigenic

target, such as upregulation of genes related to inflammation or

proliferation. If this is the case, therapeutic strategies targeting PRS-

associated T cell genes could show efficacy in a range of autoimmune

conditions. Such an approach could also be effective for neurological

diseases, where immune-targeted therapies that reduce pathology in one

disease context, such as AD, could be repurposed for ALS or epilepsy.

Our pathway analysis results hinted at the importance of profiling

genotype-phenotype correlations in disease-relevant tissue. Several

functionally intriguing pathways included genes known to affect

migration and homing in T cells. In several disease states, T cell gene

expression and clonality can change dramatically upon entry of T cells

into target tissue. For example, in Parkinson’s and Lewy body dementia

patients, T cells isolated from CSF presented a distinct transcriptomic

signature from peripheral blood T cells, including upregulation of the

chemokine receptor CXCR4 (3). Often, genetically-regulated gene

expression changes in T cells are specific to particular T cell subtypes

(6, 8–11, 62) or activation states in vitro (8, 9, 63), suggesting that

genotype-phenotype correlations specific to tissue microenvironment

may exist as well. Our use of peripheral T cells in an AD patient cohort,

as opposed to CNS-derived T cells, represents a limitation to the

generalizability of our findings in a neurodegenerative disease context.

The use of many contributing SNPs as input to the PRS often

results in more generalized findings, compared to the single SNP-single

gene approach of eQTL studies. This was certainly the case in our

results, as only two PRS-associated genes remained significant after

Bonferroni multiple testing correction at q = 0.05. The GWAS base

data used for PRS calculation also generally does not account for the

reality of disease subtypes or phenotypic variability between patients,

which is especially prevalent in autoimmune diseases. While some

diseases show a similar landscape of genetic risk across phenotypic

subtypes (34), future GWAS studies should examine these subgroups

more closely, to identify individual variants or trends in polygenic risk
Frontiers in Immunology 08
associated with specific manifestations of disease progression. Our low

sample size in comparison to most genotype-phenotype correlation

studies likely limits well-powered detection of PRS-associated genes

after multiple testing correction. Future studies seeking to robustly

detect PRS-associated genes, especially in multiple tissues or cell types,

should likely have a sample size of several hundred or more. Newer

options for reduced cost genotyping and RNA-sequencing should

make this approach feasible.

Our use of CD45RO as a marker to differentiate naïve from

memory T cells also represents a limitation to the interpretability of

our findings, as T cell memory populations that re-express CD45RA

(41) would be labeled as naïve by our sorting strategy. These memory

T cells subtypes, known as TEMRA, have particular importance in

neurodegenerative disease contexts (2). CD4+ T cell populations also

have several subtypes distinguished by specific transcription factors

and secreted cytokines, including Th1, Th2, Th17, regulatory T, and

others. In several diseases we have included here, pathology is

mediated far more by some CD4+ T cell subtypes than others,

especially for autoimmune diseases. Other conditions involve a

deficiency in one or more of these subtypes, such as regulatory T

cells in ALS (64). It is likely that our sorting strategy misses some

PRS-mediated gene expression changes that would only be seen in

specific CD4+ T cell subtypes. Importantly, the critical contribution

of B cells to the pathology of several autoimmune diseases is not

reflected in our choice of immune cell types, and should be examined.

Future studies seeking to identify PRS-associated genes in multiple

cell types should be aware of sources of nuance in cell subtype

markers, or use methods such as single-cell RNA-sequencing or

cellular indexing of transcriptomes and epitopes (CITE-seq) to

comprehensively profile markers for robust cell type identification.

In future research, studies that arise from other cohorts involving

collection of genomic and gene expression data will be vital tools for

comparing eQTL with polygenic risk-mediated transcriptomic

phenotypes, especially those that collect gene expression data from

specific tissues or cell types. These studies should be sufficiently large to

generate well-powered results for PRS calculation and correlation of

PRS with other phenotypes. Existing datasets from projects such as

GTEx (65), which has already extensively profiled tissue-specific eQTL,

could also be mined for polygenic risk-mediated gene expression

changes in a variety of disease settings. The number of studies

collecting genome sequencing or genotyping data alongside one or

more quantitative traits will continue to expand, for AD and other

disease cohorts. The utilization of PRSs in genotype-phenotype

correlation studies will be invaluable for diseases such as AD, where

the contribution of T cells is coming to light.
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SUPPLEMENTARY FIGURE 1

Validation of the AD PRS against diagnostic data and pathological trait

measurements. A) ROC curves, colored by the SNP p-value threshold used
to calculate the PRS, showing the predictive value of each set of PRSs for AD

against clinical diagnosis of AD. B) ROC curves showing the predictive value

of the AD PRS against pathological diagnosis of AD. C)Comparison of the PRS
score distribution by Braak score. D-F) Scatter plot of the AD PRS against

quantification of amyloid burden, tau tangle score, and global pathology
score (gpath).

SUPPLEMENTARY FIGURE 2

Visualization of cell clustering and gene expression trends in single-cell RNA-
sequencing of peripheral T cells. A) UMAP projection of T cell subclusters

from the comparison dataset, with clusters colored according to the legend

at right. B-F) Violin plots comparing gene expression between AD patients
and controls for MAPK1 in CD8+memory, C1QBP in CD4+ memory, DBNL in

CD4+ naïve, ITSN2 in CD8+ memory, and NFATC2 in CD4+ memory T cells.

SUPPLEMENTARY FIGURE 3

Summary of the overlap among PRS-associated genes across traits and T cell

subsets. A) Histogram showing the number of genes (y axis) found associated

with the PRS for a given number of traits (x axis) across T cell subsets. B) Stacked
bar chart showing the number of genes (y axis) found associated with the PRS for

a given number of traits (x axis) within T cell subsets, with cell type given by color.

SUPPLEMENTARY TABLE 1

All PRS-associated genes, with associated effect sizes, unadjusted p-values,

and adjusted p-values after multiple testing correction by Benjamini-

Hochberg false discovery rate or Bonferroni correction. Each tab is for one
trait and one T cell subtype (c1 is CD4+CD45RO-, c2 is CD4+CD45RO+, c3 is

CD8+CD45RO-, c4 is CD8+CD45RO+).

SUPPLEMENTARY TABLE 2

Genes differentially expressed between AD subjects and healthy controls in a

comparison dataset of peripheral T cells, with one tab for each T cell subtype.

Columns labeled pct.1 and pct.2 represent the percentage of cells in AD
subjects and the percentage of cells in healthy controls, respectively,

expressing a particular gene. Columns for p-value (nominal and adjusted)
are also given. The column labeled avg_log2FC refers to the average log base

2 fold change between AD patients and healthy controls for a given gene,
with positive values denoting upregulation in AD patients.

SUPPLEMENTARY TABLE 3

Quantities of Pearson’s r values for are shown above the yellow diagonal.

NA values indicate correlations that were insignificant after Bonferroni
multiple testing correction. Absolute numbers of shared significant PRS-

associated genes between any two traits are shown below the
yellow diagonal.

SUPPLEMENTARY TABLE 4

All GSEA pathways from all traits and T cell subtypes that are significantly over-

or under-represented among PRS-associated genes after multiple testing
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correction. SIZE refers to the number of genes in the pathway, t.value.sign refers
to the whether the pathway is over-represented (+) or under-represented (-) by

genes positively correlated with the PRS for a given trait.

SUPPLEMENTARY TABLE 5

Quantities used to obtain the heatmap, including absolute counts of PRS-
associated genes in CD4+ and CD8+ subtypes for each trait, percentage
Frontiers in Immunology 10
of all PRS-associated genes for a given trait, and percent differences in
PRS-associated gene count between CD4+ and CD8+ subtypes for a

given trait.

SUPPLEMENTARY TABLE 6

Gene expression count matrix with raw RNA expression counts used to
detect PRS-associated genes.
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