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José Ricardo Jensen,
Butantan Institute, Brazil
Chen-Huan Yu,
Chinese Academy of Sciences (CAS), China
Zhengrui Li,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Hong Du

hong_du@126.com

Jian Lu

ljsdf2y@163.com

RECEIVED 29 September 2024
ACCEPTED 31 March 2025

PUBLISHED 16 April 2025

CITATION

Lu J, Wang Y, Wu J, Duan Y, Zhang H and
Du H (2025) Linking microbial communities
to rheumatoid arthritis: focus on gut, oral
microbiome and their extracellular vesicles.
Front. Immunol. 16:1503474.
doi: 10.3389/fimmu.2025.1503474

COPYRIGHT

© 2025 Lu, Wang, Wu, Duan, Zhang and Du.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 16 April 2025

DOI 10.3389/fimmu.2025.1503474
Linking microbial communities
to rheumatoid arthritis: focus on
gut, oral microbiome and their
extracellular vesicles
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and Hong Du1*

1Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou,
Jiangsu, China, 2Department of Laboratory Medicine, The Affiliated Guangji Hospital of Soochow
University, Suzhou Mental Health Center, Suzhou, Jiangsu, China
Rheumatoid arthritis (RA) is a severe, chronic autoimmune disease affecting

approximately 1% of the global population. Research has demonstrated that

microorganisms play a crucial role in the onset and progression of RA. This

indicates that the disruption of immune homeostasis may originate from

mucosal sites, such as the gut and oral cavity. In the intestines of patients in

the preclinical stage of RA, an increased abundance of Prevotella species with a

strong association to the disease was observed. In the oral cavity, infections by

Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can

mediate the production of anti-citrullinated protein antibodies (ACPAs),

potentially contributing to RA pathogenesis. Nevertheless, no single bacterial

species has been consistently identified as the primary driver of RA. This review

will discuss the connection between gut and oral bacteria in the development of

arthritis. Additionally, it explores the role of bacterial extracellular vesicles (bEVs)

in inducing inflammation and their potential pathogenic roles in RA.
KEYWORDS

gut microbiome, oral microbiome, bacterial extracellular vesicles, rheumatoid
arthritis, pathogenesis
1 Introduction

Rheumatoid Arthritis (RA) is a clinically significant, refractory autoimmune disease,

characterized by uncontrolled inflammation and cartilage destruction in the affected joints,

eventually leading to joint dysfunction and deformity (1). Current therapeutic regimens

include glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), disease-

modifying anti-rheumatic drugs (DMARDs), and small molecule inhibitors. Although

these medications can significantly ameliorate patients’ clinical symptoms, they are

not curative.

Currently, more than 60% of RA patients do not achieve true remission, placing a

substantial burden on social health and the economy. The pathogenesis of RA is complex,
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and its exact etiology remains unclear, with factors such as smoking,

hormones, gut microorganisms, and infections all associated with

RA development. At its core, RA is driven by autoimmunity, where

the immune system mistakenly attacks self-tissues, particularly

synovial joints. This autoimmune response is closely linked to

microbiome dysregulation, which is pivotal in shaping immune

tolerance and systemic inflammation. The interplay between

autoimmunity and microbiome dysregulation provides a critical

framework for understanding RA pathogenesis (2). Notably, the

dysregulation of the gut and oral microbiota has emerged as a key

contributor to RA pathogenesis, potentially through molecular

mimicry, epitope spreading, and the activation of autoreactive

T and B cells. Recent studies have shown that IgA antibodies

against cyclic citrullinated peptides can be detected in RA patients

several years before the disease onset. IgA antibodies are primarily

found in mucous membranes, indicating that RA could potentially

originate in areas such as the intestinal tract, oral cavity, and lung

mucosa. Individuals with an elevated risk of developing RA are

known to exhibit signs of persistent systemic and mucosal

inflammation. Current research links the progression of mucosal

dysbiosis, inflammatory processes, and the production of

autoantibodies with subsequent phases in the emergence of

systemic autoimmunity (3–6).

Antimicrobial drug therapy, such as minocycline or

salazosulfadiazine, has proven effective in some RA patients,

indicating a close association between the intestinal and oral

microbiota and the onset and progression of RA (7, 8).

Furthermore, certain medications that modulate intestinal

microbiota homeostasis, including biotics (prebiotics, probiotics,

and postbiotics) and some traditional Chinese medicine, have

demonstrated significant efficacy in RA, further supporting the

notion that microbial factors may be important pathogenic

elements and therapeutic targets in the development and

progression of RA (9–12). Therefore, Understanding the

regulatory mechanisms of pathogenic microorganisms in the

pathogenesis of RA is crucial for developing new therapeutic

strategies and preventive measures. Intervening with relevant

pathogenic microorganisms can potentially regulate immune

system imbalances, reduce systemic inflammation, and block the

development of RA. This study aims to summarize the pathogenic

roles and mechanisms of these microorganisms in RA. It will cover

both conventional and novel mechanisms, particularly focusing on

how bacterial extracellular vesicles (bEVs) modulate the

inflammatory response and contribute to the progression of RA.
2 Bacterial factors in RA development

2.1 Intestinal flora imbalance

The imbalance in gut microbiota plays an important role in the

pathogenesis of autoimmune diseases (13, 14). In RA, studies have

demonstrated that the gut microbiome of patients exhibits an

ecological imbalance, characterized by specific microbial features

associated with increased intestinal permeability, inflammatory cell
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infiltration, and the production of anti-citrullinated protein

antibodies (ACPAs). In recent years, researchers have employed

16S rRNA and Next Generation Sequencing (NGS) technologies to

conduct comprehensive studies on the gut microbiota of RA

patients and healthy individuals. The study results demonstrated

that the microbial composition in the gut of pre-clinical RA patients

changed significantly, coupled with a marked reduction in

microbial diversity. Notably, pre-clinical RA patients exhibited a

pronounced enrichment of prevotellaceae (15, 16). Similarly, an

increased abundance of Prevotella copri and a decreased abundance

of Bacteroides species have also been observed in American patients

with new-onset RA (17). This pattern has also been noted in

Japanese and European cohorts (18). Nii and Maeda et al.

revealed that Prevotella copri can induce cytokines associated with

Th17 cells, such as IL-6 and IL-23, promoting arthritis development

in mice. Moreover, this increase in Prevotella correlates with Th17

cell-mediated mucosal inflammation, consistent with its capacity to

drive Th17 immune responses in vitro (19). Notably, anti-

rheumatic drug-mediated disease remission was observed to

increase microbial richness and diversity (20, 21).

Apart from Prevotella, the abundance of other gut bacteria has

also been confirmed to change significantly in patients with RA.

Jeong et al. underscored significant differences in microbial

distributions from phylum to genus levels between healthy

individuals and early RA patients. The phylum Bacteroidetes was

enriched in early RA patients, whereas Actinobacteria, such as

genus Collinsella, were more prevalent among healthy subjects

(22). Zhang et al. observed an elevated presence of Lactobacillus

salivarius in the gut, teeth, and saliva of RA patients, alongside a

decrease in Haemophilus species (21). Fusobacterium nucleatum (F.

nucleatum) was also significantly enriched in RA patients and

positively correlated with inflammatory cytokines and disease

activity, suggesting its potential involvement in RA inflammation

(23). Notably, the intestinal microbiota in RA patients exhibits

dynamic changes across different stages of the disease. Collinsella

aerofaciens, which has been associated with severe arthritis in

experiments, was significantly elevated in the early RA stage,

potentially compromising gut barrier integrity and triggering

clinical arthritis. In the later stages, specific microbes such as

Veillonella parvula, Eggerthella lenta, and Bifidobacterium longum

were elevated and associated with increased gut permeability and

inflammation (24). Gut bacteriome alterations in RA are

summarized in Table 1.
2.2 Oral pathogenic bacterial infection

The initial inflammation in both RA and periodontitis is caused

by the activation of intrinsic cells, monocyte macrophages, and

dendritic cells. Both diseases exhibit enhanced bone resorption (46).

The development of RA may accelerate periodontal tissue

destruction, with the extent of periodontal damage being

positively correlated with the severity of RA disease activity.

Animal experiments have demonstrated that the development of

periodontitis exacerbates the progression of RA (47). Notably, the
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1503474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lu et al. 10.3389/fimmu.2025.1503474
TABLE 1 Alterations in the bacteriome in RA.

Study object Technology Increased Taxa Decreased Taxa Ref.

Gut bacteriome

RA patients and healthy controls 16S rRNA Prevotella Bacteroides (17)

RA patients and healthy controls 16S rRNA Prevotella / (18)

RA patients and healthy controls Metagenome
Prevotella, Bacteroides sartorii, Gardnerella, and
Porphyromonas somerae

/ (25)

RA patients and healthy controls Metagenome
Bacteroides, Clostridium asparagiforme,
and Lactobacillus

Klebsiella pneumonia, Haemophilus,
and Veillonella

(21)

RA patients and healthy controls qPCR Bacteroides and Prevotella Clostridium leptum (26)

RA patients and healthy controls 16S rRNA
Ruminococcus, Fusobacterium,
Erysipelatoclostridium, and Mitochondria

/ (23)

RA patients and healthy controls 16S rRNA

Firmicutes, Actinobacteria, and Bifidobacterium
dentium (RA II, RA III, RA IV); Collinsella
aerofaciens (RA I); Veillonella parvula (RA III);
Eggerthella lenta and Bifidobacterium longum
(RA IV)

Bacteroides uniformis (RA II); Bacteroides
plebeius (RA III and RA IV)

(24)

RA patients and healthy controls 16S rRNA Lactobacillus Faecalibacterium (27)

RA patients and healthy controls. 16S rRNA Escherichia-Shigella and Bacteroides Lactobacillus, Alloprevotella, and Enterobacter (28)

RA patients and healthy controls 16S rRNA
Eubacterium_hallii, Escherichia-Shigella,
and Streptococcus

/ (29)

RA patients and healthy controls 16S rRNA
Ruminococcus, Fusobacterium,
Erysipelatoclostridium, and Mitochondria

Muribaculaceae, Agathobacter, and Alloprevotella (23)

Female RA patients and
healthy controls

16S rRNA Bacteroidetes Actinobacteria (22)

Female RA patients and
healthy controls

16S rRNA Bacteroides, Megamonas, and Oscillospira Prevotella, Gemmiger and Roseburia (30)

RA and OA patients 16S rRNA Prevotella copri Bacteroides and Bifidobacterium (31)

Pre-clinical RA patients and
healthy controls

16S rRNA Prevotella spp / (15)

Pre-clinical RA patients and first-
degree relatives

16S rRNA
Prevotella, Lactobacillus, Butyrivibrio,
Ruminococcaceae, and Enterococcus

/ (16)

Pre-clinical RA patients and
healthy controls

16S rRNA
Helicobacteraceae,
Erysipelotrichaceae, and Ruminococcaceae

Bacteroidaceae, Barnesiellaceae,
and Methanobacteriaceae

(32)

Pre-clinical RA patients and
healthy controls

16S rRNA
Klebsiella, Escherichia, Eisenbergiella,
and Flavobacterium

Fusicatenibacter, Megamonas, and Enterococcus (33)

Pre-clinical RA patients and
healthy controls

16S rRNA
Lactobacillus, Streptococcus,
and Akkermansia

Bacteroides and Faecalibacterium (34)

Pre-clinical RA patients and
healthy controls

16S rRNA Lactobacillus, Raoultibacter
Ruminococcus, Pseudomonas,
and Ruminiclostridium

(35)

Oral bacteriome

RA patients and healthy controls 16S rRNA
Treponema, Porphyromonas, Prevotella,
and Veilonella

Streptococcus, Gemella, and Planobacterium (36)

Early RA patients and
healthy controls

16S rRNA Porphyromonas and Fusobacterium genera / (37)

Pre-clinical RA patients and new-
onset or chronic RA

16S rRNA Porphyromonadacae / (38)

(Continued)
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elimination of periodontal lesions significantly attenuated RA

disease progression, even in the absence of targeted treatment,

suggesting that periodontal disease and RA may share similar

pathogenic mechanisms (48, 49).

Porphyromonas gingivalis (P. gingivalis) is a pathogen that

colonizes the oral cavity and is commonly associated with

periodontal diseases. However, its pathogenic effects extend

beyond the oral cavity. P. gingivalis can also contribute to the

occurrence of various diseases such as Alzheimer’s disease, colon

cancer, and diabetes via the digestive tract and bloodstream (50, 51).

In RA, infection with P. gingivalis is closely associated with disease

progression (36–38). Studies indicate that RA patients have a

significantly higher likelihood of developing periodontal disease

compared to non-RA patients, exhibiting more severe periodontal

disease progression and a significant positive correlation with

arthritis activity (52). Moreover, the majority of RA patients

exhibit high levels of oral pathogenic bacterial DNA in their oral

plaque and joint synovial fluid. P. gingivalisDNA is among the most

easily detectable bacterial nucleic acids, showing a significantly

increased detection rate compared to the control group (53, 54).

Furthermore, it has been demonstrated that P. gingivalis can

exacerbate T cell-driven arthritis through the induction of an

antigen-specific Th17 response (55).

Citrullination, an essential post-translational protein

modification, is primarily catalyzed by peptidylarginine deiminase

(PAD) enzymes. PAD enzymes convert arginine residues on protein

peptides to citrulline, which is targeted by RA-specific

autoantibodies, thus stimulating self-reactive T cells and

exacerbating inflammatory damage in the joints (56). P. gingivalis,

a bacterium closely linked to the onset and progression of RA,

possesses a unique enzyme known as P. gingivalis peptidylarginine
Frontiers in Immunology 04
deiminase (PPAD). This enzyme can induce citrullination in both

self and host proteins. It is demonstrated that 33% of RA patients

exhibit increased reactivity to anti-citrullinated PPAD (anti-cit-

PPAD) antibodies prior to clinical disease onset. Furthermore, 77%

of RA patients display anti-citrulline-specific immune responses to

PPAD-derived peptides. Furthermore, studies have confirmed a

correlation between the levels of anti-PPAD antibodies and ACPAs.

These findings suggest that P. gingivalismay significantly contribute

to RA pathogenesis and progression by promoting ACPAs

production (57). In the collagen-induced arthritis (CIA) model,

infection with P. gingivalis resulted in earlier onset, a more severe

course, and enhanced disease progression. Moreover, compared to

the wild-type strain, the ability of PPAD-deficient P. gingivalis to

promote disease progression in RA model mice is significantly

reduced (58). In addition to inducing protein citrullination, P.

gingivalis may contribute to the progression of RA by affecting

the intestinal immune system and gut microbiota composition.

Fecal microbiota transplantation (FMT) from P. gingivalis-

inoculated experimental arthritis mice resulted in more severe

joint inflammation compared to FMT from control mice (59).

Aggregatibacter actinomycetemcomitans (A.a.) is another

pathogenic bacterium that plays a significant role in periodontal

disease. This bacterium is notably enriched in the oral cavity of RA

patients and has been associated with disease activity (40, 60).

While A.a. does not have the ability to directly citrullinate proteins,

it can induce high expression of PAD enzymes in neutrophils,

thereby promoting self-antigen citrullination, triggering the

formation of ACPAs, and exacerbating the autoimmune response

in RA (61). Studies have demonstrated that patients infected with

A.a. exhibit positive cyclic citrullinated peptide (CCP) antibodies

and that A.a. infection is associated with the formation of these
TABLE 1 Continued

Study object Technology Increased Taxa Decreased Taxa Ref.

Oral bacteriome

RA patients in different stages of
disease activity

16S rRNA

Treponema and Absconditabacteriales
(remission);
Porphyromonas (low disease activity);
Staphylococcus (low disease activity)

/ (39)

RA patients and control subjects
with or without periodontitis

qPCR Aggregaticbacter actinomycetemcomitans / (40)

RA patients and control subjects
with periodontitis

16S rRNA
Prevotella, Aggregaticbacter
actinomycetemcomitans,and Parvimonas micra

/ (41)

Pre-clinical RA patients and
healthy controls

16S rRNA Prevotella Defluviitaleaceae and Neisseria oralis (42)

RA patients and non-RA
periodontitis group

16S rRNA
Granulicatella, Veillonella, Megasphaera, and
Fusobacterium nucleatum

Alloprevotella, Prevotella, Haemophilus,
and Actinomyces

(43)

RA patients and healthy controls 16S rRNA
Cryptobacterium curtum, Atopobium spp, and
Lactobacillus salivarius

Haemophilus, Aggregatibacter, and
Cardiobacterium, Eikenella, and Kingella

(21)

RA patients and healthy controls 16S rRNA Cryptobacterium curtum
Aggregatibacter, Gemella, Granulicatella,
Haemophilus, Neisseria, and Streptococci

(44)

Early RA patients and
healthy controls

16S rRNA Prevotella, Veillonella / (45)
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antibodies (60). However, the role and mechanisms of A.a. in the

onset and development of RA still require further investigation.

While early studies propose bidirectional interactions between

periodontitis and RA, direct causal evidence linking P. gingivalis

and A.a. induced periodontitis to RA progression in murine models

is absent. Instead, findings predominantly support RA-driven

exacerbation of periodontitis severity (62). This discrepancy may

arise from experimental design limitations, such as inducing

periodontitis after RA onset in animal studies, which could

confound observational outcomes. Additionally, short

experimental timelines and inherent differences between animal

models and human disease complexity limit translatability. Thus,

rigorous longitudinal studies are essential to clarify oral

microbiota’s role in RA progression. Oral bacteriome alterations

in RA are summarized in Table 1.
3 Pathogenic mechanisms

3.1 Metabolic dysregulation

Gut microbiota dysbiosis has been shown to alter the synthesis

of microbial metabolites, leading to immune and metabolic

imbalances. The gut microbiota produce Short-Chain Fatty Acids

(SCFAs) such as acetate, propionate, and butyrate, and the

modulation of these metabolites is closely linked to the onset of

autoimmune diseases (63). In animal models of arthritis, SCFAs,

particularly butyrate, have been shown to effectively inhibit

osteoclast differentiation and prevent bone loss (64, 65). By

influencing gene expression, butyrate can promote the

differentiation of Treg cells, suppress Th17 cells, down-regulate

pro-inflammatory cytokine production, and maintain immune

homeostasis (66–68). In addition, butyrate also increases

serotonin-derived 5-HIAA, directly activates regulatory B cells

(Bregs), and inhibits germinal center B cell and plasmablast

differentiation (65). Studies indicate that patients with RA exhibit

a significant disruption in butyrate metabolism in the gut, leading to

markedly decreased circulating butyrate levels (69). Notably,

butyrate metabolism is associated with ACPAs production.

Research suggests that the proportion of bacteria involved in

butyrate metabolism negatively correlates with ACPAs titers and

affected joint counts (66). Due to its ability to modulate immune

responses via the Treg/IL-10/Th17 axis, butyrate administration

mitigates joint inflammation and bone destruction in mice (70).

Thus, gut microbiota-mediated butyrate metabolism might play a

pivotal role in RA inflammation, suggesting that targeting butyrate

metabolism could be a potential strategy for the clinical treatment

of RA.

Additionally, abnormal tryptophan metabolism has been

closely associated with the disruption of immune tolerance,

potentially triggering the onset of autoimmune diseases such as

RA (33, 71). Tryptophan, an essential amino acid, is primarily

produced through the breakdown of food by lactobacilli and
Frontiers in Immunology 05
bifidobacteria and is further metabolized by intestinal bacteria

into indole metabolites in the colon (72, 73). Research indicates

that indole maintains epithelial cell structure and function,

promotes goblet cell differentiation and mucin production,

thereby enhancing intestinal barrier function and reducing

inflammatory responses (74). Indole acetaldehyde and indole-3-

acetic acid can induce CD4+ T cell differentiation into Treg cells

through aryl hydrocarbon receptors. Additionally, indole-3-acetic

acid can inhibit Th17 cell polarization (75, 76). Metabolomic

analysis of fecal samples from patients with RA and healthy

individuals revealed significantly decreased levels of downstream

tryptophan metabolites in the feces of RA patients, including

serotonin, xanthurenic acid, and 3-hydroxyanthranilic acid (3-

HAA) (33). Xanthurenic acid exhibits immunosuppressive effects

(77), while 3-HAA can inhibit macrophage inflammatory responses

(78). Notably, tryptophan metabolite levels in the synovial fluid of

RA patients are significantly lower than those in osteoarthritis

patients (79), suggesting that tryptophan metabolism may play a

crucial role in RA development, with intestinal dysbiosis potentially

being a key factor in its onset and progression.
3.2 Molecular mimicry

Research indicates that some pathogenic microorganisms

express homologous proteins similar to host proteins, leading to

host immune imbalance under specific circumstances, which plays a

critical role in the pathogenesis of autoimmune disorders such as

RA. One aspect of molecular mimicry in RA involves the

citrullination process, catalyzed by PPAD from P. gingivalis, a

bacterium associated with periodontal disease and RA. PPAD

catalyzes the citrullination of proteins such as vimentin,

fibrinogen, and a-enolase, which are autoantigens in RA. This

process results in the production of citrullinated proteins

recognized by autoreactive T cells, leading to the generation of

ACPAs, unique to RA (80). Additionally, microorganisms possess

antigenic epitopes similar or identical to those of human cells. This

similarity can trigger immune responses against these antigens

upon infection. For instance, bacteria such as Escherichia coli and

Klebsiella pneumoniae produce peptides like L-ASNase67-81, a

segment of bacterial L-asparaginase, which can activate HLA-

DRB10401-restricted T cells in early RA patients. This activation

leads to the expression of CD154 and the production of cytokines

such as IL-2, IL-17A/F, and IFN-g, crucial in disease progression

(81). Moreover, Peptides presented by HLA-DR from N-

acetylglucosamine-6-sulfatase and filamin A show significant

sequence similarity to epitopes from Prevotella sp. and

Butyricimonas sp., which are targeted by T-cells and B-cells as

auto-antigens in over half of RA patients. This similarity indicates a

crucial role in RA development by triggering autoimmune

responses to bacterial antigens (82). Similarly, shared sequences

between Collinsella and DRB10401 suggest that Collinsella may also

induce RA via molecular mimicry (20). These autoimmune epitopes
frontiersin.org
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are prominently found in bacterial species of the Firmicutes and

Proteobacteria phyla, potentially having a greater impact on the

disease in genetically susceptible individuals (83). Persistent

colonization of bacteria with cross-reactive epitopes in hosts with

high-risk Human Leukocyte Antigen (HLA) genes could lead to the

sustained activation of auto-reactive T cells in the gut, contributing

to RA development.
3.3 Altered intestinal permeability

Studies have indicated that disruption of the gut barrier, such as

through apoptosis of intestinal epithelial cells caused by microbial

infections, can lead to a pro-inflammatory environment and the

differentiation of Th17 cells and other T helper cells. In a mouse

model of RA, significant impairment of intestinal barrier function

was observed before the onset of arthritis. Similarly, elevated serum

markers associated with compromised intestinal barrier function in

humans before RA onset are linked to an increased risk of

developing RA (84). Additionally, there is a noted association

between serological markers of intestinal permeability, disease

activity, and response to biologic disease-modifying antirheumatic

drugs (85). Mechanistically, dysbiosis in the gut microbiota can

compromise intestinal mucosal integrity, activate the gut immune

system, and trigger the migration of immune cells such as group 3

innate lymphoid cells (ILC3s), follicular helper T cells (Tfh cells),

and mucosa-associated invariant T cells (MAITs) to the systemic

circulation and joints, ultimately contributing to arthritis (86–90).

These findings underscore a significant connection between

compromised gut integrity and systemic inflammation in RA.
4 A novel pro-inflammatory factor:
bEVs

Bacterial extracellular vesicles (bEVs) are spherical, double-

layered vesicles secreted by bacteria, with diameters ranging from

approximately 20 to 300 nm. bEVs can carry various effector

molecules, including lipopolysaccharides, proteins, and nucleic

acids, and participate in interactions between bacteria and host

cells (91). Gram-negative and Gram-positive bacteria produce

different types of bEVs because of differences in cell wall

structure. bEVs secreted by Gram-negative bacteria are termed

outer membrane vesicles (OMVs), while those released by Gram-

positive bacteria are called cytoplasmic membrane vesicles (CMVs)

(92). These bEVs can deliver their contents to target cells through

receptor-ligand interactions, membrane fusion, or receptor-

mediated endocytosis, thereby modulating the biological behavior

of host cells. bEVs have been shown to induce a pro-inflammatory

responses, thereby enhancing the host defense mechanism against

infections. Additionally, bEVs can influence adaptive immune

responses via antigen presentation and T-cell activation (Table 2).

Studies indicate that bEVs are involved in the occurrence and

progression of various autoimmune diseases (117).
Frontiers in Immunology 06
4.1 The role of bEVs in promoting innate
immune responses

Bacterial extracellular vesicles (bEVs) play a crucial role in host-

microbe interactions by disrupting mucosal integrity and

internalizing into various cell types, notably epithelial cells, which

are primary contact points for bacteria. This interaction induces

diverse immune responses, primarily through the activation of Toll-

like receptors (TLRs) and other pathogen recognition receptors

(PRRs) that recognize pathogen-associated molecular patterns

(PAMPs), leading to immune activation. The inflammatory

potential of bEVs was first observed when interleukin (IL)-8 was

released from gastric epithelial cells stimulated by Helicobacter

pylori bEVs (93). Additionally, Staphylococcus aureus can employ

bEVs to transport lipoproteins, nucleic acids, and peptidoglycan,

which are recognizable by host PRRs. This interaction has been

demonstrated in human lung epithelial cells, where bEVs

stimulation led to the secretion of cytokines IL-8 and CCL2,

along with a strain-specific secretion of the pro-inflammatory

cytokine IL-6 (94). Similarly, bEVs from various Clostridium

species have been shown to enhance IL-6 and CCL2 expression in

mouse colonic epithelial cells and human colorectal cancer cells

(95). While TLRs signaling is a well-documented pathway, bEVs

also promote inflammatory responses through the dissemination of

toxins. For example, gingipains from P. gingivalis bEVs can induce

the secretion of IL-6, IL-8, and TNF-a by interacting with the

epidermal growth factor receptor within the lipid rafts of

keratinocytes (96, 97).

As tissue-resident cells, macrophages are pivotal in intercepting

bacterial extracellular vesicles (bEVs) that penetrate the mucosal

barrier. Upon contact with the cellular surface or following

phagocytosis, these bEVs activate various inflammatory pathways

in macrophages, influenced by their specific cargos. Notably,

macrophages employ Toll-like receptors (TLRs) to recognize

bEVs, thereby initiating the release of inflammatory cytokines.

Research by Yang et al. demonstrated that bEVs from Bacteroides

and Prevotella species exacerbate bleomycin-induced lung fibrosis.

This interaction involves bEVs binding to TLR4 and TLR2 on

alveolar macrophages via their lipopolysaccharides (LPS) and

lipoproteins, respectively, leading to the secretion of IL-17b, a key

cytokine in this fibrosis model (102). Further studies with THP-1

macrophage-like cells have shown that bEVs from L. pneumophila

activate TLR2 signaling, leading to the secretion of cytokines,

including IL-8, IL-6, IL-10, IL-1b, and TNF-a (103). Beyond

proteins, the nucleic acids present on or within bEVs can also

engage TLRs. For instance, Staphylococcus aureus bEVs trigger

TLR3, TLR7, and TLR9, inducing IFN-b expression in NR-9456

murine macrophages (104). Moreover, bEVs can initiate

inflammasome activation, a fundamental inflammatory pathway,

as seen with Escherichia coli (E. coli) strains expressing the virulence

factor HlyF, which enhances IL-1b release and increases cell death

through a non-canonical pathway (105, 118). Such inflammasome

activation may also be stimulated by bEVs-induced mitochondrial

dysfunction caused by pathogens such as uropathogenic E. coli, P.
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TABLE 2 Pro-inflammatory effects of bEVs.

bEVs origin Targeted cell/Tissue
Effect (↑ increase
or enhancement)

Mechanism Ref.

Innate immune response

Helicobacter pylori Gastric epithelial cells (AGS)
↑ proliferation
↑ IL-8 production

Not examined (93)

Staphylococcus aureus Lung epithelial cells (A549) ↑ IL‐8 and CCL2 production
NF-kB activation via TLRs and
NOD2 signaling

(94)

Clostridium botulinum

Murine colonic epithelial cells
(CMT-93)
Human colorectal cancer cells
(Caco-2)

↑ IL-6 and CCL2 production
MyD88/TRIF activation via TLR1/2
and TLR4

(95)

Porphyromonas gingivalis

Gingival keratinocytes and
dendritic cells

↑ IL-6, TNF-a, and IL-
1b production

PI3K-AKT activation via RgpA and
EGFR interaction

(96)

Human gingival epithelial cell
(OBA-9)

↑ IL-6 and IL-8 production MAPK and STING signaling (97)

Faecalibacterium prausnitzii
Human colorectal cancer cells
(Caco-2)

↑ IL-4, IL-8, and TNF-a production Not examined (98)

Akkermansia muciniphila Murine macrophage (RAW 246.7) ↑ IL-6 production Not examined (99)

Escherichia coli Nissle 1917 Murine macrophage (RAW 246.7)
↑ proliferation, NO production, and
acid phosphatase

Not examined (100)

Lactobacillus sakei Peyer’s Patch cells ↑ IgA production TLR2 activation (101)

Bacteroides and Prevotella Murine lungs
↑ IL-17A and IL-17B, production
↑ Th17 cells

TLR-MyD88 adaptor signaling (102)

Legionella pneumophila Murine macrophage (THP-1)
↑IL-8, IL-6, IL-10, IL-1b, and TNF-
a production

Via activation of TLR2, IRAK-1,
and NF-kB

(103)

Staphylococcus aureus Murine macrophages (NR-9456) ↑ IFN-b production
Via activation of endosomal TLRs
(TLR3, TLR7, and TLR9)

(104)

Escherichia coli
Murine bone marrow-
derived monocytes

↑ IL-1b production
Activation of the non-canonical
inflammasome pathway

(105)

Uropathogenic Escherichia coli

Murine bone marrow-
derived monocytes

↑ IL-1b production
NLRP3 inflammasome activation via
mitochondrial apoptosis and
potassium ion efflux

(106)Neisseria gonorrhoeae

Pseudomonas aeruginosa

Escherichia coli

In vivo
↑ TNF-a and IL-6 production in
serum and bronchoalveolar
lavage fluid

Not examined (107)

Murine lung tissues
↑ neutrophils
↑ CXCL1expression TLR4- and NF-kB-

dependent manners
(108)

Endothelial cells (HMEC-1) ↑ IL-8 production

Staphylococcus aureus Human keratinocytes ↑ IL-8 production
TLR2- and NF-kB-
dependent manners

(109)

Bacteroides thetaiotaomicron
Murine bone marrow-
derived monocytes

↑ TNF-a secretion Not examined (110)

Adaptive immune responses

Escherichia coli Nissle 1917
and EcoR12

In vivo
↑ plasma IgG, IgA, and IgM
↑ Spleen Tc, NK, and NKT cells

Not examined (111)

Gut microbiota
Gut epithelium
(HT-29)

↑ T-cell-independent sIgA response
NF-kB activation-mediated APRIL,
CCL28 and PIGR expression

(112)

Akkermansia muciniphila Murine small intestine
↑ B cells and dendritic
cells activation

Not examined (113)

(Continued)
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aeruginosa, and Neisseria gonorrhoeae (106). These findings

underscore the diverse and intricate mechanisms by which bEVs,

carrying varied cargos, mediate inflammation through both TLR

signaling and inflammasome activation, highlighting the complex

nature of bEV-mediated immune modulation.

The localized release of chemoattractant molecules is pivotal in

recruiting neutrophils to control infections or participate in

inflammation. However, the interaction between neutrophils and

bacterial extracellular vesicles (bEVs) introduces further complexity

to this immune response. Studies have demonstrated that bEVs from

E. coli, when administered intraperitoneally, accumulate in various

organs and lead to increased leukocyte infiltration, particularly

neutrophils (107). Additional research revealed that these bEVs

colocalize with endothelial cells in mice lungs, inducing the

neutrophil chemoattractant CXCL1 expression. Complementary in

vitro experiments with human endothelial cells demonstrated that the

CXCL1 homolog, IL-8, is produced through TLR4 in an NF-kB-
dependent manner (108). In skin, Staudenmaier et al. observed that

bEVs from Staphylococcus aureus induce the release of IL-8 from

human keratinocytes through NF-kB signaling, dependent on TLR2

(109). The intricate interaction highlights the multifaceted role of

bEVs in modulating host immune responses and underscores the
Frontiers in Immunology 08
need for additional research to completely understand their

mechanisms and implications in host-pathogen dynamics. The pro-

inflammatory effects of bEVs on the innate immune response are

summarized in Table 2.

Mechanistically, gram-positive and gram-negative bacteria can

release bEVs carrying LTA/lipoproteins and LPS, which activate

membrane TLR2 and TLR4, resulting in MyD88 and subsequent

NF-kB activation, thereby promoting the production of various

pro-inflammatory cytokines and chemokines (119, 120). Nucleic

acids protected from degradation by bEVs further induce a potent

innate immune response by activating endosomal TLR3, TLR7, and

TLR9 signaling pathways. Additionally, the stimulator of interferon

genes (STING) signaling pathway in the cytoplasm is triggered by

DNA carried by bEVs, which further promotes the production of

inflammatory factors (97). Once bEVs enter the cells, intracellular

receptors such as NOD1 and NOD2 can enhance NF-kB and

subsequent IL-6 and IL-8 expression through peptidoglycan

activation (121, 122) (Figure 1). Moreover, bEVs within cells can

expose bacterial components such as LPS using proteins like GBPs,

SNX-10, and Hemolysin to inflammasomes NLRP3/NLRC4,

thereby activating caspase-1 and caspase-11 to enhance the

release of pro-inflammatory factors (123–126).
TABLE 2 Continued

bEVs origin Targeted cell/Tissue
Effect (↑ increase
or enhancement)

Mechanism Ref.

Adaptive immune responses

Escherichia coli Nissle 1917 Human Monocyte Derived-DCs ↑ Th1 responses Not examined (114)

P. gingivalis and
Treponema denticola

Mouse bone marrow-derived
dendritic cells

↑ Th17 responses Not examined (115)

Escherichia coli In vivo ↑ CXCL10 and IFN-g production IFN-g-dependent manner (116)
fro
FIGURE 1

bEVs components and their pattern recognition receptors (PRRs).
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4.2 The role of bEVs in promoting adaptive
immune responses

Recent studies have elucidated the multifaceted roles of

bacterial extracellular vesicles (bEVs) in modulating immune

responses, emphasizing their potential in both innate and

adaptive immunity. For instance, bEVs can induce an innate

immune response and are recognized by antigen-presenting cells,

thereby initiating adaptive immune responses. It has been

demonstrated that bEVs from E. coli strains can promote the

production of plasma IgG, IgA, and IgM and induce a greater

proportion of spleen Tc, NK, and NKT cells in healthy suckling rats

(111). Additionally, dietary influences on gut microbiota have been

shown to affect bEV release, evidenced by increased bEV

production in mice fed a high-protein diet, which in turn

promotes the expression of immunoglobulin A (IgA)-inducing

cytokines and chemokines, thereby enhancing mucosal immunity

(112). bEVs can also enter Peyer’s patches and activate immune

cells through direct contact. Studies have shown that Akkermansia

muciniphila (A. muciniphila) bEVs in the gut lumen can enter

Peyer’s patches, activate dendritic cells (DCs), and promote their

proliferation. Consequently, with the assistance of DCs, CD69+ B

cells and IgA+ secreting plasma cells significantly increase, thereby

elevating the concentration of intestinal IgA (113, 127). This

process is crucial for reducing pathogenic microorganisms in the

gut. The immunomodulatory effects of bEVs from intestinal E. coli

strains also underscore their role in defining specific T-helper cell

responses. For example, bEVs from the probiotic E. coli Nissle 1917

program dendritic cells (DCs) to drive the pro-inflammatory Th1

response, which is essential for pathogen eradication (114). P.

gingivalis and Treponema denticola bEVs stimulate dendritic cells

(DCs) to induce TH17 and TH1 cell differentiation, respectively, a

process potentially mediated by the increased secretion of IL-6 and

IL-12 (115).

In the field of tumor therapy, Escherichia coli-derived bEVs

have been shown to target and accumulate in tumor tissues,

inducing the production of the anti-tumor cytokine CXCL10 and

interferon-gamma (IFN-g) and exerting their anti-tumor effects in

an IFN-g-dependent manner. Mechanistically, trypsin-treated bEVs

failed to induce IFN-g production, indicating that surface proteins

are critical factors in inducing IFN-g generation (116). Additionally,

studies suggest that the expansion of Vg9Vd2 T cells induced by

bEVs could represent a significant mechanism driving their anti-

tumor effects (128). These findings collectively underscore the

critical role of bEVs in shaping immune responses, offering

promising avenues for therapeutic interventions. The pro-

inflammatory effects of bEVs on the adaptive immune response

are summarized in Table 2.
5 The pathogenic role of bEVs in RA

Multi-omics analyses of fecal, serum, and synovial fluid samples

from RA patients have demonstrated that the gut microbiota can

participate in the onset and progression of RA through invasion and
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metabolite secretion. Under normal circumstances, pathogenic

microbes are primarily restricted by the mucosal barrier and

rarely translocate into distant organs intercellularly; their primary

mode of influence is through the secretion of bEVs, proteins, and

metabolites. As critical players in the cross-domain interactions

between the host and microbes within pathogenic environments,

there is increasing evidence that bEVs participate in the host’s

immune regulation by carrying molecules such as peptidoglycans,

lipids, proteins, and nucleic acids (129). The presence of bEVs

identified in various human biofluids and tissues suggests that these

vesicles may contribute to the onset of tissue inflammation under

pathological conditions (113, 130, 131).

In patients with RA, studies have identified a significant

enrichment of F. nucleatum in fecal samples, with the levels being

significantly positively correlated with RA disease activity. The

bEVs secreted by F. nucleatum can promote the release of pro-

inflammatory cytokines interleukin-8 (IL-8) and tumor necrosis

factor (TNF) in colonic epithelial cells through a TLR4-dependent

mechanism (132). Additionally, these bEVs can induce epithelial

cell death through the FADD-RIPK1-caspase-3 signaling pathway,

contributing to the development of intestinal inflammation (133).

Furthermore, F. nucleatum bEVs can drive macrophage

polarization toward the pro-inflammatory M1 phenotype (134).

Interestingly, studies have demonstrated that bEVs secreted by

certain gut bacteria can reach synovial tissues, confirming the

possible existence of the “gut-joint axis”. Notably, bEVs derived

from can migrate to the joints and trigger local inflammatory

responses through the virulence factor FadA they carry.

Mechanistically, these bEVs can activate the Rab5a-YB-1

signaling axis via FadA, thereby promoting the generation of

synovial macrophages and the production of IL-6 and TNF-a
(23, 135). These findings suggest that bacterial extracellular

vesicles (bEVs) from the gut may cross the mucosal barrier and

influence arthritis inflammation through the “gut-joint axis”.

As an oral pathogen closely related to the onset and

development of RA, DNA components of P. gingivalis were

identified in the synovial fluid of RA patients. However, the

presence of P. gingivalis bacteria has not been observed (53).

Interestingly, it has been confirmed that bEVs secreted by P.

gingivalis can destroy the intestinal barrier (136). These bEVs,

which transport bacterial DNA and associated effector molecules,

may induce systemic inflammation and facilitate the leakage of

intestinal substances into the bloodstream. This mechanism

contributes to the pathogenesis of diverse systemic disorders

associated with barrier dysfunction (137, 138). It was

demonstrated that the ratio of cells to outer membrane vesicles

(bEVs) is approximately 1:2,000. Their increased stability is

attributed to their resistance to proteases and nucleases. In

contrast to the original P. gingivalis source, bEVs demonstrate an

enhanced capability to infiltrate deep tissues and elicit an

inflammatory response within the host organism (139). Fleetwood

and colleagues discovered that P. gingivalis bEVs can penetrate

gingival tissue, resulting in tissue damage and inflammation.

Stimulation of macrophages by bEVs resulted in the production

of a significant amount of inflammatory factors, such as TNFa, IL-
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12p70, IL-6, IFNb, and nitric oxide, compared to cells infected with

P. gingivalis (140).

It was demonstrated that P. gingivalis’s unique PPAD can

citrullinate human proteins, and contributing to the loss of tolerance

to citrullinated proteins in RA (57, 141). PPAD not only disrupts

amino acid balance but also compromises the body’s immune system,

leading to an increased production of citrullinated antibodies against

self-antigens (142). Interestingly, studies have indicated that PPAD is

primarily released extracellularly through EVs (143). Moreover, PPAD

in P. gingivalis bEVs with A-LPS modification can be protected from

proteolytic degradation, which is closely associated with the

citrullination of proteins (144). Notably, 78 citrullinated proteins

have been identified in bEVs derived from the P. gingivalis W83

strain, suggesting a significant association between bEVs and RA (145).

Additionally, P. gingivalis bEVs have been demonstrated to stimulate

IL-6 and IL-8 secretion in epithelial cells via MAPK and STING

pathways (97). P. gingivalis bEVs can also activate neutrophils,
Frontiers in Immunology 10
inducing degranulation without causing their death, thereby

promoting inflammation (146).

Collectively, these findings suggest that bacterial extracellular

vesicles (bEVs) from bacteria such as F. nucleatum and P. gingivalis

exert a significant pro-inflammatory effect, potentially serving as

crucial pathogenic factors in the occurrence and progression of

RA (Figure 2).
6 Current challenges and future
perspectives

The role of bacterial factors in inflammatory diseases is being

increasingly emphasized. Changes in the abundance of bacteria such

as Prevotella copri in the gut, as well as infections of pathogenic

bacteria like P. gingivalis and Aggregatibacter actinomycetemcomitans

in the oral cavity, are considered high-risk and causative factors in the
FIGURE 2

Proposed pathogenic roles of bEVs in RA. bEVs from F. nucleatum in the intestinal tract may enhance pro-inflammatory cytokine release and
macrophage polarization, potentially influencing joint inflammation via the gut-joint axis. P. gingivalis bEVs, carrying PPAD, are hypothesized to
penetrate mucosal barriers, thereby promoting systemic inflammation and autoimmunity by altering immune responses and protein citrullination.
These mechanisms are based on emerging evidence and require further experimental validation.
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onset of RA. Furthermore, recent studies have also highlighted the

crucial role of the gut microbiota in modulating immune responses

and contributing to the pathogenesis of other autoimmune diseases

(ADs). The gut bacterium Ruminococcus gnavus, enriched in SLE, has

been correlated with disease activity and lupus nephritis through its

ability to induce the production of anti-double-stranded DNA

antibodies. Additionally, specific gut commensals, such as

segmented filamentous bacteria (SFB) and members of the

Erysipelotrichaceae family, promote autoimmune inflammation by

driving the polarization of T helper 17 (TH17) cells via mechanisms

involving serum amyloid A (SAA) and interleukin-23 (IL-23) (147).

Mechanistically, bacteria that promote the onset and progression of

autoimmune diseases can induce inflammation by altering host

metabolism, employing molecular mimicry, and disrupting

intestinal permeability. These findings underscore the concept that

the gut microbiota not only regulates local intestinal immunity but

also exerts significant systemic effects by enabling gut-primed

immune cells to migrate to extra-intestinal tissues, thereby

exacerbating disease activity.

Emerging evidence suggests a potential role of bacterial

migration from the oral cavity to the gut, forming an “oral-gut

axis” which could play a synergistic role in the pathogenesis of

autoimmune diseases (148). For example, oral pathogens such as P.

gingivalis can alter the gut microbiome, leading to elevated serum

endotoxin levels, increased inflammatory markers, and impaired

gut barrier function, ultimately exacerbating arthritis in collagen-

induced arthritis (CIA) mice. This interaction underscores the

importance of studying the oral-gut axis to elucidate the intricate

mechanisms underlying the connection between microbial

dysbiosis and rheumatoid arthritis (RA) (149). However, whether

these bacteria can reach peripheral organs such as joints through

the peripheral circulation, thereby exacerbating arthritis, remains

unclear. While some studies have isolated potentially pathogenic

bacteria from late-stage joint fluid in RA patients (24), other studies

have confirmed the absence of intact bacterial cells in the joints.

Therefore, further and more in-depth research is needed to

elucidate the exact pathogenic mechanisms of microbial factors

in RA.

As research into eukaryotic exosomes advances, additional

studies suggest that bacterial extracellular vesicles (bEVs) play a

pivotal role in microbe-host cell interactions and disease

development. These bEVs have also been shown to regulate both

innate and adaptive immune responses, influencing immune

reactions associated with RA inflammation. Hence, the discovery

of bEVs may offer new insights into how pathogenic

microorganisms contribute to and exacerbate inflammatory

diseases such as RA. Nevertheless, because the gut and oral

cavities harbor a vast array of bacterial species, bEVs derived

from diverse microbial communities exhibit tremendous

heterogeneity in their molecular cargo and biological activities.

This diversity complicates attributing explicit pathogenic or

protective functions to bEVs from any single species without

detailed molecular profiling. Accordingly, clarifying how bEVs

populations vary across different microbial ecosystems—both in
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discerning their distinct effects on disease progression. In addition,

despite notable progress in bEVs research, the field lacks

standardized guidelines akin to the “minimal information for

studies of extracellular vesicles” (MISEV) used for eukaryotic

vesicles. This gap leads to varied isolation methods, impacting

bEVs populations and complicating data interpretation.

Moreover, the biogenesis of bEVs from bacteria remains under

investigation. Although evidence supports regulated bEVs

formation, the processes behind bEVs production and cargo

selection remain incompletely understood. Further research is

imperative to deepen our understanding of bEVs roles in inter-

bacterial and bacteria-host communication.

Although the direct experimental evidence linking bEVs to RA

pathogenesis remains limited, the accumulating findings from

related fields strongly suggest their potential significance in

autoimmune diseases, including RA. These observations support

the hypothesis that bEVs may play a crucial role in RA through

mechanisms such as immune cell activation, cytokine production,

and antigen presentation. As mentioned above, bEVs from P.

gingivalis have been shown to carry citrullinated proteins and

PPAD, which can disrupt immune tolerance and promote the

production of anti-citrullinated protein antibodies (ACPAs).

Similarly, bEVs from gut bacteria such as F. nucleatum have been

implicated in gut barrier disruption and systemic inflammation,

further supporting their potential role in RA pathogenesis.

However, further experimental studies are urgently needed to

validate these hypotheses and better understand the specific

pathways through which bEVs contribute to RA development.

Future research should focus on elucidating how bEVs interact

with immune cells and tissues within the RA context. For instance,

experimental approaches could investigate the cargo composition of

RA-specific bEVs, their uptake by synovial macrophages, and their

ability to modulate T-cell responses. Additionally, studies exploring

the systemic dissemination of bEVs and their impact on joint

inflammation could provide critical insights into the “gut-joint”

and “oral-joint” axes. By addressing these gaps, future research

could establish a more comprehensive understanding of bEVs as

potential mediators and therapeutic targets in RA.
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