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and Tuerganaili Aji 1,2,3*

1School of Public Healthy, Xinjiang Medical University, Urumqi, China, 2State Key Laboratory of
Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical
Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China, 3Department
of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University,
Urumqi, China
Mucosal-associated invariant T (MAIT) cells are a subpopulation of

unconventional T cells widely involved in chronic liver diseases. However, the

potential role and regulating factors of MAIT cells in alveolar echinococcosis (AE),

a zoonotic parasitic disease by Echinococcus multilocularis (E. multilocularis)

larvae chronically parasitizing liver organs, has not yet been studied. Blood

samples (n=29) and liver specimens (n=10) from AE patients were enrolled.

The frequency, phenotype, and function of MAIT cells in peripheral blood and

liver tissues of AE patients were detected by flow cytometry. The morphology

and fibrosis of l iver tissue were examined by histopathology and

immunohistochemistry. The correlation between peripheral MAIT cell

frequency and serologic markers was assessed by collecting clinicopathologic

characteristics of AE patients. And the effect of in vitro stimulation with E.

multilocularis antigen (Emp) on MAIT cells. In this study, MAIT cells are

decreased in peripheral blood and increased in the close-to-lesion liver

tissues, especially in areas of fibrosis. Circulating MAIT exhibited activation and

exhaustion phenotypes, and intrahepatic MAIT cells showed increased activation

phenotypes with increased IFN-g and IL-17A, and high expression of CXCR5

chemokine receptor. Furthermore, the frequency of circulating MAIT cells was

correlated with the size of the lesions and liver function in patients with AE. After

excision of the lesion site, circulating MAIT cells returned to normal levels, and

the serum cytokines IL-8, IL-12, and IL-18, associated with MAIT cell activation

and apoptosis, were altered. Our results demonstrate the status of MAIT cell

distribution, functional phenotype, and migration in peripheral blood and tissues

of AE patients, highlighting their potential as biomarkers and therapeutic targets.
KEYWORDS

mucosa-associated invariant T cells, alveolar echinococcosis, parasitic lesion, pro-
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1 Introduction

Alveolar echinococcosis (AE) is a neglected zoonotic parasitic

disease caused by tapeworms E. multilocularis, which is mainly

parasitic in the liver (1). It is estimated that 91% of the 18,235 new

cases of AE annually worldwide occur in China (2, 3), and the

pastoral areas of northwestern China are a highly endemic region

for E. multilocularis (4). The therapeutic approaches of surgical

resection and pharmacotherapy remained notable limitations (5):

Patients with lesions invading essential blood vessels, serious

complications, hepatotoxicity, and adverse drug reactions with

long-term medication who urgently need other treatment options

to promote a curative prognosis (6).

The regulatory network of immune cells in the liver plays a vital

role inmaintaining tissue integrity and defending against infection. The

E. multilocularis infection process stimulates both adaptive and innate

immune responses in the host, where macrophages (7), NK cells (8),

and T cells (9) regulate the immune response through different

mechanisms for host defense (10). It has been shown that treatment

based on immune checkpoints PD-1 (11), PD-L1 (12), and TIGIT (13,

14) immunotherapy has potential for the treatment of AE disease but is

still not practiced in the clinic. One of the reasons for this is the limited

understanding of the composition of the immune system in AE disease.

Mucosal-associated invariant T cells (MAIT) are a distinct

population of T cells that express a semi-invariant T cell receptor

containing the Va7.2 segment. These cells are dependent on the

non-classical major histocompatibility complex (MHC) related

class 1-like molecule, MR1, for the presentation of antigens (15).

MAIT are enriched in mucosal sites and comprise 45% of hepatic T

cells (16). Capable of producing perforin and granzyme B (GzmB)

that directly kill target cells, they secrete interferon g (IFN-g), TNF,
and IL-17 cytokines to perform rapid effector functions (17). In

addition, MAIT cells have been extensively studied in bacterial (18,

19), viral infections (20–22), and tumor diseases (23–25), especially

in chronic liver diseases. The collective body of research supports

the protective and anti-microbial role of MAIT cells (26–28).

Moreover, in malaria-infected parasitic diseases, the frequency of

activated MAIT cells increased significantly in a plasmodium

falciparum sporozoites pathogens infection dose-dependent

manner (29). Our previous study revealed that MAIT cells with

the T-cell receptor (TCR) clone TRAV1-2_TRAJ33_TRAC were

expanded in AE patients’ peripheral blood and liver tissues and

enriched in the liver tissues by single-cell RNA and TCR sequencing

(30). However, the phenotype and function of MAIT cells and the

correlation with clinicopathologic features are unknown.

In this study, we indicated that reduced MAIT cells in the

peripheral blood of AE patients correlate with liver injury and lesion

size due to E. multilocularis infection. Furthermore, the MAIT cell

frequency in the peripheral blood return to control values after

surgery. In addition, we revealed that MAIT cells aggregated in liver

tissue close to lesions exerted potential anti-AE effects through pro-

inflammatory and pro-fibrotic functions. These results extend our

insights into the frequency and functional status of MAIT cells in

E. multilocularis infection and suggest therapeutic targets based on

MAIT cells for patients with AE.
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2 Materials and methods

2.1 Human blood samples

Blood samples of 29 patients with E. multilocularis infection

and 25 healthy donors (HDs) age- and sex-matched were collected

at the First Affiliated Hospital of Xinjiang Medical University from

2022 to 2023. Fibrosis stratification was predicted using the

aspartate transaminase (AST) -to-platelet ratio index (APRI) and

fibrosis-4 interferon-gamma (FIB-4) indexes (22). Patients’

characteristics are listed in Table 1. Specimens were collected

from AE patients with no co-infections of other types of parasitic

diseases, and preoperative (PreOp) blood was collected from AE

patients within 0-3 days after admission, and postoperative

(PostOp) blood was collected within 7 days when patients were

free from other PostOp infections. The study protocol was approved

by the ethics committee of the First Affiliated Hospital of Xinjiang

Medical University (20211015–53), and written informed consent

was obtained from each subject by the Declaration of Helsinki

(1975) of the World Medical Association.
2.2 AE patient’s liver samples

Liver specimens were collected during hepatic resection or liver

transplantation from 10 AE patients. Specimens were divided into

two parts: one part of the liver tissue is close to the parasite lesion by
TABLE 1 Baseline characteristics of the patients.

Samples HDs AE p

No. 25 29 –

Sex (F/M) 13/12 14/15 0.790

Age (Year) 43.52 ± 13.20 44.72 ± 11.42 0.724

lymphocyte (%) 32.79 ± 5.62 21.60 ± 7.71
1.06E-
07

Monocyte (%) 7.12 ± 1.66 7.39 ± 2.38 0.624

AST (U/L)
26.07
(23.89, 27.33)

38.75 (27.83, 83.07)
9.80E-
05

ALT (U/L)
20.00
(17.50, 27.00)

38.00 (18.50, 74.00) 0.007

ALP (U/L) 70.02 ± 19.49
188.20
(124.42, 475.27)

4.87E-
08

TBIL (mM) 13.94 ± 3.64 14.00 (8.70, 34.09) 0.028

IBIL (mM) 4.70 (2.94, 9.86) 6.64 (2.50, 20.03) 0.109

GGT(U/L)
20.59
(16.00, 29.12)

90.77 (45.70, 222.49)
6.52E-
08

Total protein
(g/L)

77.87 ± 4.36 83.04 ± 10.52 0.001

Globulin (g/L) 34.14 ± 3.35 46.64 ± 9.92
3.21E-
08
fron
Dashed line indicates not available. Normal distribution data are shown as mean ± SEM, non-
normally distributed data are shown as median (IQR). The bold values is p < 0.05.
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about 0.5 cm, named close liver tissue (CLT), and another part is

distant from the parasite lesion by at least 2 cm, named distant liver

tissue (DLT), which were frozen and formalin-fixed rapidly after

resection, and fresh liver tissues extracted and separated tissue

mononuclear cells. For all cases, patients’ characteristics are listed

in Supplementary Table 1. All patients signed an informed consent

form, and the study was approved by the First Affiliated Hospital

ethics committee of Xinjiang Medical University (20211015–53).
2.3 Flow cytometry

As previously described, fresh liver tissue specimens were

dissociated into single-cell suspensions for flow cytometry

analysis (13). The fresh single-cell suspension and peripheral

blood mononuclear cells (PBMCs) used for the analysis of the

surface phenotype of MAIT cells and were stimulated with phorbol

myristate acetate (PMA; 25ng/mL) for 4h at 37°C in RPMI-1640

medium supplemented with 10% fetal bovine serum (Gibco),

followed by surface staining, fixation/permeabilization for

detecting IFN-g, GzmB, and IL-17A cytokine production, and a

minimum of 150,000 cells per sample were acquired using the

Beckman DXflex (Beckman, USA) flow cytometer and analyzed by

FlowJo software (version 10, USA).

The fluorescent-linked antibodies were as follows: CD3

(HIT3a), CD161 (HP-3G10), Va7.2 (3C10), and CXCR5

(J252D4) antibodies were obtained from BioLegend, France. The

CD4 (SK3), CD8 (SK1 and RPA-T8), CD69 (FN50), CD28

(CD28.2), PD-1 (EH12.1), CCR6 (11A9), IL-17A (SCPL1362),

GzmB (GB11) and IFN-g (B27) antibodies were obtained from

BD Biosciences, California. The lymphocytes were gated on a

population of CD3+CD161+Va7.2+ T cells (Supplementary

Figure 1), defined as MAIT cells as previously reported (31). The

PE-conjugated 5-OP-RU-loaded MR1 tetramers were used to

analyze the surface expression of MR1 by flow cytometry as per

the manufacturer’s instructions (31) (Supplementary Figure 1). For

the MAIT cell frequency and cell surface receptor assays in

peripheral blood and liver tissue from AE patients, at least

100,000 cells per sample were collected for analysis using a

Beckman DXflex (Beckman, USA) flow cytometer and analyzed

using FlowJo software (version 10, USA). Due to the limited

availability of collected peripheral blood and tissue samples, the

extracted mononuclear lymphocytes were limited, and the MAIT

cell frequency was preferentially detected. The gating strategies of

surface receptor and cytokine are shown in Supplementary Figure 2.
2.4 Assessment of short-term E.
multilocularis protein stimuli in vitro

Peripheral blood was collected from 3 HDs per experiment, and

PBMC were isolated by the Ficoll-Paque (Solarbio, china), as

previously described (13). The anti-CD3 (1 µg/mL) and anti-

CD28 (0.5 µg/mL) antibodies diluted in RPMI-1640 medium

(Gibco, USA) and supplement 10% fetal calf serum (Gibco, USA)

and co-culture with 1*105 PBMCs per well to activate before the co-
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cultures were exposed to 5 µg/µL and 10 µg/µL Emp for 24h at 37°C,

5% CO2, followed by flow cytometric analysis. DMSO group

without Emp were used as controls.
2.5 Immunohistochemical and
histomorphological staining

The hematoxylin and eosin (HE), Sirius red, and Masson stains

were performed on 4 mm-thick serial tissue sections of the DLT and

CLT from patients with AE, and immunohistochemical staining with

a-SMA antibody (1:500, Abcam, Britain). Whole sections were scanned

by KF-PRO-400-HI (KFBIO, China). The positive areas of each tissue

section were quantified using Image J by three random fields.

OCT-embedded tissue specimens were incubated overnight at

4°C with anti-CD161 (1:40, Abcam, Britain) and anti-PD-1 (1:50,

Abcam, Britain) antibodies in PBS containing 1% BSA and 0.2%

Triton X-100. The slides were incubated at room temperature for 1h

before adding a secondary antibody, followed by Alexa Fluor® 647

and Alexa Fluor® 488. Nuclear was counterstained by DAPI (1:20,

KeyGEN BioTECH, China), and images were obtained by Olympus

VS200 confocal microscopy (Leica, Germany).
2.6 Serum cytokine assay

The blood samples of pre- and postoperative AE patients, HDs

were collected, and centrifuged at 4°C, 3500 rpm, for 15 min to

obtain serum. The level of serum cytokines (IL-6, IL-8, IL-12p70,

IL-17A, IL-18, IL-33, and IFN-g) detected by LEGENDplex™

Human Inflammation Panel 1 kit (BioLegend, USA) on flow

cytometers, according to manufacturer’s instructions.
2.7 Statistical analyses

Statistical calculations were analyzed by GraphPad Prism software

(version 8, USA) and SPSS software (version 26, USA). Data with

normal distribution and equal variance were analyzed by the student t-

test or Analysis of variance (ANOVA) for comparisons of groups. The

Mann-Whitney U test or Wilcoxon’s matched-pairs signed-rank test

was performed for non-normally distributed variables. The Spearman

test was employed for correlation analysis.
3 Results

3.1 Characteristics of patients

The clinical characteristics of the subjects are summarized in

Table 1. The age, sex, percentage of monocyte, total bilirubin

(TBIL), and globulin between patients with AE and HDs are not

significantly different. The alanine aminotransferase (ALT), AST,

Indirect Bilirubin (IBIL), g-glutamyl transferase (GGT), and

alkaline phosphatase (ALP) in patients with AE have significantly

different (p<0.05).
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3.2 Circulating MAIT cells are exhausted
and decreased cytotoxic efficacy in
AE patients

In peripheral blood, the percentage of MAIT cells was lower in

AE patients than in HDs, and the relative frequency of MAIT cells

in the AE patients is mainly clustered around 1% (Figure 1).

Circulating MAIT cells from AE patients displayed an activated

phenotype, characterized by higher percentage of CD69+MAIT

cells as compared to HDs (Figure 1). The IL-17+ MAIT cells from

AE patients were higher than HDs. In contrast, the IFN-g+ MAIT

cells from AE patients were lower than HDs. The GzmB was no

different between the two groups (Figure 1). Furthermore, the mean

fluorescence intensity (MFI) of cell surface receptors and cytokines

was consistent with the percentage statistics (Supplementary

Figure 1). Altogether, the percentage of circulating MAIT cells is

reduced in AE patients, which may be related to activation-induced

exhaustion due to persistently high expression of the activation

receptor CD69 and the immunosuppressive receptor PD-1 on the

surface of MAIT cells in the peripheral blood of AE patients.
Frontiers in Immunology 04
3.3 Intrahepatic MAIT cells maintain
cytotoxic efficacy and are associated with
the degree of fibrosis in AE patients

To investigate the phenotype and function of MAIT cells in the

livers of patients infected with E. multilocularis, we collected close and

distal liver tissues from lesions in patients undergoing hepatectomy.

The percentage of MAIT cells was higher in the CLT than that DLT,

and the relative frequency of MAIT cells in the CLT is mainly clustered

around 4% (Figure 2). The CLT of AE patients hadmore inflammatory

cell infiltration and higher degree of fibrosis than the DLT (Figure 2),

moreover, the IOD value of a-SMA in CLT was higher than that of

DLT, and notably, the number of MAIT cells was positively correlated

with a-SMA (Figure 2). In contrast, fibrosis stage, predicted by APRI

and FIB-4 index, increasing with decreasing frequency ofMAIT cells in

the blood (Supplementary Figure 2). CD28, T-cell co-stimulatory

signal, was fewer in CLT than in DLT, suggesting that MAIT cells in

CLT had a diminished stress response to antigens, and surface

receptors CD69 and PD-1 were not significantly different between

the two groups (Figure 2). Co-expression of PD-1 and CD161 was
B

C

A

FIGURE 1

Frequency and functions of circulating MAIT cells are impaired in AE. (A) Representative dot plot showing reduction of CD161+Va7.2+ double
positive (MAIT) cell population in peripheral blood and summary data from AE patients (n = 29), as compared to that in HDs (n = 25), and frequency
distribution of CD3+CD161+Va7.2+ MAIT cell within peripheral blood T cells in AE patients. (B) Representative dot plots and data of increased
expression of the MAIT cell surface activating receptors CD28 and CD69 with the inhibitory receptor PD-1 from HDs (n = 22-24) and AE patients
(n = 28-29). (C) Representative dot plots and cumulative data of cytokine profiles of MAIT cells in PBMCs from AE patients (n = 23-29) and HDs
(n = 14-24). Statistical analysis was performed using Mann-Whitney or Kruskal-Wallis. ns p > 0.05; *p < 0.01; **p < 0.05.
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higher in CLT than DLT of AE patients (Supplementary Figure 3).

Furthermore, in terms of the ability of hepatic MAIT cells to secrete

cytotoxic factors, the ability of MAIT cells to secrete IFN-g was

enhanced in the CLT with statistical significance. The levels of

secreted IL-17 and GzmB were higher than those of DLT, but not

statistically significant (Figure 2). The mean fluorescence intensity

(MFI) of cell surface receptors and cytokines was consistent with the

percentage statistics (Supplementary Figure 3).
3.4 Intrahepatic MAIT cell frequency
correlates with CXCR5 expression and
shows greater effector potency than
circulating counterparts

To better understand the role of MAIT cells in peripheral blood

and liver tissue, we first described the frequency and phenotype of

MAIT cells in peripheral blood and liver tissues of AE patients and
Frontiers in Immunology 05
related their frequency changes to chemokine receptor expression.

The percentage of MAIT cells in the CLT was higher in AE patients

than in peripheral blood (Figure 3). Moreover, the MAIT cells

highly expressed CXCR5 and CCR6 chemokine receptors in CLT

compared to the DLT, suggesting that MAIT cells may have the

tissue-homing ability during E. multilocularis infections. Notably,

the expression of CXCR5 in CLT and DLT was significantly

different (Figure 3-b, d). In addition, there was a significant

positive correlation between intrahepatic MAIT cell frequency

and their expression of CXCR5 and a tendency for CCR6

(Figure 3-c, e). The ability of MAIT cells to secrete IFN-g and IL-

17A cytokines in CLT was higher than in peripheral blood, but

GzmB had no significant difference between two groups (Figure 3).

Next, we investigated the phenotype of circulating and CLT MAIT

cells in AE patients. CD28 was decreased in the CLT, and the

proliferation and differentiation capacity of naive T cells in AE

patients may be weakened. The MAIT cells in CLT highly

expressing CD69 receptors, demonstrated that MAIT cells were
B

C

D E

A

FIGURE 2

Frequency and functions of hepatic MAIT cells are impaired in AE patients. (A) Representative dot plots and cumulative data of MAIT cells in
mononuclear cells isolated from CLT and DLT (n=10), and frequency distribution of CD3+CD161+Va7.2+ MAIT cell within CLT T cells in AE patients.
(B) Pathologic section staining of CLT and DLT in AE patients (Scale bar = 200 mm). (C) Comparison of CD28, CD69, and PD-1 expression in hepatic
MAIT cells in CLT and DLT (n = 8). (D) Cumulative data of cytokine profiles of hepatic MAIT cells in CLT and DLT (n = 8). (E) Statistical and
correlation plots of Integral optical density (IOD) values of a-SMA in CLT and DLT. Statistical analyses were performed using paired Wilcoxon tests
(a, c, d). ns p > 0.05; *p < 0.01; **p < 0.05.
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activated by the parasitic pathogens in liver tissue during infection.

However, the PD-1 receptor, which indicates T-cell exhaustion, was

not significantly different between the two groups. The results

indicated that MAIT cells may be recruited in the CLT by

elevated levels of CXCR5 and showed more active phenotype and

pro-inflammatory function than circulating MAIT cells.
3.5 Decreased frequency of circulating
MAIT cells correlates with liver injury
caused by long-term
E.multilocularis parasitism

To assess the clinical significance of circulating MAIT cells in

AE patients, we performed Spearman’s correlation analysis. Based

on changes in clinical parameters presented in Table 1, we gained

further insights regarding age, monocytes, lesion size, globulin, total

protein and AST/ALT, and the correlation of MAIT cell frequency

with the percentage of lymphocyte, TBIL, IBIL, GGT, AST, and

ALT in Supplementary Figure 4. Notably, MAIT cell frequency has

no correlation with age in patients with AE, showed a significant

positive correlation with monocytes, and a significant negative

correlation with the size of liver parasitic lesions, globulin, total
Frontiers in Immunology 06
protein, and AST/ALT (Figure 4). To assess the diagnostic ability of

circulating MAIT cell frequency as it relates to validated markers of

liver function, we constructed a receiver operating characteristic

curve (ROC). We evaluated the diagnostic value of MAIT cells for

AE and determined the area under the curve, sensitivity, specificity,

and Youden’s J statistic to be 0.742, 60.00%, 84.62%, and 0.4462,

respectively (Figure 4). Taken together, our data reveal a negative

correlation between circulating MAIT cell frequency and liver

function, and support the notion that MAIT can be a biomarker

to evaluate parasite infection of liver injury.
3.6 Changes in cytokine profiles and MAIT
cytotoxic capacity after surgery in
AE patients

We investigated the phenotype and effector function of

circulating MAIT cells in patients with AE after surgical removal of

parasitic lesions. The percentage of circulating MAIT cells in PostOp

blood was increased after surgical removal of parasitic lesions

compared to PerOp (Figure 5). Enhanced activation of circulating

MAIT cells in PostOp AE patients was indicated by increased

numbers of CD69+MAIT (dot plot in Supplementary Figure 5).
B

C

A

FIGURE 3

Phenotype and function of MAIT cells in AE patients’ peripheral blood and liver tissue. (A) Representative dot plots and cumulative data of peripheral
blood versus intrahepatic MAIT cells in AE patients (unpair: blood n = 29, liver n= 9; pair: n = 8). (B) Intrahepatic MAIT cells expressing CCR6 and
CXCR5 chemokine receptors in CLT and DLT, and correlation between intrahepatic MAIT frequency and the percentage of MAIT cells for CCR6
(n = 10) and CXCR5 (n = 10) in AE patients. (C) Cytokine and cell surface receptor of MAIT cells in peripheral blood versus liver tissue in AE patients
(n = 8). ns p > 0.05; *p < 0.01; **p < 0.05.
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Moreover, the PD-1+MAIT and CD28+MAIT cells between PostOp

and PreOp AE patients have no significantly different (Figure 5B). As

T cell activation is associated with a change in effector function,

compared with PreOp AE patients, IL-17A production was decreased

in MAIT cells of PostOp AE patients. The MAIT cells produced IFN-

g and GzmB not significantly different between PostOp and PreOp

AE patients (Figure 5A).

While the role of MAIT cells in infections has been widely

focused, MAIT cells are also regulated by inflammatory cytokines in
Frontiers in Immunology 07
non-microbial diseases as well (15), we further explored the Preop

and Postop changes of inflammatory cytokines in the serum of AE

patients. The pro-inflammatory factors IFN-g, and IL-17A of

PostOp serum of AE patients were reduced with the PreOp and

were not significantly different with HDs (p>0.05). Moreover, the

pro-inflammatory factor IL-6 was increased in PostOp patients

(Figure 5). IL-33, which is involved in the regulation of Th2-type

immune and inflammatory responses, was reduced in the serum of

PreOp patients compared with HDs, and was not significantly
BA

FIGURE 4

Circulating MAIT cell frequency correlated with liver function in AE patients. (A) Spearman correlation between circulating MAIT cell frequency in AE
patients and levels of age, percent of monocytes, lesion size, globulin, total protein, and AST/ALT (n = 29); (B) ROC curve analysis of the diagnostic
value of MAIT cell frequency in AE patients.
B

C

D

A

FIGURE 5

Phenotype and function of circulating MAIT cells in pre- and postoperative AE patients. (A) Representative dot plots of pre-and postoperative MAIT
cells (n=8). (B) Percentage of receptors expression and intracellular cytokine staining of MAIT cells from pre-and postoperative AE patients (n=7).
(C) Cytokine concentrations in pre-and postoperative AE patients (HDs: n =14-19; PreOp: n =14-19; PostOp: n=5-8). (D) Co-culture system of
PBMC from HDs incubated with anti-CD3 and anti-CD28 antibodies and the frequency of MAIT cells stimulated by Emp for 24 hours, all data are
representative of four independent experiments. Statistical analyses were performed using paired Wilcoxon tests (A, B), ANOVA tests, and a two-
sample t-test (C, D). ns p > 0.05; *p < 0.01; **p < 0.05.
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different with PostOp patients. Levels of IL-8, IL-12, and IL-18

cytokines associated with MAIT cell activation and apoptosis were

significantly increased in PreOp patients compared with HDs

(p<0.01), decreased PostOp compared with PreOp patients, and

were not significantly different between PostOp patients and HDs

(p>0.05). In addition, we found that the percentage of MAIT cell

significantly increased with Emp concentration in a dose-dependent

compared with the DMSO group, implying that MAIT cells are

capable of responding in an early phase of infection.
4 Discussion

By escaping the host’s immune defenses, E. multilocularis

proliferated asexually in the liver for long periods triggering an

intense immune infiltration around the parasitic lesion, causing

changes in the AE patient’s immune environment (32). This study is

the first comprehensive analysis of the phenotype, cytokine

secretion, and cytotoxicity of MAIT cells during chronic E.

multilocularis infection from peripheral blood and liver tissue in

AE patients.

We initially determined that the frequency of MAIT cells was

severely reduced in the circulation of AE patients and displayed an

exhausted phenotype. Various factors may contribute to MAIT cell

depletion, including age (33), gender (34), redistribution (16), and

activation-induced cell death (35). Our results showed that the

frequency of MAIT cells in the peripheral blood of AE patients did

not correlate with gender and age. Moreover, cellular exhaustion

due to high expression of PD-1 and CD69 in circulating MAIT cells

of AE patients may contribute to the loss of MAIT cells. In addition,

both IL-12 and IL-18 can induce MAIT cell activation and death in

vitro (36), and they were significantly increased in PreOp but not

significantly different in PostOp AE patients compared with HDs,

suggesting a possible mechanism for the severe loss of MAIT cells

in AE patients. Notably, the reduced peripheral circulating MAIT

cells in AE patients may be accumulated into the CLT, and the

MAIT cells in the CLT showed enhanced activation capacity

and cytotoxicity.

As previously reportedMAIT cells proliferation in situ in infected

organs (37). Tissue-resident molecules CXCR5 and CCR6 are

expressed on the surface of MAIT cells, and stimulation by E.

multilocularis infection causes MAIT cells migrate from the bloods

to the site of infection. In particular, CXCR5 expression was positively

correlated with the frequency of MAIT cells in CLT. The CXCR5 is a

characteristic marker of T cells and mediates T-B cell interactions

through CXCL13 chemokines (38, 39). During chronic HBV

infection, high intrahepatic expression of CXCL13 promotes

CXCR5+CD8+ T cell aggregation, exerting an immune control

effect against HBV infection (40). MAIT cells migrate to the site of

infection under chemokine guidance, where they contribute to

pathogen clearance and immunoregulation.

Aggregation of MAIT cells in the CLT may be involved in the

pathology of hepatic fibrosis caused by E. multilocularis infection.

The liver fibrosis of AE patients is due to the stimulation of immune

cells by E. multilocularis to form granulomas around parasitic

vesicles, which are pathologically damaged by highly cross-linked
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collagen (41, 42). MAIT cells were found to accumulate in hepatic

fibrotic septa in patients with alcoholic or nonalcoholic fatty liver-

associated cirrhosis, and they have the ability to alter the fibrotic

properties of hepatic myofibroblasts and exert a pro-fibrotic effect

(31, 43). Also, the MAIT cells contribute to the development of

hepatic stellate cell-mediated hepatic fibrosis may be a cellular and

molecular pathway for fibrosis development in patients with

autoimmune liver disease (44). Our results show that the

circulating MAIT cells frequency in AE patients tended to decrease

with the fibrosis stage, whereas the intrahepatic MAIT cells frequency

was positively correlated with the expression of fibrosis indicator a-
SMA. As speculated by previous studies, it is possible that MAIT cells

accumulate in the liver tissue around the parasite lesion before they

are depleted in peripheral blood, and exhibit pro-fibrogenic role to

limit E. multilocularis larval growth.

MAIT cells are a key component of the immune system and are

considered an important bridge between innate and adaptive immunity

(15). Activation of innate and adaptive immunity plays a vital role in

the parasitic process of E. multilocularis (12). The development of the

MR1 tetramer tool loaded with 5-OP-RU promotes the previous

studies of MAIT cells that relied on specific cell surface markers such

as CD3, Va7.2, and CD161 (15). Here, the CD3, CD161, and Va7.2
containing and the MR 1 tetramer labeling MAIT cells displayed

similar percentages in the PBMCs of AE patients (Supplementary

Figure 1). MAIT cells recognize vitamin B-based metabolite antigens

presented by the MHC Class I related-1 protein, MR1, and MR1-

deficient mice model lacking MAIT cells affects disease susceptibility

(45). MR1-deficient mice showed impaired ability to response to

infection with E. coli or M. abscessus (46), and to T cell respond to

infection with bovis bacillus Calmette-Guérin before the full induction

of adaptive immunity (47). Moreover, adoptive transfer of MAIT cells

into hosts rescues immunodeficient mice lacking of T cells or NK cells

from lethal Legionella infection (18). Additionally, the frequency of

MAIT cells in the blood of patients correlates with the severity of

ICU-acquired infections (48), and the frequency of intrahepatic

MAIT cells in patients with hepatocellular carcinoma (24) and

cholangiocarcinoma (23) was associated with overall survival.

Thus, MAIT cells have the potential to be used as therapeutic targets

and prognostic markers in immunological studies and

clinical applications.

MAIT cells respond to a wide array of pathogens through diverse

activation mechanisms, including both TCR-dependent and

independent pathways, and play a crucial role in the body’s anti-

infection defense. Due to the plasticity of the antigen-binding cleft,

non-riboflavin antigens such as microbial molecules (49) and tumor

cell-derived molecules (50) can bind to MR1, adding to the diversity of

MR1 ligands. In bacterial and fungal infectious diseases, vitamin B2

metabolites produced are presented by MR1 to MAIT cells, which

rapidly produce the pro-inflammatory factors IFN-g, TNF, IL-17, and
IL-22 (51). MAIT cells are activated by viral infections in an MR1-

independent manner through innate cytokines and TCR receptors

(52). In parasite research, MAIT cell activation correlates with parasite

antigen concentration in human Malaria Infection (29). Leishmania

does not encode riboflavin biosynthesis, but MAIT cells respond to

Leishmania in a dose- andMR1-dependent manner and produce TNF,

IFN-g, and IL-17A to exert protection from Leishmania parasites (53).
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The 5µg/mL Emp stimulates high expression of CD155, a ligand for the

TIGIT immunosuppressive receptor, in the HL-7702 hepatocyte cell

line, mimicking T cell dysfunction due to TIGIT-CD155 interaction

after E.multilocularis infection in an in vitro assay (13). Our results

initially verified in vitro that MAIT cells have a tendency to increase in

frequency after Emp stimulation. However, MAIT cells are constantly

exposed to antigens (54) secreted from E. multilocularis or

inflammatory signals produced by cytokines during E. multilocularis

infections and further studies are needed to investigate the response

and regulatory role of MAIT cells.
5 Conclusion

This study revealed differences in MAIT cell phenotype and

function in the blood and liver of patients infected with E.

multilocularis. The MAIT cells aggregated in liver tissue close to

lesions exerted potential anti-AE effects through pro-inflammatory

and pro-fibrotic functions. In addition, given the MAIT cells

correlation with lesion size and response to surgical treatment,

they have the potential to be biomarkers of disease progression. The

present study expands our understanding of MAIT cells in parasitic

infection diseases, and future studies should aim to further elucidate

the mechanism of action of MAIT cells in AE diseases.
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SUPPLEMENTARY FIGURE 1

(A) Gating strategy of MAIT cells. Representative dot plots describing the
percentage of MAIT cell among of T cells from AE patient. MAIT cells

are defined as CD3+CD161+Va7.2+ cells in the lymphocyte gate. (B)
Representative dot plot showing CD161+Va7.2+ cells and positive to

5-OP-RU loaded MR1 from AE patient’s PBMC. The quantities of
CD3+CD161+Va7.2+ and positive to 5-OP-RU loaded MR1 is no significant

different between three different AE patients (p>0.05). (C) The MFI of CD28,

CD69 and PD-1 (HD n=23-25; AE n=27-29) of MAIT cells. (D) The mean
fluorescence intensity (MFI) of GzmB, IL-17A and IFN-g (HD n=23-25; AE

n=27-29) of MAIT cells. ns p>0.05; *p<0.05; **p<0.01.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1343567/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1343567/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1343567
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1343567
SUPPLEMENTARY FIGURE 2

Representative dot plots showing gating of surface receptor+ and cytokine+

MAIT cells.

SUPPLEMENTARY FIGURE 3

(A) Representative image of CD161+PD-1+ double positive cells in liver tissue

sections from AE patients (n = 3), showing the presence of CD161+ PD-1+

cells in CLT more than DLT (Scale bar = 50 mm). (B) The MFI of cell surface

receptors and secreted cytokines (n=8) of MAIT cells in AE patient liver
tissues. (C) The degrees of fibrosis of AE patient’s circulating MAIT cell

proportion predicted by APRI/FIB-4 evaluation (n = 6-12 per group). ns

p>0.05; *p<0.05; **p<0.01.
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SUPPLEMENTARY FIGURE 4

Correlation of MAIT cell frequency with the percentage of lymphocyte, TBIL,
IBIL, GGT, AST and ALT (n=28-29).

SUPPLEMENTARY FIGURE 5

Representative dot plots and data of the MAIT cell surface receptors and

cytokines from PreOp and PostOp AE patients.

SUPPLEMENTARY TABLE 1

Specimens used for these studies. FCM, flow cytometry; IHC,

immunohistochemistry; IF, immunofluorescence; a-SMA, alpha smooth

muscle actin.
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