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In recent years, there has been significant research interest in the field of

immunotherapy for non-small cell lung cancer (NSCLC) within the academic

community. Given the observed variations in individual responses, despite

similarities in histopathologic type, immunohistochemical index, TNM stage, or

mutation status, the identification of a reliable biomarker for early prediction of

therapeutic responses is of utmost importance. Conventional medical imaging

techniques primarily focus on macroscopic tumor monitoring, which may no

longer adequately fulfill the requirements of clinical diagnosis and treatment. CT

(computerized tomography) or PEF/CT-based radiomics has the potential to

investigate the molecular-level biological attributes of tumors, such as PD-1/PD-

L1 expression and tumor mutation burden, which offers a novel approach to

assess the effectiveness of immunotherapy and forecast patient prognosis. The

utilization of cutting-edge radiological imaging techniques, including radiomics,

PET/CT, machine learning, and artificial intelligence, demonstrates significant

potential in predicting diagnosis, treatment response, immunosuppressive

characteristics, and immune-related adverse events. The current review

highlights that CT scan-based radiomics is a reliable and feasible way to

predict the benefits of immunotherapy in patients with advanced NSCLC.
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Introduction

According to the Cancer Statistics 2023 report in the United States, lung cancer is the

second most prevalent type of malignancy in both males and females, representing 12% of new

male cancer diagnoses and 13% of new female cancer diagnoses (1). The estimated new cases of

lung cancer are predicted at 238,340 in the USA. Besides, lung cancer contributes the greatest

number of deaths in men as well as in women, accounting for the same proportion of 21% of
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estimated deaths of all (1). A variety of risk factors contribute to lung

cancer. These factors can be broadly categorized as nonmodifiable or

modifiable. The former includes age, gender, family history, and

genetics (2). The latter includes cigarette smoking, secondhand

smoke, radon exposure, occupational exposure, air pollution,

previous lung diseases, personal history of cancer, diet, and

immunosuppression (2–4). Two types of lung cancer are generally

recognized: small cell lung cancer (SCLC, accounting for 10 to 15% of

all lung cancer) and non-small cell lung cancer (NSCLC, accounting for

85% of lung cancer cases) (5). NSCLC can be further divided intomany

subtypes, including adenocarcinoma, squamous cell carcinoma, large

cell carcinoma, adenosquamous carcinoma, and other rare types (6).

Patients with lung cancer have a survival rate of 10-20% 5 years after

diagnosis due to this disease is typically diagnosed in the middle or late

stages in most countries (1). Treatments for NSCLC include surgery,

radiotherapy, chemotherapy, immunotherapy, and combined

therapies, depending on the type and stage of the cancer (7). In

advanced NSCLC, chemotherapy is typically applied as an adjuvant

treatment. Chemotherapy for long periods is underwhelming due to

intrinsic and extrinsic resistance, low target selectivity, and adverse

effects. A progressive treatment may trigger multidrug resistance in

lung cancer cells, resulting in failure to respond to chemotherapy. In

the case of early-stage NSCLC, surgical resection is the most

appropriate form of treatment. In advanced cases, partial cancer cells

will be killed using radiotherapy, chemotherapy, or immunotherapy,

which can reduce the morbidity andmortality of the sufferers (8). Since

there are great individual differences among NSCLC patients, surgery

supplemented by chemotherapy often fails to achieve a satisfactory

therapeutic effect.

In recent years, immunotherapy has become a hot therapeutic

method for NSCLC. Mounting evidence shows that the usage of

immune checkpoint inhibitors (ICIs) in the treatment of NSCLC

patients can effectively prolong the survival of patients with advanced

andmetastatic NSCLC (9). Many kinds of programmed death-1 (PD-

1) and its ligand (PD-L1) monoclonal antibodies have been approved

and applied to the treatment of advanced or locally advanced NSCLC

(10), opening up a new horizon in NSCLC treatment. Radiological

imaging has always been an effective tool for monitoring NSCLC,

including tumor progression and therapeutic efficacy (11). With

advanced imaging technology, it is possible to qualitatively or

quantitatively analyze how patients’ medical images are correlated

with immune checkpoints and to evaluate their prognosis as well as

the efficacy of immunotherapy (12).

As compared to the traditional imaging analyses, CT-based

radiomics allows for the extraction of a large number of

quantitative imaging features from CT scans, which can capture

tumor heterogeneity, serve as potential biomarkers for predicting

treatment response to immunotherapy, stratify the patients into

different risk groups, and assess the immunotherapy response.

Therefore, CT-based radiomics may accurately predict treatment

outcomes and guide therapeutic strategies, such as identifying

factors contributing to treatment resistance or adverse events and

assisting clinicians in selecting the most appropriate treatment

options and monitoring patient response over time. This

article reviews the application of radiological imaging in

NSCLC immunotherapy.
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Molecular mechanisms of
immunotherapy for NSCLC

Immunotherapy now comprises classical and ICI therapy.

Classical immunotherapy involves active (tumor vaccines) and

passive immunity (natural and artificial). ICIs have gained

prominence for their efficacy in advanced NSCLC treatment (13,

14). Immunotherapy works by activating the immune system to

recognize and eliminate tumor cells. However, tumors can evade

immune surveillance, promoting proliferation and disease

progression. Tumor cells suppress CD8+ T-cells, hindering the

immune response. Regulatory T cells also impact tumor immunity

by down-regulating CD8. ICIs block this immune suppression by

targeting checkpoint markers like CTLA-4. CTLA-4 inhibitors, like

ipilimumab and tremelimumab, were previously underutilized due to

adverse effects but are now essential for NSCLC treatment (15, 16).

PD-1/PD-L1 antibodies revolutionize NSCLC treatment, offering

superior antitumor effects over chemotherapy. NCCN guidelines

recommend two years of immunotherapy maintenance for first-line

patients and until disease progression for second-line patients. High

PD-1/PD-L1 expression indicates greater immunotherapy benefit,

alongside tumor mutation burden and initial tumor volume (17).

Challenges persist in PD-L1 detection due to spatial and temporal

heterogeneity, lack of standardized detection methods, and

controversy over tumor mutational burden (TMB) standards (18).

Strong predictive indexes for ICI treatment efficacy remain elusive.

Pathological screening for high PD-1/PD-L1 expression is invasive

and may miss diagnoses, hindering timely treatment for some

patients. Non-invasive, whole-tumor-based sampling methods are

urgently needed to identify immunotherapy candidates, especially for

those unable to undergo surgical biopsy. Recent studies show that

non-invasive imaging techniques can predict immune markers and

prognosis in NSCLC patients, offering real-time assessment and

survival prediction (19). Medical imaging provides objective

evaluation of immunotherapy effectiveness in NSCLC. Subsequent

sections explore the vital role of radiological imaging in

NSCLC immunotherapy.
Radiological imaging biomarker as a
predicting immune checkpoint marker
in NSCLC

CT radiomic features predict immune
checkpoint markers

Immune checkpointmarkers are molecules located on the surface

of immune cells, playing a pivotal role in controlling the immune

response by either promoting or inhibiting immune activity (20).

Specifically in cancer immunotherapy, particular checkpoint markers

are employed to boost the immune system’s capability to identify and

combat cancer cells. The most studied immune checkpoint markers

include PD-1, PD-L1, CTLA-4, Lymphocyte Activation Gene 3

(LAG-3), T Cell Immunoglobulin and Mucin Domain-Containing

Protein 3 (TIM-3), and B7 Homolog 3 (B7-H3). In clinical settings,
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immunohistochemistry is commonly employed for the detection of

PD-L1. Nevertheless, the intricate expression of PD-L1 within the

tumor microenvironment poses limitations on the comprehensive

assessment of PD-L1 expression throughout the entire body using

immunohistochemistry (21). CT imaging, on the other hand, not

only enables the examination of macroscopic tumor characteristics

but also facilitates the exploration of deeper tumor cell characteristics.

CT radiomics involves the extraction of substantial medical imaging

information from CT scans of patients. In addition, CT radiomics can

also provide the segmentation of the tumors, feature extraction, and

the establishment of models, so as to explore the molecular

characteristics of the patient’s cancer cells (22, 23). TMB is known

as the amounts of somatic mutations per coding area of a tumor

genome. TMB has been found to serve as an important predictor of

ICIs efficacy. However, the clinical availability of TMB has been

limited due to challenges associated with detection, such as the need

for invasive procedures followed by pathological assessment, the

occasional inability to obtain adequate specimens, and the high

cost of next-generation sequencing methods. Consequently, there is

a pressing need to investigate alternative noninvasive biomarkers

for TMB.

With the help of the combination with deep learning

technology and CT radiomics (24), Montoya et al. (25) reported

that radiomics features could facilitate to sorting advanced NSCLC

patients received pembrolizumab for optimizing the modeling of

ICI response. The predictive models incorporated baseline

neutrophil-to-lymphocyte ratio and identical radiomics (surface-

to-mass ratio, average Gray, and 2D kurtosis) predicted ICI

response in a murine model. Through the examination of

tumorous and peritumoral regions in CT images using a radiomic

approach, Wu et al. (26) successfully devised a non-invasive

biomarker that can effectively differentiate responders to ICIs

therapy and accurately classify their survival outcomes. This

biomarker has the potential to aid clinical decision-making

regarding the utilization of ICIs in both advanced and resectable

NSCLC patients. In the assessment of therapeutic immunotherapy,

Chen et al. (27) demonstrated that CT-based radiomic models offer

a non-invasive means of evaluating the presence of tumor-

infiltrating CD3 and CD8 T cells in NSCLC patients. Yoon et al.

(28) analyzed the correlation between morphological features and

CT radiomic features of CT images of NSCLC patients and PD-L1

expression. They found that all morphological features were not

correlated with PD-L1 expression (all P>0.05), while radiomic

features were significantly correlated with PD-L1 expression

(P=0.0007). This suggests that the use of radiomic features to

evaluate PD-L1 expression status is more effective than

morphological features in identifying patients who could benefit

from immunotherapy. In addition, a study collected CT images of

390 patients with confirmed NSCLC and screened the 9 best

radiomic features, combined with clinicopathologic risk factors to

develop a prediction model of PD-L1 expression status (PD-L1

expression ≥50%) (29). The results showed that in the training

group, the area under curve (AUC) of the combined model subjects

was 0.829, and the AUC of the medical imaging model alone was

0.786. Therefore, the combination of clinicopathologic features can

improve the prediction efficiency, and the computer-assisted
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automatic extraction of such features and target area outlining in

the future can reduce the time invested by doctors and is expected to

promote the further application of such methods. A lung cancer

immunotherapy-radiomics prediction vector (LCI-RPV) with a CT

radiomic-based signature was recently developed by Chen et al.

(30). The authors found that this composite radiomic signature

based on response vector CD274 could facilitate assessing patients’

suitability (disease response) for PD-1/PD-L1 ICIs therapy in

NSCLC. Quantitative image features can be extracted from the

largest primary lung tumors using CT-enhanced imaging at

baseline and after the 2nd-3rd cycles of immunotherapy. The

most significant features were chosen to create delta radiomics

signatures, which were utilized to assess the risk stratification of

patient survival following ICIs treatment. Xie et al. (31) conducted

such a prediction model with pre- and posttreatment CT-based

radiomics signatures, incorporating both clinicopathologic risk

characteristics and phenotypic signature, to forecast progression-

free survival (PFS). The integration of clinicopathologic

characteristics and the delta radiomics signature within the

prediction model enabled personalized prediction of PFS in ICIs-

treated NSCLC patients.

Some other immune checkpoint markers were also found to be

associated with CT radiomic features. It was reported that CT-based

radiomics features possess the capability to predict the expression

levels of CD8+ tumor-infiltrating lymphocytes (TILs) in NSCLC in

the training sets (AUC= 0.83, 95% CI=0.73-0.92 vs AUC=0.68 for

the test sets) (32). Wang et al. (33) proposed a non-invasive

measurement technique utilizing deep learning to assess the

expression of PD-L1 and predict survival outcomes in NSCLC by

CT radiomics. The receiver operating characteristic AUCs were

recorded at 0.950, 0.934, and 0.946, for predicting PD-L1 expression

signature <1%, 1-49%, and ≥50% in the validation cohort,

respectively (33). Furthermore, the study highlights that the

integration of a deep learning model with clinical characteristics

enhances the predictive abilities, thereby facilitating physicians in

making prompt decisions regarding clinical treatment options. The

above findings suggest that these radiomics features could serve as a

potential medical imaging biomarker for stratifying NSCLC

patients who are likely to benefit from immunotherapy, which

has the potential for clinical application.
18F-FDG PET/CT predictive immune
checkpoint markers

Fluor-18-deoxyglucose positron emission tomography/CT (18F-

FDG PET/CT) is one of the most widely used molecular imaging

modalities for tumor diagnosis, which is performed by utilizing

glucose metabolism as a functional noninvasive medical imaging

technique (34). 18F-FDG can be transferred to cancer cells via

glucose transporter proteins, and thus be preserved in tumors and

uptaken by PET. In addition, T-cell metabolism after PD-1

blockade may affect the changes in FDG uptake (35). A previous

study showed that there was an association between FDG uptake

and the expression of Foxp3-regulatory T cells (Tregs) in the tumor

microenvironment of NSCLC (36). Lim et al. (37) confirmed that
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the 18F-FDG PET/CT radiomic model could predict the PD-L1

expression levels (AUC=0.712, sensitivity: 75.3%, and specificity:

58.2%) in patients with NSCLC. This study showed that a PET/CT-

based radiomic feature can help clinicians detect positive NSCLC

expressing PD-L1 in a non-invasive manner. At present, mounting

studies also demonstrate that 18F-FDG PET/CT can be used for

assessing the PD-L1 expression in NSCLC patients who underwent

ICIs treatments. Silva et al. (38) implied that the whole-body total

lesion glycolysis (wTLG) evaluated by 18F-FDG PET/CT was

negatively associated with PD-L1 expression, collectively

contributing to the prediction of the survival and progression to

ICIs monotherapy. This study indicated that 18F-FDG PET/CT

could effectively predict the efficacy of ICIs therapy in advanced

NSCLC. Wang et al. (36) investigated the correlation between the

metabolic information of 18F-FDG PET/CT and the expression of

immune markers in patients with NSCLC. This study proved that

SUVmax had a significant positive correlation with the degree of

CD8+ T-cell infiltration and the expression of PD-1 and PD-L1 (P

<0.05). A tumor proportional score (TPS) is calculated by

comparing PD-L1-positive tumor cells to all tumor cells in the

tissue sample. A previous study (39) applied TPS to determine the

tumor size of untreated stage IIIB-IV NSCLC patients who

underwent 18F-FDG PET/CT scanning and pulmonary lesion

biopsy for PDL1 immunochemistry. The TPS was used to

determine the degree of PD-L1 expression in the lung lesions of

these patients, classifying the patients as having low, medium, and

high PD-L1 expression (corresponding to PD-L1 TPS <1%, 1%

~49%, and ≥50%, respectively). The results showed that SUVmax

could be used as a potential biomarker for PD-L1 expression and

could effectively stratify the degree of PD-L1 expression in NSCLC

patients. This study demonstrated that 18F-FDG PET/CT can

facilitate to select immunotherapeutic strategy for advanced

NSCLC. In addition, the combination of clinical and metabolic

features showed better efficacy than metabolic features alone. Zhou

et al. (40) successfully predicted NSCLC patients with high CD8+

T-cell infiltration and PD-1/PD-L1 expression in tumors by

constructing a combined model based on clinical features and

multiple 18F-FDG PET/CT metabolic features (e.g., SUVmax)

(AUC = 0.869). Wu et al. (41) demonstrated that higher 18F-AlF-

NOTA-PRGD2 (18F-RGD) uptake was associated with inhibited

PD-L1 expression in NSCLC cells, while SUVmax was a candidate

parameter to monitor tumoral expression of PD-L1. Therefore, in

addition to 18F-FDG PET/CT, 18F-RGD PET/CT may be also useful

for reflecting the immune status of NSCLC. However, Cui et al. (42)

found that 18F-FDG PET/CT features could predict the pathological

response after ICIs with chemotherapy in NSCLC patients, but no

significant correlation was found between the radiologic response

and the expression of PD-L1.

Taken together, PET/CTmetabolic profiles, especially SUVmax,

showed good predictive efficacy in predicting the expression level of

checkpoint markers for NSCLC immunotherapy, and the

combination of clinical profiles was even more effective, which

could provide important information for guiding immunotherapy

in NSCLC patients. However, due to the high cost of the test, its

routine clinical application is limited.
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Prognostic evaluation of
immunotherapy for NSCLC

iRECIST criteria for assessing
immunotherapy outcomes in
NSCLC patients

The Response Evaluation Criteria in Solid Tumors 1.1 (RECIST

1.1) is a commonly used method that evaluates the response to

treatment by examining changes in tumor burden on CT and MRI

(43). However, there are still limitations with this criterion in

evaluating abnormal immune-related tumor response patterns.

Among them, the most common and challenging response

pattern to medical imaging for morphologic assessment is

“pseudoprogression”, i.e., the presentation of a lesion that appears

to recur or become larger on medical imaging, followed by a gradual

disappearance of the lesion or stabilization (44). Failure to correctly

recognize pseudoprogression undoubtedly puts the patient at a

higher risk of continued ineffective treatment. In order to assess

this particular response pattern, a more detailed immune-response

evaluation criteria for immunotherapy in solid tumors (iRECIST)

was developed. With lung cancer treated with immunotherapy,

iRECIST has a high inter- and intra-reader reliability, which is

similar to RECIST 1.1 (45). Both RECIST and iRECIST are effective

methods applied to evaluate NSCLC patients treated with ICIs or

other immunotherapies (46). Though both of them are the

immune-response evaluation criteria for immunotherapy in solid

tumors, RECIST is primarily used to evaluate the effectiveness of

conventional treatments such as chemotherapy and radiotherapy in

the treatment of solid tumors, while iRECIST is apply to address

immunotherapeutic approaches, such as immune checkpoint

inhibitors, to evaluate their effectiveness in the treatment of solid

tumors. On the other hand, RECIST evaluates the effectiveness of

treatment based primarily on changes in the size of the tumor,

including measurement of the diameter of the target lesion, while

iRECIST can assess not only changes in tumor size, but also

situations such as the emergence of new lesion that may be

induced by immunotherapy, in order to more comprehensively

assess treatment efficacy. Han et al. (47) demonstrated that a mixed

model that combined delta-radiomics features and iRECIST had

superior AUC for the major pathological response (MPR)

prediction (24, 48, 49).
CT radiomic to assess immunotherapy
outcomes in NSCLC patients

In predicting and evaluating the response to immunotherapy in

NSCLC patients, radiomic can provide quantitative predictors as a

useful complement to RECIST-related criteria (50). Many studies

indicated the application of CT radiomic in the evaluation of efficacy

and prognostic assessment of NSCLC immunotherapy. CT radiomic

can reflect the overall status of the tumor in a non-invasive manner.

Besides, it is an effective predictor of prognosis in NSCLC patients.

Texture analysis (TA) is a modern biomarker enabling the evaluation
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of quantitative parameters derived from various imaging modalities

(e.g., CT, MRI, and Positron Emission Tomography). These

parameters are associated with the distribution of pixels and voxels

of gray, and they correlate with certain biological tumor

characteristics, such as heterogeneity. It was reported that CT-

derived texture parameters could predict the overall survival (OS)

and the progression-free survival (PFS) in advanced NSCLC patients

who underwent ICIs treatments (51). The mean value of positive

pixels (MPP) derived from CT showed an AUC of over 70% (P <

0.001), while MPP < 56.2 was found to be significantly associated

with lower OS and PFS of the patients treated with first-line

immunotherapy. Yang et al. (52) retrospectively analyzed CT

images of 200 advanced NSCLC patients treated with anti-PD-1/

PD-L1 drugs. They classified the patients into high-risk and low-risk

non-response to immunotherapy by predictive modeling prior to

immunotherapy. The results showed that the PFS (11.1 months vs.

3.3 months) and OS (31.7 months vs. 17.2 months) of the low-risk

group were significantly higher than those in the high-risk group. A

previous study (53) utilized CT imaging characteristics and

clinicopathological factors to construct a combined line plot to

predict PFS in NSCLC patients treated with ICIs. The results

showed that the concordance index between the predicted PFS and

the actual PFS was 0.791. Therefore, constructing a prediction model

by radiomic or combining it with clinical features can provide

valuable information for patients’ prognosis. It is worth noting that

the medical imaging radiomic models are expected to be combined

with pathohistological models and immuno-scoring to further

improve the prediction of immune efficacy in NSCLC patients (54).

Radiogenomics, as an emerging field of machine learning, can

transform radiological images into high-dimensional data that can be

mined. It helps identify specific imaging biomarkers that are associated

with genetic variations related to tumorigenesis. Besides,

radiogenomics can also predict the response of tumors to various

treatment modalities, such as chemotherapy, radiation therapy, or

immunotherapy. Using machine learning to build radiomic models

to predict the survival of NSCLC patients is more effective. Liu et al.

(55) used the CT-based radiomics model to predict the risk of PFS and

OS in NSCLC patients treated with nivolumab. The average AUC value

for predicting the PFS and OS were 73% and 0.61%, respectively. Deep

learning, as a branch of machine learning, can further improve the

predictive ability of radiogenomics models by learning the regular

higher-order expression features of data through a large amount of

computations. Tian et al. (56) established a deep learning model with

significant stratification ability for PFS in NSCLC patients with

different degrees of PD-L1 expression (PD-L1 expression higher than

50% is considered high-risk, while lower than 50% is considered low-

risk). The PFS of NSCLC patients with different degrees of PD-L1

expression was significantly stratified (P = 0.01). The deep learning

model offers a noninvasive approach for predicting elevated PD-L1

expression in NSCLC and for extrapolating clinical outcomes in the

context of immunotherapy response. With the rapid development of

machine learning, especially deep learning, it is expected to be more

widely used in clinical applications in the future. Recent studies have

shown that AI based on deep learning has been able to monitor and

quantify the overall growth of tumors and discover valuable prognostic

information, thus benefiting NSCLC patients treated with ICIs.
Frontiers in Immunology 05
With the development of immunotherapy, the prediction of

immunotherapeutic efficacy for a single tumor type has gradually

increased. Several studies have confirmed that in advanced NSCLC,

CT- or PET/CT-based imaging radiomic analyses are not only effective

in identifying durable clinical benefit (DCB) and non-durable clinical

benefit (NDB), with the AUC over 0.8 (57). Of note, combining

imaging radiomic features with clinical features can further improve

the ability of survival prediction. The CT-based imaging radiomic

features mainly included shape-based and intensity-based features for

elevating the survival prediction in lung cancer patients. Shape-based

geometric characteristics of tumors in lungs include volume, surface

area, sphericity, and irregularity indices. Tumors with irregular shapes

or higher surface area-to-volume ratios may indicate aggressive disease

and pool prognosis of the patients. The intensity-based features mean

that the distribution of voxel intensities within the tumor region, i.e.,

mean intensity, standard deviation, skewness, and kurtosis. Deviations

from normal intensity distributions indicate tumor necrosis, hypoxia,

or other biological processes relevant to prognosis. Yang et al. (52)

proposed a multi-omics-based deep learning approach. The authors

developed a deep learning model with a simple temporal attention

(SimTA) module to analyze the asynchronous clinical time series data

of medical imaging histological features and laboratory indicators.

They conducted a multilayer perceptron to fuse the time series

coding features and static clinical information and combined the CT

imaging radiomic features, laboratory examination data, and baseline

clinical features to jointly construct a deep learning model. The results

demonstrated that SimTA predicted that the AUC of immunotherapy

for 60d was 0.77 and for the 90d efficiency was 0.8. This radiomics not

only outperforms the single-omics data model but also significantly

outperforms the prediction efficacy of baseline PD-L1 expression,

providing a more practical model for risk stratification of advanced

NSCLC patients.
Radiological artificial intelligence
predicting immunotherapy outcomes
in NSCLC

A CT scan and tissue biopsy are the primary methods for

diagnosing NSCLC, which can result in misdiagnosis and

omissions. More and more investigators realize that non-invasive

biomarkers may facilitate the diagnosis of NSCLC but should be

enhanced to increase their sensitivity and specificity. Recently,

radiological artificial intelligence (AI) models are proving to be an

effective tool for NSCLC diagnosis, as they can improve the

accuracy, stability, and efficiency of the disease (58).

Some investigators demonstrate that deep learning from AI can

quantify tumorous morphological alternations, which are

important for monitoring prognostication in NSCLC patients.

Deep learning methodologies, specifically convolutional neural

networks (CNNs), have demonstrated potential in discerning

complex patterns from medical imaging data such as CT scans

for prognostic assessment in NSCLC patients. CNNs have the

capability to precisely delineate lung tumors and adjacent tissues

from CT images, a critical process for measuring tumor
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characteristics such as size, shape, and spatial attributes that play a

significant role in prognosis determination. These deep learning

algorithms can autonomously extract intricate radiomic features

from CT images, such as tumor morphology, texture, and intensity

distribution, which can provide personalized prognostic estimates

for NSCLC patients. Trebeschi et al. (59) employed AI to rapidly

evaluate all tumor foci on pre- and post-treatment CT images of the

chest of patients in a fully automated manner. From that, the

authors extracted imaging radiomic features and built a radiomic

model in order to predict the outcome of 152 patients with stage IV

NSCLC treated with PD-1 inhibitors. The results showed that the

AI-based imaging model was highly effective in predicting OS at 1

year from the date of image acquisition (AUC = 0.75). The

prognostic heatmap generated by AI could also predict

mediastinal lymph node metastasis and rib metastasis.

Hyperprogression is the phenomenon of rapid tumor progression

after immunotherapy. This paradoxical acceleration of tumor

growth is found to be associated with poor prognosis. In a study

by Choi et al. (60), 19.2% of patients had hyperprogressive NSCLC

after ICIs treatments. A predictive model was constructed using

relevant risk factors, including age, tumor volume, and metastasis to

other sites. The AUC for predicting hyperprogression was as high as

0.9556 (95%CI: 0.9133-0.9978). Tunali et al. (61) enrolled 228

patients with NSCLC who were receiving single-agent or dual-

agent immunotherapy. They developed a clinical-imaging radiomic

predictive model based on baseline CT images and clinical

information, with an AUC for predicting hyperprogression

ranging from 0.804 to 0.865. Vaidya et al. (62) reviewed and

analyzed the clinical and imaging data of 109 patients with

advanced NSCLC treated with PD-1/PD-L1 immunosuppressant

monotherapy, of whom 19 showed hyperprogression. A total of 198

radiomic features reflecting intratumoural and peritumoural

textural features and quantitative vessel tortuosity around the

lesion were extracted from baseline CT images. The Kaplan-Meier

survival curves showed a statistically significant difference in the OS

of the hyperprogression group and non-hyperprogression group

predicted by the model (P<0.05). This study demonstrated that

baseline CT imaging features could predict whether advanced

NSCLC patients receiving immunotherapy will develop

hyperprogression. Pseudoprogression refers to the appearance of

new lesions or enlargement of existing lesions at the early stage of

immunotherapy, while the lesions stabilize or shrink at the later

stage. Therefore, pseudoprogression is not a true disease

progression. Barabino et al. (63) extracted the imaging radiomic

features from the baseline and the first follow-up CT of the

advanced NSCLC patients. The authors showed that there were 9

differential imaging radiomic features that could identify tumor

progression and pseudoprogression, while these features were not

identical to those identifying tumor progression and remission. At

present, there is no consensus on the mechanism and definition of

the occurrence of the special response pattern of immunotherapy,

thus the application value of the relevant studies needs to be

further explored.

The above studies imply that AI has great potential in the

evaluation of the efficacy of immunotherapy in the future, providing

a new means of noninvasive individualized assessment and
Frontiers in Immunology 06
prediction of NSCLC patients. Nevertheless, due to the high

computational requirements of AI on hardware equipment and

the complexity of model design, it needs a lot of practice and

verification of its effectiveness to be put into clinical application.
Differential imaging radiomics
predicting immunotherapy outcomes
in NSCLC

Differential imaging radiomics is a radiological technique that

calculates the changes in imaging radiomic features at different time

points (e.g., pre-treatment and post-treatment) by dynamically

observing these images, which can be used to analyze the

correlation of treatment effects. Differential imaging radiomics

enables the quantitative extraction of features from CT scans,

facilitating early detection and diagnosis of NSCLC. Radiomics

aids in identifying suspicious lesions indicative of NSCLC.

Integration of radiomic data into prognostic models allows

clinicians to effectively stratify patients based on risk of

recurrence or metastasis, thereby optimizing treatment strategies.

It was reported that the differential radiogenomics model was better

than the baseline radiogenomics model. This novel technique was

found to have a higher efficacy in predicting the presence or absence

of response to immunotherapy, with AUCs ranging from 0.81 to

0.87 (64, 65). On the other hand, this differential imaging genomics

model was considered to have a better predictive efficacy in

adenocarcinoma than in squamous carcinoma. Khorrami et al.

(66) also showed that the AUC of differential imaging radiomic

features for predicting the effect of immunotherapy was above 0.8.

Interestingly, the authors observed that PD-L1 expression had no

significant correlation with the effect of immunotherapy. This study

further found that the peritumoural regional texture feature Gabor

Delta-RFs was significantly correlated with the density of tumor-

infiltrating lymphocytes, suggesting that there might be a mapping

relationship between the radiomic texture (DelRADx) of CT pattern

and the tumor immune microenvironment. The paraneoplastic

region of the tumor, where the tumor immune microenvironment

is located, has an important role in the process of immunotherapy.

This study suggests that we should pay attention to the information

on the peritumour region to further explore its relationship with the

immunotherapeutic efficacy of advanced NSCLC.
18F-FDG PET/CT assesses
immunotherapy outcomes in
NSCLC patients

18F-FDG PET/CT can also be employed to evaluate the

immunotherapy outcomes in NSCLC patients. Feng et al. (67)

assessed the role of 18F-FDG PET/CT in the clinical benefit and

prognosis in patients with NSCLC. They found that metastatic

lesion burden assessed by 18F-FDG PET/CT, such as metabolic

tumor volume of primary lesion, metabolic tumor volume of whole-

body, and total lesion glycolysis of whole-body, might significantly
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1434171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2024.1434171
predict the response to immunotherapy in metastatic NSCLC

patients (all P < 0.05). Since the molecular and functional

changes of malignant tumors are more rapid than anatomical

changes, tumor progression can be assessed in a timely manner at

the molecular level by using 18F-FDG PET/CT. Mu et al. (68)

extracted imaging radiomic features from PET images, CT images,

and calibrated PET/CT fusion images of NSCLC patients before

receiving immunotherapy. The results showed that the column

maps showed excellent predictive performance, with a concordance

index of 0.77 for PFS and 0.84 for OS. Valentinuzzi et al. (69)

constructed an 18 F-FDG PET imaging model and compared

whether it was better than the commonly used clinical criteria for

predicting the response to nivolumab in patients with stage IV

NSCLC. The results indicated that the imaging radiomic model was

superior to the current clinical standard in predicting OS, with an

AUC of 0.9 for the imaging model and an AUC of 0.79 for the

clinical model. In this regard, PET/CT imaging may provide

additional information beyond the clinical standard or SUV

values for the efficacy and prognost ic evaluat ion of

NSCLC immunotherapy.
Radiological imaging to identify
immune-related adverse events

In addition to predicting the immunotherapeutic biomarkers

and the treatment outcomes, radiological imaging is found to be

associated with the identification of immune-related adverse events

(IRAE) (70). Imaging genomics, an interdisciplinary field that

combines radiomics with genomic data, holds great potential for

predicting adverse events in NSCLC patients undergoing

immunotherapy. Imaging genomics facilitates the early detection

and monitoring of treatment-related toxicities by identifying

imaging-genomic markers that precede clinical symptoms.

Immunotherapy can lead to long-term tumor responses, which

can imbalance the balance of the immune system and produce

immune-related toxicity, known as IRAEs. Prediction of immune-

related adverse events PD-1/PD-L1 inhibitors are often

accompanied by a series of specific autoimmune toxic reactions

(IRAE), caused by the recovery or enhancement of the body’s

immune system function. At present, the exact mechanism of the

occurrence of IRAE has not been fully clarified. IRAE commonly

involves multiple systems of the organism, which usually occurs in

the skin, gastrointestinal tract, lungs, and endocrine glands.

Previous clinical trials have shown that nivolumab causes IRAEs

in 58% of NSCLC patients and pembrolizumab causes IRAEs in

29% (71). The common IRAEs include pneumonitis, pulmonary

nodulosis, pseudoprogression, hypothyroidism, diarrhea/colitis,

hepatitis, and cutaneous-like reactions (72). Among them,

immunotherapy-associated pneumonia is the most common

IRAE in the chest.

Pneumonia is the most dangerous IRAE in patients with

NSCLC. Since immunotherapy-associated pneumonia is not

clinically specific and cannot be differentiated from infectious

pneumonia on medical imaging, thus prevents early intervention.
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Currently, there are no reliable diagnostic criteria to differentiate

infectious pneumonia from immunotherapy-associated

pneumonia, so even mild signs, such as ground-glass shadows,

atypical nodules, and reticulocytosis, should be reported as

suspicious, especially in the setting of clinical deterioration.

Immunotherapy-associated pneumonia often occurs within 6

months of ICIs treatment. Therefore, any imaging signs

suggestive of pneumonia within 6 months of ICIs should be

discussed with an oncologist and cortisone therapy should be

initiated earlier. Colen et al. (73) outlined 18 regions of interest

on baseline CT images of each patient, extracted a total of 1,860

medical imaging features and selected the best two features to

predict the occurrence of immunotherapy-associated pneumonia

with 100% accuracy. This study demonstrated that radiogenomics

can be applied to stratify the risk of immunotherapy-associated

pneumonia in patients before treatment. Mu et al. (74) enrolled 146

patients with advanced NSCLC, 21 of whom developed IRAE. The

radiological imaging features of tumor lesions were extracted from

PET images, CT images, and PET/CT fusion images. Five medical

imaging features were selected to construct a radiomics score (RS),

which predicted the AUC of IRAE in the different groups.

Combining RS with treatment type and dosage further improved

the predictive efficacy, with AUC over 0.8. This study demonstrated

that higher RS, high dosage of medication, and combination of

different antibodies increase the risk of IRAE occurrence. However,

the sample size of IRAE in this study was still relatively small and

contained multiple types of IRAE at the same time, not limited to

immunotherapy-associated pneumonia. Nevertheless, the results of

the study generally suggest that imaging radiomic features are

closely related to the presentation of IRAE, which is instructive

for subsequent studies.

In advanced NSCLC, where radiotherapy and immunotherapy

are usually combined, both immunotherapy-associated pneumonia

and radiation-induced pneumonitis can occur simultaneously. In

that case, it is more difficult to differentiate these similar adverse

events. Qiu et al. (75) outlined areas of lung injury on pulmonary

window images and subsequently extracted 93 imaging radiomic

features. After feature screening by the LASSO binary regression

model, 11 radiomic features were employed to construct the

imaging radiomic score “Rad-score”, which was able to better

differentiate between immunotherapy-associated pneumonia and

radiation-induced pneumonia with an AUC of 0.89. The Rad-score

combined with clinical features (bilateral changes and sharp

borders) had an AUC of more than 0.95 for differentiating the

two types of pneumonia. Three phase 3 trials (including Impower

130, 132, and 150 studies) revealed that the OS of patients with

IRAEs was significantly longer than that of patients without IRAE

in both the immunotherapy and control groups (76). This study

suggests that patients with IRAEs tend to be the beneficiaries of ICIs

treatment, while patients without IRAEs may be ineffective for ICIs

treatment. Thus, IRAEs can be used as a hallmark event of

treatment benefit in NSCLC patients and prompt timely clinical

intervention. On the other hand, clinicians need to identify whether

the treatment is effective in patients without IRAEs and take

countermeasures in a timely manner. In recent years, as ICIs

become more widely used in clinical practice, there is a need for
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medical imaging physicians and clinicians to utilize imaging to

identify IRAEs in a timely manner and to treat them early in order

to improve the survival of NSCLC patients.

The underlying molecular
mechanisms of the potential of
radiomics in NSCLC

CT-based radiomics plays a significant role in NSCLC by providing

insights into the molecular characteristics of tumors through the

analysis of medical images. NSCLC is known for its molecular

heterogeneity, indicating tumors can differ greatly in their genetic

and molecular profiles. Radiomics aims to capture this heterogeneity

non-invasively by correlating imaging features with molecular markers

such as protein expression (e.g., PD-L1), genetic mutations (e.g., EGFR

mutations), or metabolic activity (e.g., glucose metabolism). The

variability in tumor tissue infiltration and fluctuations in PD-1

expression over time and space present challenges in the accurate

and consistent detection and assessment of PD-1+ tumor-infiltrating

lymphocytes (TILs). Mierzwicka et al. showed that PD-1-targeted small

protein variants for in vivo PET imaging in NSCLC. It was reported

that b-sheet-derived MBA variants exhibited PD-1 specificity and

stability, which was sufficient for sensitive in vivo PET/CT imaging.

The distribution of 68Ga-MBA proteins in mice was monitored using

whole-body positron emission tomography combined with PET/CT

imaging. Mierzwicka et al. (77) found thatMBA proteins demonstrated

strong binding affinity and specificity towards human andmouse PD-1

receptors, whether in recombinant form or on the surface of cells,

offering a viable non-immunoglobulin alternative for visualizing PD-1+

cells in PET imaging. As such,MBA proteins have the potential to serve
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as valuable diagnostic tools for guiding the clinical care of patients with

NSCLC under immunotherapy (77). Radiomics is an emergingmethod

that can convert medical images into quantitative data to profile tumor

phenotypes. Tian et al. (56) evaluated the PD-L1 expression in NSCLC

and predicted the therapeutic responses to ICIs by applying deep

learning on CT images. PD-L1 expression signature could predict the

high level of PD-L1 (PD-L1 expression≥ 50%) with an AUC of 0.78

(95% CI: 0.75 to 0.80) (56).

Previous study showed that EGFR mutation was an effective

target for improving the overall survival in patients with advanced

NSCLC (78). EGFR plays significant biological roles in NSCLC

patients receiving immunotherapy by modulating the immune

microenvironment and influencing tumor-infi l trat ing

lymphocytes. A biological rationale implied that sensitivity to ICIs

was higher in tumors bearing high levels of EGFR mutations (79).

However, NSCLC tumors with EGFR mutations (such as exon 19

deletions or L858R mutations) traditionally respond poorly to ICIs

targeting PD-1/PD-L1 (80). This is because these mutations often

lead to lower tumor mutational burden and reduced expression of

neoantigens, which are targets for immune recognition and

activation. Based on this evidence, recent researches rarely focus

on EGFR-targeted therapy in NSCLC.

In the view of glucose metabolism, Tricarico et al. (81) investigated

the metabolic tumor volume in patients with metastatic NSCLC

underwent immunotherapy by assessing 18F-fluoro-deoxy-glucose

positronemission tomography (18F-FDG PET/CT). It is known that

18F-FDG PET metabolic parameters (i.e., tumor maximum

standardized uptake value and metabolic tumor volume) are

correlated to the outcome of immune checkpoint inhibitors in

NSCLC (82). This study demonstrated that 18F-FDG PET/CT

volume-based metrics were the effective prognostic non-invasive
FIGURE 1

The workflow for using CT-based radiomics to predict the expression of immune checkpoint markers, immunotherapeutic outcomes, and immune-
related adverse events in non-small cell lung cancer.
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biomarkers in patients with advanced NSCLC underwent

immunotherapy treatments (81). However, a previous study

developed by Puyalto et al. (83) indicated that conventional 18F-

FDG-PET scans could not detect the antitumor activity in

immunotherapy-treated patients. Nevertheless, the authors found

that [89Zr]-anti-PD-1 uptake was significantly elevated in mice that

responded to PD-1 blockade. Besides, they also identified a positive

correlation between [89Zr]-anti-PD-1 uptake and the level of TILs (r =

0.8; P= 0.001).
Comparisons of radiomics with other
emerging biomarkers and
diagnostic tools

In the evaluation of immunotherapeutic outcomes in NSCLC,

both radiomics and other biomarkers like PD-L1 expression and

tumor mutation burden (TMB) play crucial roles (Table 1).

Radiomics can potentially predict immune checkpoint marker

expression indirectly by capturing tumor heterogeneity, shape, and

texture features that correlate with the tumor microenvironment.

Previous studies showed that radiomic features might correlate with

areas of immune infiltration or spatial patterns indicative of immune

checkpoint expression (84, 85). Yang et al. (86) demonstrated that a

high radiomics score was associated with the related signaling

pathways suppressing tumor proliferation and the infiltration of

antitumor immune cell in NSCLC. Tumor-infiltrating lymphocytes

(TIL) are the reliable biomarker of ICIs in NSCLC. Park et al. (87)

established a CT radiomics model by extracting the radiomic

features in NSCLC. They found that enrichment of TILs was

dramatically correlated to the PFS independent of PD-L1 status

[4]. Though radiomics offers non-invasive and comprehensive

insights into tumor characteristics, several limitations should be

acknowledged, i.e., lack of standardization, uncertain data quality,

and requirements of clinical validation. While the above biomarkers

(e.g., PD-L1, TMB, and TIL) directly reflect tumor biology

and its interaction with the immune system, which are already

incorporated into clinical practice for guiding immunotherapy

decisions. However, some biomarkers require invasive tissue

sampling (biopsy), which may not always be feasible or desirable.

Besides, biomarker levels can vary spatially within a tumor and over

time, potentially leading to sampling bias or incomplete assessment.

Also, they may not fully capture tumor heterogeneity or other

complexities that influence treatment response. Based on these

facts, radiomics and biomarkers can provide complementary

information about tumors. Combining radiomic features with

molecular biomarkers could enhance predictive accuracy in

the field of NSCLC researches, offering a more personalized

therapeutic approach.

As the present knowledges of AI and machine learning for

predicting the outcomes of immunotherapy in NSCLC, the quality

of medical imaging data may be affected by a variety of factors, such

as differences in imaging equipment, inconsistencies in scanning

parameters, and individual patient differences, which may lead

to data bias and affect the accuracy and reliability of the model.
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TABLE 1 Continued

comes (HR, 95%CI, AUC, or P value)

predictive performance on predicting PD-L1 positivity was higher with model of
bination of clinical variables and CT radiomic features (c-statistic = 0.667; 95% CI =
5–0.760) than the model with only clinical variables (c-statistic = 0.550; 95% CI =
4–0.646).

L1 expression of NSCLC tumors was significantly associated with radiomics
ature. For prediction of PD-L1 expression, the prediction model that combination of
omics signature and clinicopathologic features for predicting PD-L1 expression
lted in AUC 0.848 in the validation cohort.

unotherapy-radiomics prediction vector (IRPV) could predict PD-L1 positivity in
LC testing cohort (AUC = 0.7, 95% CI: 0.57-0.84). IRPV could also stratify patients
a high- and low-risk survival group (HR= 2.26, 95% CI: 1.21-4.24, p = 0.011 and
= 2.45, 95% CI: 1.07-5.65, p = 0.035).

C-index of radiomics models in the validation cohort was 0.78. The radiomics score
ed good accuracy for distinguishing patients with progression to ICI treatment.
delta radiomics model had a significant higher predictive accuracy compared to
L1 expression (P<0.0001).

radiomics score was correlated to an abundance of CD8+ TILs in NSCLC
C=0.83, 95% CI=0.73-0.92) in the training set, while the AUC in the test set was
(95% CI=0.54-0.87).

combination AI model showed a high-performance with AUCs of 0.95, 0.934, and
6 for predicting PD-L1 expression signature <1%, 1-49%, and ≥50%, respectively.
combination AI model was trained on multi-source features the performance of OS
uation in NSCLC patients (C-index: 0.89).

max on 18F-FDG PET/CT was an independent prognostic factor in NSCLC
nts (p = 0.013). SUVmax was significantly associated with the expression of CD8
or-infiltrating lymphocytes, CD163 tumor-associated macrophages, Foxp3-
latory T cells, as PD-1 and PD-L1 (all P<0.05).

predicting PD-L1 expression, the AUC of the Naïve Bayes model based on PET/CT
0.712, with a sensitivity of 75.3% and specificity of 58.2%.

er baseline 18F-FDG PET/CT parameters were correlated to the responses to ICIs.
ents with higher wTLG were correlated to the progression and worse survival to
therapy.
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Study
and
references

Study
area

Study
population
(n)

Mean
age
(years)

NSCLC
stage

Imaging modality Radiomic features Ou

Yoon
(28) 2020

Korea 153 64.1 ± 11.2
stage
>IIIA

CT-based radiomics

The prediction models were established by
multivariate logistic regression analysis,
combining of clinical variables and
radiomic features.

The
com
0.57
0.45

Sun
(29) 2020

China 390
62.31
± 10.55

Stage I-IV CT-based radiomics

Based ono the in-house texture analysis
software with algorithms, radiomic features
extracted from the tumor ROI. 9 out of 200
radiomic features were selected to develop
radiomics signature.

PD
sign
rad
resu

Chen
(30) 2023

China 194 68.2 ± 9.2 Stage I-IV
Radiogenomics
Biomarker

Radiomic features extracted from segmented
tumors on contrast-enhanced chest CTs. For
predicting PD-L1, an immunotherapy-
radiomics prediction vector was applied.

Imm
NSC
into
HR

Xie
(31) 2022

China 97 NA Stage I-IV CT-based radiomics
A prediction model combining the
clinicopathologic risk characteristics and
phenotypic signature.

The
sho
The
PD

Chen
(32) 2023

China 117
59.09
± 11.8

Stage I-IV CT-based radiomics

LASSO regression was applied to evaluate
strongest features for abundance of CD8+
TILs, which was used to construct the
radiomics score.

The
(AU
0.68

Wang
(33) 2022

China 1135
58.77
± 10.66

Stage I-IV
CT-based radiomics
combined with
deep learning

The deep learning feature was obtained
through a 3D ResNet, while radiomics were
based on CT images.

The
0.94
The
eva

Wang
(36) 2020

China 763
> 60
(419/763)

Stage I-IV 18F-FDG-PET/CT
Patient image data were acquired applying a
DiscoveryST4 PET/CT scanner.

SUV
pati
tum
regu

Lim
(37) 2022

Korea 312 66.2 ± 9.1 Stage I-IV
PET/CT-
based Radiomics

PET radiomic features were extracted from
segmented tumors on PET and CT images
using the LIFEx package. The top five best
feature subsets were chosen through the
Gini index.

For
was

Silva
(38) 2022

Brazil 98 NA
Metastatic
or IIIC

18F-FDG PET/CT

Radiomics based on maximum standardized
uptake values, whole metabolic tumor volume
(wMTV), as well as whole-body total lesion
glycolysis (wTLG).

Low
Pat
ICI
t

-
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-
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TABLE 1 Continued

(HR, 95%CI, AUC, or P value)

mean) and maximum standard uptake values (pSUVmax) were increased
rease of pulmonary lesions PD-L1 expressions, while pSUVmax rather than
was an independent predictor for pulmonary lesions PDL1 (odds ratio=
nd 4.45 for pPDL1-negative,-moderate, and -strong, respectively).

SUVmean, eSUVmax, eSUVmean, DSUVmax, DSUVmean, and DTLG were
higher in patients with positive PD-L1. High glucose metabolism on dual-
8F-FDG PET correlated with the tumor microenvironment immune types-

x was significantly negatively associated with tumor PD-L1 expression
igher 18F-RGD uptake was associated with depressed PD-L1 expression.

ents (20/30) achieved major pathological response and 16 of them (16/30)
plete pathological response. SUVmax, SUVpeak, SULpeak, and End-PET-
e Dependence High Gray Level Emphasis (End-GLDM-LDHGLE) were
ly associated with complete pathological response.

h lung cancer treated with immunotherapy exhibit high inter- and intra-
ment on iRECIST.

uld monitor treatment more precisely. Meanwhile, it could also weight
quent pseudoprogression of NSCLC.

ng the major pathological response, delta-radiomics model showed the
s of 0.716 in the two external validation databases.

antly discriminated between PD-L1 negative and positive patients (all AUC
e cohorts). DLS combined with clinical characteristics could accurately
urvival of the NSCLC patients (C-indexes of 0.70-0.87).

ld distinguish between High-TMB and Low-TMB patients in both training
= 0.85, 95% CI: 0.84 - 0.87) and test cohort (AUC= 0.81, 95% CI: 0.77 -
redictive value of TMBRB was superior than that of a radiomic model or
subtype.

ve model of CytAct was associated with tumor size after ICB treatment (r =
001). It was also associated with the survival of the NSCLC patients (HR
.001 and 0.18, p = 0.004, for PFS and OS, respectively).

ure parameters, mean value of positive pixels (MMP) showed the AUC over
nts with advanced NSCLC with Pembrolizumab treatment (P < 0.001).
gnificantly associated with both OS and PFS (all P < 0.05).

ng model exhibited a good performance in distinguishing responders from
ers with anti-PD-1/PD-L1 treatment, with an AUC of 0.8 (95% CI:

(Continued)
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Study
and
references

Study
area

Study
population
(n)

Mean
age
(years)

NSCLC
stage

Imaging modality Radiomic features Outcomes

Wang
(39) 2020

China 133
64
(median)

Stage
IIIB-IV

18F-FDG PET/CT
Radiomics based on the mean and maximum
SUV, metabolic tumor volume, and total
lesion glycolysis of primary lesions.

Mean (pSU
with the in
pSUVmean
4.82, 3.92, a

Zhou
(40) 2021

China 91 59 (36~78) Stage I-IV 18F-FDG PET/CT

PET images were attenuation-corrected and
anatomically fused with low-dose CT images.
SUVmax, SUVmean, and metabolic tumor
volume were measured.

dSUVmax,
significantly
time-point
I tumors.

Wu
(41) 2022

China 30 NA
Stage
III-IV

18F-RGD
PET/CT images were viewed using a Xeleris
workstation. The analysis was assisted with
the MIM software package.

The SUVm
(P=0.014).

Cui
(42) 2022

China 30 59 (33-71) Stage III
18F-FDG PET-
based radiomics

Most of radiomics features (76/102) were
highly reproducible with ICCs higher
than 0.75.

Twenty pat
achieved co
GLDM-Lar
independen

Huicochea
(45) 2021

USA 85 69 (41–92) NA CT scans iRECIST and RECIST 1.1 based on CT scans
Patients wi
reader agre

Singla
(46) 2021

India 28
59.3
(27-78)

metastatic
NSCLC

CT scans RECIST 1.1 and iRECIST
iRECIST co
against infr

Han
(47) 2024

China 206 61 ± 6.6
Stage
IIA-IIIB

Contrast-enhanced
CT scans

The delta-radiomics features were
characterized by radiomics features between
baseline and preoperative.

For predict
AUCs value

Mu
(48) 2021

USA 697
62.71
± 8.78

Stage I-IV
Deep learning of 18F-
FDG-PET/CT

18F-FDG-PET/CT images were analyzed
using a SResCNN to develop a deeply learned
score (DLS).

DLS signifi
≥0.8 in thre
predict the

He (24) 2020 China 123 61.8 ± 10.2
Stage
III-IV

TMB radiomic
biomarker (TMBRB)

Based on feature extraction and classification
module, patient’s tumor areas were set as
training data to identify patients with
High-TMB.

TMBRB co
cohort (AU
0.85). The p
histological

Park
(49) 2020

Korea 29
64
(median)

NA FDG-PET/CT
A deep learning model to predict cytolytic
activity score (CytAct) using segmented
tumors on FDG-PET.

The predict
-0.54, p < 0
=0.25, p =

Zerunian
(51) 2021

Italy 21 59 (45-82)
Advanced
NSCLC

CT-based radiomics
After obtaining the volumetric region of
interests, radiomic features were extrapolated
using the image histogram statistical method.

Among tex
70% in pati
MPP was s

Yang
(52) 2021

China 200 62 (61-64)
Advanced
stage
NSCLC

Multi-omics-based serial
deep learning on
CT scans

The radiomic features were extracted with
PyRadiomics for deep learning.

The predict
non-respon
0.74-0.86).
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TABLE 1 Continued

(HR, 95%CI, AUC, or P value)

lues for the training and validation cohorts were 0.848 and 0.795 (all
bined with CT-based radiomic features and clinicopathological factors

d prior to the initiation of immunotherapy.

HR of the models for predicting OS and PFS were 3.54 and 6.22 (p<0.05)
eceived nivolumab. The AUC for this model was 0.73.

arning model could predict high PD-L1 expression of NSCLC (all
three cohorts) and to infer clinical outcomes in response to

apy. Low PD-L1 expression signature was associated with improved PFS
5% CI: 1.22~5.44; P = 0.010).

n the three cohorts (the training set, cross-validation set, and external
t of the patients with chemo-immunotherapy) based on the principal
analysis (PCA) and support vector machine (SVM) were all over 0.7.

nious clinical-radiomic models with modest to high ability to predict rapid
ression phenotypes with AUC over 0.7. For survival outcomes, atients who
progression< 2 months were based on patient-level probabilities.

tures could predict the hyperprogression in patients with ICB treatments
of 0.85 in the training set and 0.96 in the validation set.

ics nomograms incorporating Delta-radiomics signatures with clinical
stant metastasis for target lesions provided satisfactory performance in
esponders underwent anti-PD1 immunotherapy with an AUC of 0.83 (95%
).

e of delta-radiomics model showed a significant prognostic for PFS and OS
cohorts in patients with immunotherapy (P < 0.05).

atures yielded an AUC of 0.88 ± 0.09. The response prediction accuracy for
x was 88% for patients treated with nivolumab. Besides, DelRADx features
ociated with the OS in patients underwent immunotherapy.

advanced NSCLC with a high amount of metastatic lesions can be
respond to immunotherapy based on 18 F-FDG PET/CT scans.

rametric radiomics signature (mpRS) could predict patients who might
ble clinical benefit, with the AUC of 0.81 (95%CI 0.68-0.92) in the
test cohorts.
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Study
and
references

Study
area

Study
population
(n)

Mean
age
(years)

NSCLC
stage

Imaging modality Radiomic features Outcomes

Yang
(53) 2021

China 92 NA Stage I-IV CT-based radiomics
Radiomics model was constructed based on
the Rad-score.

The AUC va
P<0.05). Co
could be use

Liu
(55) 2021

China 46 62 (46–77)
Stage
IIIB-IV

CT-based radiomics
The CT scans were reconstructed through the
standard convolution kernel.

The average
in patients r

Tian
(56) 2021

China 939 58.8 ± 10.7
Stage
IIIB-IV

Deep learning on
CT images

Deep learning features were primarily
extracted from the CT tumor slice input.

This deep le
AUC>0.70 i
immunother
(HR= 2.57,

Zhou
(57) 2023

China 94 83.8% <75
Stage
IIIB-IV

Deep learning on
multiparameter
prediction model and
CT images

A radiomics-based CT (first order, shape,
texture, and wavelet) was generated by using
the SlicerRadiomics package.

The AUCs i
validation se
components

Tunali
(61) 2019

Turkey 228 62 (61-64) NA
Image-based features
(radiomics) on CT scans

Based on Synthetic Minority Oversampling
Technique (SMOTE).

The parsimo
disease prog
had time-to

Vaidya
(62) 2020

USA 109 NA Stage I-IV CT-based radiomics

CT scans pretreatment were analyzed to
examine radiomic texture patterns within and
around the target nodules, and to determine
tortuosity of the nodule’s
associated vasculature.

Radiomic fe
with an AU

Liu
(64) 2021

China 197 63 (35–84) NA CT-based radiomics
Delta-radiomics feature based on the relative
net change in radiomics feature between
baseline and first follow-up.

Delta-radiom
factors of di
identifying r
CI: 0.75-0.91

Gong
(65) 2022

China 224 65 (27–86)
Stage
III-IV

CT-based radiomics
CT-based radiomics were calculated by
segmenting tumors, resampling images,
identifying features, and normalizing them

The rad-sco
in validation

Khorrami
(66) 2020

USA 139 65 (42–83)
Distant
metastasis

CT-based radiomics

Based on a machine learning setting, the
radiomic texture (DelRADx) of CT patterns
both within and outside tumor nodules
was established.

DelRADx fe
the DelRAD
were also as

Feng
(67) 2023

China 34
>60 (22/
34, 65%)

Stage
III-IV

18 F-FDG PET/CT
To reconstruct images from PET/CT whole-
body images, the ordered subset maximum
expected value method is employed (OS-EM).

Patients wit
predicted to

Mu
(68) 2020

USA 194
66.76
± 13.64

Stage
IIIB-IV

Radiomics of 18F-FDG
PET/CT

Based on minimum Kullback-Leibler
divergence (KLD) criteria, the radiomic
features from PET, CT, and PET+CT fusion
images were extracted.

The multipa
receive dura
prospective
m

n

9

-

a
C

r

s

h
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TABLE 1 Continued

res Outcomes (HR, 95%CI, AUC, or P value)

features were extracted from
including volume, SUVmax,

The baseline radiomics features could predict the response of metastatic NSCLC patients
treated with pembrolizumab HR = 0.46, p = 0.007; AUC = 0.85, 95% CI 0.69-1.00).

res were extracted from
, and PET/CT fusion images
iomics score (RS) to quantify
eveloping immune-related
irSAEs).

The radiomics nomogram, incorporating the RS, type of immune checkpoint blockade,
and dosing schedule, was able to predict patients with and without irSAEs with area
under the receiver operating characteristic curve of 0.92 (95% confidence interval [CI]:
0.86, 0.98), 0.92 (95% CI: 0.86, 0.99), and 0.88 (95% CI: 0.78, 0.97) in the training, test,
and prospective validation cohorts,

sion was used to establish a
gram.

The radiomics nomogram model differentiated between checkpoint inhibitor-related
pneumonitis and radiation pneumonitis with the empirical and a-binormal-based AUCs
of 0.891 and 0.896.

tures of 18F-FDG PET/CT,
etabolic tumor volume
sion glycolysis (TLG)

TMTV was predictive of OS (AUC =0.64; 95% CI: 0.61 to 0.66). TMTV1 prognostic
stratification was independent of PERCIST criteria on both PFS and OS.

ics 18F-FDG PET/CT, total
volume (TMTV)

TMTV > 75 cm3 was associated with shorter OS (HR= 2.5, 95%CI: 1.3-4.7) for ICI
treatment in advanced NSCLC patients.

ature was established by the
rinkage and selection
SO, Cox regression model.

The radiomics-based nomogram showed a better performance for predicting DFS (C-
index: 0.72; 95% CI: 0.71 to 0.73) than with the clinical-pathologic nomogram.

ls were established via the The ability of PET-CT radiomics model to predict pathological complete response with
an AUC of 0.818 (95% CI: 0.711, 0.925).

l was constructed using
associated with tumor-
hocytes (TIL) enrichment.

The patients with high predicted TIL had significantly prolonged PFS compared to
those with low predicted TIL (median: 4.0 months, 95% CI: 2.2-5.7).

dence interval; OS, Overall Survival; PFS, Progress Free Survival; LASSO, Least absolute shrinkage and selection operator, AI, Artificial
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Study
and
references

Study
area

Study
population
(n)

Mean
age
(years)

NSCLC
stage

Imaging modality Radiomic feat

Valentinuzzi
(69) 2020

Slovenia 30 65 (46–77)
Metastatic
NSCLC

18F-FDG PET/CT
FDG radiomics
primary tumors
and SUVtotal.

Mu
(74) 2020

USA 146
69.43
± 6.72

Stage
IIIB-IV

Radiomics of 18F-FDG
PET/CT

Radiomics featu
baseline PET, C
to generate a ra
patient risk for
adverse events (

Qiu
(75) 2022

China 126 57.1 NA CT-based radiomics
A logistic regres
radiomics nomo

Tricarico
(81) 2024

France 110 63 (39–91) Stage IV
Radiomics of 18F-FDG
PET/CT

Based on the fe
SUVmax, total
(TMTV), total l
were calculated

Seban
(82) 2020

France 80
61.9
(34.2–84.8)

Advanced
NSCLC

Radiomics of 18F-FDG
PET/CT

Based on radiom
metabolic tumo
was evaluated.

Huang
(84) 2016

China 282 61 (21–84)
Stage
IA-IIB

CT-based radiomics
A radiomics sig
least absolute sh
operator, or LA

Yang
(86) 2024

China 185 61.95 ± 8.65 Stage I-IV
Radiomics of 18F-FDG
PET/CT

Radiomics mod
LASSO method

Park
(87) 2022

Korea 220
≥60
(64.1%)

Stage I-IV CT-based radiomics
A LASSO mode
features that wa
infiltrating lymp

NA, Not available; AUROC, Area under the receiver operator curve; TMB, tumor mutational burden; HR, Hazard ratio; CI, Confi
intelligence; TMB, Tumor mutational burden; ICB, immune checkpoint blockade.
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Also, different individuals with different immunotherapeutic agents

may have unique imaging characteristics, leading to poor

performance and limited generalisability of established models. In

addition, lung tumorous change during immunotherapy are

dynamic. At present, however, the existing radiological imaging,

AI, or machine learning methods still need to be improved in their

ability to monitor and predict efficacy in real-time and

continuously. Also, it should be noted that running complex AI

algorithms usually requires significant computational resources,

which may be difficult to meet in some healthcare departments,

limiting their practical application. Based on the above evidence,

although radiological imaging-related AI and machine learning

have great potential for predicting immunotherapy efficacy in

NSCLC, further research and improvements are needed to

overcome the current shortcomings.
Limitations and challenges

Implementing radiomics and AI in patients with NSCLC

underwent immunotherapy presents several challenges and

limitations. As aforementioned, radiomics relies heavily on

imaging data, which must be of high quality and standardized

across different institutions. Variations in imaging protocols,

equipment, and techniques can affect the reliability and

reproducibility of radiomic features, leading to inconsistent

results. Besides, identifying relevant radiomic features associated

with immune checkpoint markers and immunotherapy outcomes

requires rigorous selection and validation processes. Overfitting and

selection bias are common challenges when dealing with high-

dimensional radiomic data, which can lead to unreliable

predictions. At present, since underlying biological mechanisms

linking radiomic features extracted from imaging data to immune

responses and treatment responses are often complex, there is still a

need to establish strong biological and clinical correlations between

radiomic features and immune-related biomarkers (such as PD-L1

expression) or treatment outcomes. As the accessibility, while AI

and radiomics can generate predictive models, the interpretability

of these models remains a significant hurdle. Finally, implementing

radiomics and AI may require significant investment in terms of

technology, expertise, and training. This can pose barriers,

particularly for smaller healthcare institutions or those with

limited resources. Addressing these challenges and limitations will

be crucial for harnessing the full potential of radiomics and AI in

optimizing immune checkpoint marker assessment and predicting

immunotherapeutic outcomes in NSCLC. In future, it is essential to

overcome the aforementioned obstacles the field towards

personalized medicine in NSCLC treatment.
Summary and outlook

The early prediction and the treatment outcome assessments in

advanced NSCLC patients who underwent immunotherapy are

crucial for improving patients’ prognosis. Relevant studies
Frontiers in Immunology 14
demonstrate that radiomics is effective in predicting the

expression of immune checkpoint markers and the effect of

immunotherapy in a non-invasive, real-time, and dynamic way,

which has a broad application prospect in the future clinical

diagnosis and treatment of NSCLC. Figure 1 shows the workflow

for using CT-based radiomics to predict the expression of immune

checkpoint markers, immunotherapeutic outcomes, and immune-

related adverse events in NSCLC. However, some inherent

limitations should be acknowledged when applying medical

imaging techniques for immunotherapy of NSCLC. First, medical

imaging models have been developed for diagnostic and therapeutic

evaluations or prognostic judgments, but the true significance of

such studies has occasionally been questioned due to the lack of

logic inherent in the computerized processing of medical imaging

information. Second, the reproducibility of medical imaging models

is still controversial. There is still a choke point of poor consistency

between different algorithms. Third, immunoimaging often relies

on novel molecular probes, most of which are in the animal stage.

Therefore, the clinical safety and efficacy of these novel techniques

have yet to be verified. Finally, in addition to PD-L1, there are many

other checkpoint markers for subtypes of lung cancer. How to use

advanced imaging technology to predict these new antigens and

evaluate the efficacy and prognosis of immunotherapy by using

these antigens needs to be further explored. Reassuringly, with the

rapid development of medical imaging AI and machine learning,

the further integration of multi-omics data, and the deeper

enhancement of algorithms, radiological imaging is expected to

provide strong support for the development and selection of

clinically individualized treatment plans for NSCLC patients who

received immunotherapy.
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