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Introduction: Macrophage activation is closely associated with Acute pancreatitis

(AP). We screened and found that Growth factor receptor bound protein 2 (Grb2) is

highly expressed inmacrophages during AP. However, the relationship betweenGrb2

and AP is still poorly understood. In this study, we explored the role of Grb2 in AP.

Methods:Wescreened for gene affectingmacrophage activation in AP by combining

transcriptomics with Single-cell RNA-sequence analysis. Next, the expression of Grb2

inM1/M2macrophage activation was detected by Single-cell RNA-sequence analysis

and western blot. Furthermore, the effect of Grb2 on M1/M2 macrophage activation

was detected by flow cytometry. The severity of AP was assessed by histological

analysis, serum amylase, serum lipase and serum inflammatory factors in vivo. NOD-

like receptor thermal protein domain associated protein 3 (Nlrp3) and Nuclear factor

kappa-B (NF-kB) signaling pathways were also evaluated.

Results: Grb2 is mainly expressed in macrophages of pancreas in AP and up-

regulated in M1 macrophage activation. Inhibiting Grb2 could alleviate AP by

preventing M1 macrophage activation through down-regulating Nlrp3 and NF-kB.

Discussion: Inhibition of Grb2 can effectively prevent M1 macrophage activation

and alleviate AP. Grb2 may potentially be an effective target of macrophage

activation for the treatment of AP.
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Introduction

AP is a prevalent gastrointestinal disease marked by acinar cell

death and the infiltration of inflammatory cells (1, 2). The incidence

of AP is increasing globally. Mounting evidence suggest that the

infiltration of inflammatory immune cells impacts the severity of

AP. The inflammatory cells infiltrated in acute pancreatitis are

predominantly neutrophils and macrophages (3–6). Neutrophil

forming Neutrophil Extracellular Traps (NETs) can lead to

pancreatic tissue damage (7, 8). The activated macrophages in AP

are mainly classified into two types. The macrophages infiltrating in

the early stage of AP are generally pro-inflammatory M1

macrophage, while anti-inflammatory M2 macrophages typically

play a role in the repair period of pancreatic tissue (9, 10). Hence,

targeting macrophage activation could be a strategy for the

treatment of AP.

Grb2 is a non-enzymatic adaptor protein consisting of a single

Src homology 2 (SH2) domain and two Src homology 3 (SH3)

domains (11, 12). The classic Grb2 signaling pathway is initiated by

receptor tyrosine kinases (RTKs) and plays an important role in cell

signal transduction. Studies have indicated that Grb2 plays a crucial

role in cell proliferation (13–15),cell death (16–19) and cell

differentiation (20, 21). In addition, Grb2 is closely related to

immune regulation or inflammatory diseases. Treg cell-specific

Grb2 deletion abrogates the augmentation of allergic airway

inflammation by Il4raR576 (22). In the inflammatory lesions of the

infected liver, Grb2 was positive in both hepatocytes and infiltrating

leukocytes (23). The expression of GRB2 was increased in psoriatic

lesions compared with normal skin adjacent to psoriasis and

healthy controls. Inhibition of GRB2 inhibits the secretion of

inflammatory mediators in keratinocytes (24).In this research,

Grb2 was primarily expressed in macrophages of pancreas in AP.

Inhibition of Grb2 can prevent the transformation of macrophage

into M1 macrophage and alleviated pancreatic tissue injury caused

by caerulein-induced AP. Thus, Grb2 may become an potential

target of macrophage activation in AP.
Experimental methods

Antibodies and reagents

All reagents and antibodies involved in this study are shown in

Supplementary Tables S1, S2.
Animals

C57BL/6 mice were purchased from GemPharmatech Co., Ltd.

(Nanjing, China). All mice were raised in a suitable environment

(20-25°C, 12h light/12h dark) without specific pathogen. They were
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provided with sufficient water and food. All studies were approved

by Yangzhou University (No.202307018).
Construction of the AP model and Grb2
inhibitors administration

Caerulein (Cae) model, acute pancreatitis model was

established by intraperitoneal (i.p.) injection of Caerulein (100

mg/kg, 1h interval, 10 times). At 0 hour, GRB2 inhibitor

prexigebersen (20 mg/kg, 40 mg/kg, 80mg/kg) was administered

via intravenous (i.v.) injection. 12 hours later, mice were

anesthetized and euthanized. Serum samples were collected for

serological analysis and ELISA assays. Pancreatic tissues were

harvested and stored at -80°C for subsequent experiments.

Pancreatic duct ligation (PDL)-induced AP model: All mice

were anesthetized and placed on a horizontal surgical table. A

longitudinal incision of 1–2 centimeters was made on the abdomen

to expose the abdominal cavity. The duodenum was turned over to

expose the pancreatic duct. At a position 1 centimeter above the

duodenal papilla, the tissue around the pancreatic duct was bluntly

dissected, and the pancreatic duct was ligated with a ligation thread.

The silk thread completely blocked it to simulate cholestasis and

biliary pancreatitis caused by cholelithiasis. Then, the abdominal

cavity was sutured in layers. At 1 hour, GRB2 inhibitor

prexigebersen (40 mg/kg) was administered via intravenous (i.v.)

injection. 24 hours later, mice were anesthetized and euthanized.

Serum samples and pancreatic tissues were harvested or

subsequent experiments.
ELISA assays

Following the manufacturer’s protocol, the plates were coated

with antibody, sealed, and incubated overnight at 4°C. The

following day, the liquid was aspirated, and the plates were

washed three times with phosphate-buffered saline containing

0.05% Tween 20 (PBST). Blocking was performed using ELISPOT

blocking buffer for 1 h at room temperature (RT). After removing

the blocking solution and washing with PBST, serum samples and

standards were added to the plates. The plates were sealed and

incubated at RT for 2 h. Subsequently, the liquid was discarded, and

the plates were washed three times with PBST. Detection Antibody

(diluted according to the datasheet) was added, followed by sealing

and incubation at RT for 1 h. After additional PBST washes,

Streptavidin-HRP conjugate (1:250 dilution) was introduced, and

the plates were sealed and incubated in the dark at RT for 30 min.

Following further PBST washing, TMB Substrate Solution was

added, and the plates were incubated in the dark at RT for 15

min. The reaction was terminated by adding Stop Solution.

Absorbance was measured at 450 nm using a microplate reader.
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Extraction and induction of bone marrow-
derived macrophages (BMDMs)

The leg bones of the mice were isolated and soaked in 75%

alcohol for 1 min. Subsequently, the bone marrow cavity was

washed with 1640 medium. The cells were collected after

centrifugation at 500g for 5 minutes. Macrophages were cultured

in 1640 medium containing 20ng/ml macrophage-stimulating

factor (M-CSF), 10% fetal bovine serum (FBS), 1% penicillin and

1% streptomycin for 7 days in 37°C, 5% CO2 incubator. The

medium was changed every other day and mature macrophages

were obtained after 7 days.
Flow cytometry

Mature BMDMs were stimulated with LPS (100ng/ml) and

INFg (10ng/ml) for 24h.The BMDMs were incubated with flow

cytometry antibody F4/80 (1:200 dilution) and CD86 (1:200

dilution), washed with PBS and resuspended with PBS. M1

activation of BMDM was detected by flow cytometry. Mature

BMDMs were stimulated with IL-4 (50ng/ml) for 24h, incubated

with flow cytometry antibody F4/80 (1:200 dilution) and CD206

(1:200 dilution) at 4°C for 30min, washed with PBS and

resuspended with PBS. M2 activation of BMDM was detected by

flow cytometry.
Western blot

RIPA lysis buffer and protease inhibitor (1:10) were mixed to

lyse BMDMs. The BMDMs were sonicated, centrifuged at 12000

rpm at 4°C for 30 min. The protein supernatant was collected,

added protein loading buffer, and boiled at 100°C for 10 min. The

protein samples were subjected to SDS-PAGE, transferred to PVDF

membrane. The membranes were blocked with 5% skim milk for 2

h, washed with TBST (3 times, 5 min each time), incubated with

primary antibody (1:1000 dilution) overnight at 4°C. The next day,

the membranes were washed with TBST (3 times, 15min each time),

and incubated with second antibody(1:5000 dilution) at room

temperature for 2 h. TBST washing (3 times, 10min each time).

The protein bands were detected by ECL Luminometer and ImageJ

was used to analyze the gray value.
Cell siRNA transfection

For one well of a 24-well plate: Diluted 2 mL Lipofectamine 3000

(Lipo3000) in 50 mL serum-free RPMI 1640 medium, mixed gently,

and incubated at room temperature for 5 minutes. Diluted 4 mL
siRNA in 50 mL serum-free RPMI 1640 medium, then combined this

mixture with the prepared Lipo3000/1640 mixture. Mixed

thoroughly and incubated at room temperature for 20 minutes to

allow complex formation. Added the resulting transfection complex
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mixture to the cell culture plate. After 24 hours, replaced the medium

with fresh RPMI 1640 medium supplemented with 10% FBS.

Performed subsequent experiments 48 hours post-transfection.
Histological analysis

Pancreatic tissue samples were fixed in 4% paraformaldehyde,

paraffin-embedded, and sectioned into 5-mm-thick slices. After

deparaffinization and dehydration, the sections were stained with

hematoxylin and eosin (H&E). Histopathological examination was

performed using a light microscope. The severity of acute

pancreatitis was evaluated according to previously established

methodologies (25).
Immunofluorescence

The slices were treated with dewaxing, dehydration, membrane

rupture, antigen repair, blocking. The slices were incubated with

primary antibody (1:100 dilution) overnight at 4°C. On the second

day, the slices were washed with PBS (3 times, 5 minutes each),

incubated with secondary antibody (1:1000 dilution) at room

temperature for 2 hours and washed again with PBS (3 times, 5

minutes each). Added DAPI and anti-quenching agent, then

sealing. The results were detected by laser scanning confocal

microscope (Nikon, Ti2-E-A1 HD25).
Isolation of Peripheral blood mononuclear
cells (PBMCs)

The anticoagulated blood was layered over Ficoll separation

medium, and density gradient centrifugation was performed. The

PBMC layer was collected. The cells were washed with PBS,

centrifuged to remove the supernatant, and lysed with lysis buffer

to extract proteins.
Microarray analysis

The microarray data of AP GSE65146, GSE109227 were

downloaded from Gene Expression Omnibus (GEO) database

(26). Both data had been log2 transformed. Limma package (27)

was employed for identifying differentially expressed genes (DEGs).

All genes (|log2FoldChange|>0) were analyzed by Gene Set

Enrichment Analysis (GSEA) via clusterProfiler package (28, 29).
RNA-seq analysis

The RNA-seq data of macrophage GSE138134 (9) and RNA-seq

data of M1macrophage activation GSE247106 (30) were downloaded

from GEO database. The DEGs (log2FoldChange>0.5, padj<0.01)
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were analyzed by DESeq2 package (31) or edgeR package (32–34).

The pheatmap package was employed to display DEGs.
Single-cell RNA-sequence analysis

The scRNA-seq data of AP GSE188819 (35) and scRNA-seq

data of macrophage activation GSE117176 (36),GSE158094 (37)

were downloaded from GEO database. Downstream analysis was

performed using Seurat package (V5) (38).

GSE188819: Following quality control (QC), cells with fewer

than 200 expressed genes and >10% mitochondria-related genes

were excluded. Harmony R package (39) was used to eliminate

batch effects between different samples. As a result, a SeuratObject

with 31080 cells and 22508 genes was subsequently normalized and

scaled for the subsequent analysis, including RunPCA and

RunTSNE. The cells were then clustered using the FindNeighbors

and FindClusters functions with a resolution of 0.4. The generated

clusters were visualized using T-distributed stochastic neighbor

embedding (tSNE) plot.

GSE117176: Following quality control (QC), cells with fewer

than 200 expressed genes and >10% mitochondria-related genes

were excluded. Merge different samples. As a result, a SeuratObject

with 17661 cells and 15217 genes was subsequently normalized and

scaled for the subsequent analysis, including RunPCA and

RunTSNE. The cells were then clustered using the FindNeighbors

and FindClusters functions with a resolution of 0.1. The generated

clusters were visualized using T-distributed stochastic neighbor

embedding (tSNE) plot. FindMarkers was used to analyze DEGs

(log2FoldChange>0.5, padj<0.01).

GSE158094: Three samples (24h_M0, 24h_M1 and 24h_M2)

were selected for analysis. Following quality control (QC), cells with

fewer than 200 expressed genes and >10% mitochondria-related

genes were excluded. Merge different samples. As a result, a

SeuratObject with 8492 cells and 12523 genes was subsequently

normalized and scaled for the subsequent analysis, including

RunPCA and RunTSNE. The cells were then clustered using the

FindNeighbors and FindClusters functions with a resolution of 0.1.

The generated clusters were visualized using T-distributed

stochastic neighbor embedding (tSNE) plot. FindMarkers was

used to analyze DEGs (log2FoldChange>0.5, padj<0.01).

Spearman Correlation Analysis was performed to assess the

relationship between the two genes. KEGG (Kyoto Encyclopedia of

Genes and Genomes) enrichment analysis were performed to

analyze Genes positively associated with Grb2.
Short time-series expression miner analysis

The detection of gene clustering profiles were conducted by

using the STEM (40, 41) clustering algorithm to identify temporal

gene expression profiles, with the maximum number of model

profiles set to 50 and maximum unit change in model profiles

between time points set to 3.
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Statistical analysis

Statistical analysis was performed by GraphPad Prism 8 software

(GraphPad, San Diego, CA, USA) and the results were presented as

mean ± standard deviation (SD). The difference between two groups

was analyzed by t-test, and the difference between more than two

groups was analyzed by one-way ANOVA test. P < 0.05 was

considered statistically significant (two-tailed).
Results

Grb2 is mainly expressed in pancreatic
tissue macrophages in AP

According to the results of GSEA of pancreatic tissue microarray

data of AP (GSE65146 and GSE109227), it was found that

macrophage activation involved in immune response, regulation of

macrophage activation, macrophage activation, positive regulation of

macrophage activation were significantly up-regulated in AP

(Figures 1A, B and Supplementary Table S3, S4). This indicates

that macrophages in pancreas are activated when AP occurs.

We conducted a joint analysis of RNA-seq and scRNA-seq

datasets (GSE117176, GSE138134, GSE158094 and GSE247106). As

a result, we found a total of 184 common up-regulated DEGs. Next,

a total of 3 clusters were screened by STEM clustering analysis

(Supplementary Table S5). Among them, cluster 46 gene expression

increased in the early stage and gradually decreased to return to the

baseline level. We screened Grb2 for subsequent experiments

through heatmap analysis (Figure 1C).

We obtained 24 cell clusters through cell clustering analysis on

AP scRNA-seq data (GSE188819) (Figure 1D). Then we annotated

different clusters based on cell-specific, highly expressed genes

(Figure 1E and Supplementary Table S6). Next, we carried out

cell proportion analysis. The number of macrophages increased

significantly during AP (Figure 1F). FeaturePlot demonstrated that

Grb2 was mainly expressed in pancreatic macrophages (Figure 1G).

The results of immunofluorescence were consistent with those of

scRNA-seq (Figure 1H). In addition, we detected PBMC in

peripheral blood of AP patients and found that Grb2 was up-

regulated in PBMC of AP patients compared with PBMC of healthy

people (Supplementary Figures S1A, B). Therefore, we speculated

that Grb2 may play a role in macrophage activation during AP.
Grb2 is up-regulated in M1 macrophage
activation

To verify the role of Grb2 in macrophage, we initially analyzed

the scRNA-seq data of macrophage activation (GSE117176) and

obtained 5 cell clusters (Figure 2A). Subsequently, we performed

cell annotation. M1 macrophages highly expressed Nos2, Cd86, Tnf

andM2macrophages highly expressed Chil3, Arg1, Retnla, Mgl2. M0

macrophages only expressed Ptprc, Adgre1, Lyz2, and did not express
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M1M2-specific genes. (Figure 2B). Nos2, Cd86 and Tnf were mainly

expressed in M1 macrophage, while Chil3, Arg1, Retnla and Mgl2

were highly expressed in M1 macrophage (Figure 2B). The VlnPlot

demonstrated that Grb2 was up-regulated in M1 macrophages and
Frontiers in Immunology 05
M2 macrophages (Figure 2C). Western blot results showed

expression of Grb2 was up-regulated in M1 macrophages, but not

in M2 macrophages. (Figures 2D, E). Thus, we hypothesized that

Grb2 only exerts an effect on M1 macrophage activation.
FIGURE 1

Grb2 is mainly expressed in macrophages of pancreas in AP. (A,B) GSEA pathway enrichment analysis of AP microarray data GSE65146 and
GSE109227. (AP versus WT). (C) The flowchart of screening differentially expressed genes. (D) The t-distributed Stochastic Neighbor Embedding
(tSNE) visualization of AP scRNA-seq GSE188819.(E) DotPlot showing the expression of marker genes for each annotated cell type: T cell (Cd3d,
Cd3e,Trbc2), Stellate cell (Des, Acta2), Ductal cell (Epcam, Krt18, Krt19, Spp1), Neutrophil (Ly6g, Cebpe, S100a9, S100a8, Hdc, Clec4e, Il1r2),
Macrophage (Cd68, Lyz2, Csf1r, S100a4), Mesothelial cell (Upk3b, Dmkn, Msln, Nkain4), Fibroblasts (Dcn, Gsn, Col3a1, Col5a2, Hmgb2, Stmn1, Pclaf),
Endothelial cell (Pecam1, Egfl7, Flt1, Emcn, Esam, Kdr, Tek, Cd34, Cdh5), DC cell (H2-Ab1, Cd74, H2-Eb1, Cd83, Cd86, Cd80), B cell (Ighm, Ly6d,
Cd79a, Iglc2, Cd79b), Islet cell (Nkx6-1, Pax6, Pdx1, Ppy), Acinar cell (Prss1, Pnliprp2, Gp2, Pdia2, Spink1). (F) The cell proportion of cells derived from
different cell type. (G) The tSNE visualization of the expression of Grb2. (H) Representative Immunofluorescence images for Grb2 and F4/80
expression in macrophage of AP mice. The white arrow represents colocalization of Grb2 and F4/80. Scale Bar = 50mM.
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Grb2 is associated with immune and
inflammatory pathways

To verify the relationship between and macrophage activation.

In GSE117176, correlation analysis revealed that Grb2 was

positively correlated with M1 macrophage activation marker

Nos2, CD86 and Tnf (Figures 3A–C), but not with M2

macrophage activation markers Chil3, Arg1, Retnla and Mgl2

(Supplementary Figures S2A-D). Kyoto Encyclopedia of Genes
Frontiers in Immunology 06
and Genomes (KEGG) analysis of genes positively related to Grb2

in the scRNA-seq data of M1 macrophage activation (GSE117176

and GSE158094) demonstrated that Grb2 was associated with

immune and inflammatory pathways such as the NOD-like

receptor signaling pathway and the TNF signaling pathway

(Figures 3D, E). Additionally, in the scRNA-seq data of AP

(GSE188819), Grb2 was also found to be related to immune and

inflammatory pathways such as the Chemokine signaling pathway

and the Cytokine-cytokine receptor interaction (Figure 3F).
FIGURE 2

Grb2 is up-regulated in M1 macrophage activation. (A) The tSNE visualization of macrophage activation scRNA-seq GSE117176. (B) DotPlot of the
three major cell types (Columns) and their marker genes (Rows). (C) VlnPlot showed the expression of Grb2. (D) Protein levels of Grb2 in
macrophage activation were analyzed by western blotting. (E) Relative density of Grb2.Beta-actin was used as control for protein loading, N=4 each
group. *P < 0.05. LPS, Lipopolysaccharide; INFg, Interferon-g; IL-4, Interleukin 4.
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Inhibition of Grb2 inhibits M1 macrophage
activation

To clarify the role of Grb2 in macrophage activation, BMDMs

were extracted to induce M1/M2 macrophage activation

(Figure 4A). SiRNA was employed to silence the expression of

Grb2 in BMDMs, and western blot was utilized to verify the

silencing efficiency (Figure 4B). The silencing of Grb2

significantly inhibited M1 macrophage activation but had no

significant impact on M2 activation (Figures 4C–F). Subsequently,

the Grb2 inhibitor prexigebersen was used, and it was found that

the results of the Grb2 inhibitor prexigebersen were consistent with

those of Grb2 silencing (Figures 4G–J). All these results confirmed

that Grb2 affected M1 macrophage activation and had little effect

on M2.
Grb2 inhibitor alleviates AP in vivo

To explore the role of Grb2 in vivo, we established a classic acute

pancreatitis model using caerulein and treat with the Grb2 inhibitor

prexigebersen at 0h. In the Cae group, the pancreas of mice showed

edema, inflammatory cell infiltration and cell necrosis. In the

medium-dose prexigebersen treatment group, the edema,

inflammatory cell infiltration and cell necrosis of pancreas of
Frontiers in Immunology 07
mice were significantly improved (Figures 5A, B). Additionally,

the levels of serum amylase and lipase levels in the medium-dose

Prexigebersen group were lower than those in the Cae group

(Figures 5C, D). We detected serum inflammatory factors

Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1

(MCP-1) in mice, reflecting inflammation in mice. IL-6 and

MCP-1 were significantly increased in AP mice. Grb2 Inhibitor

prexigebersen reduces serum IL-6 and MCP-1 levels (Figure 5D).

We further verified in another PDL model, and the results showed

that Grb2 inhibitor prexigebersen also alleviated the severity of

PDL-induced acute pancreatitis (Supplementary Figures S3A-C).

All these results indicate that the Grb2 inhibitor prexigebersen

alleviates AP in vivo.
Grb2 inhibitor inhibits Nlrp3 and NF-kB in
macrophages

To further investigate the downstream mechanism of Grb2, we

discovered that Nlrp3 and NF-kB (Rela) were significantly up-

regulated in the NOD-like receptor signaling pathway (Figure 6A).

Recently, increasing evidence has suggested that Nlrp3 and NF-kB

play a crucial role in M1 macrophage activation (42–45). We

observed that Nlrp3 and NF-kB were upregulated during M1

macrophage activation in vitro. The Grb2 inhibitor prexigebersen
FIGURE 3

Grb2 is associated with immune and inflammatory pathway. (A) The Spearman correlation between Nos2 and Grb2. (B) The Spearman correlation
between CD86 and Grb2. (C) The Spearman correlation between Tnf and Grb2. (D) KEGG analysis of genes positively associated with Grb2 of
macrophage activation scRNA-seq GSE117176. (E) KEGG analysis of genes positively associated with Grb2 of macrophage activation scRNA-seq
GSE158094. (F) KEGG analysis of genes positively associated with Grb2 of AP scRNA-seq GSE188819.
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FIGURE 4

Inhibition of Grb2 inhibits M1 macrophage activation. (A) The flowchart of macrophage activation. (B) The silencing efficiency of Grb2 was analyzed
by western blotting. (C, D) CD86 (M1 macrophage marker) and F4/80 (macrophage marker) expression levels in macrophages treated with Grb2
siRNA were detected by flow cytometry, N=4 each group. (E, F) CD206 (M2 macrophage marker) and F4/80 (macrophage marker) expression levels
in macrophages treated with Grb2 siRNA were detected by flow cytometry, N=4 each group. (G) CD86 (M1 macrophage marker) and F4/80
(macrophage marker) expression levels in macrophages treated with Grb2 inhibitor prexigebersen were detected by flow cytometry, N=4 each
group. (H) CD206 (M2 macrophage marker) and F4/80 (macrophage marker) expression levels in macrophages treated with Grb2 inhibitor
prexigebersen were detected by flow cytometry, N=4 each group. (I, J) Quantification of M1/M2 macrophage activation detected by flow cytometry.
*P < 0.05 and ***P < 0.001.
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reversed the upregulation of Nlrp3 and NF-kB (Figures 6B–D).

Consequently, we performed immunofluorescence analysis of

pancreas of AP mice. The results demonstrated that Nlrp3 and

NF-kB were up-regulated in macrophages during AP, and Grb2

inhibitor prexigebersen inhibited the expression of Nlrp3 and NF-

KB in macrophage (Figures 6E, F). The above results indicate that

Grb2 may influence M1 macrophage activation by regulating Nlrp3

and NF-kB.
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Discussion

It is widely acknowledged that macrophages are one of essential

cells during AP inflammation (9, 46–48). Through joint analysis of

multiple RNA-seq and scRNA-seq databases, we discovered that

Grb2 was highly expressed in macrophages during AP. Researchers

have found that inhibition of Grb2 repolarized alveolar

macrophages from M1 to M2 phenotype (49). Consequently, we
FIGURE 5

Grb2 inhibitor alleviates Cae-induced AP. (A) Representative HE staining of pancreatic tissues in magnifications 100x and 400x. Scale Bar = 50mM.
(B) The pathological scores of pancreatic tissues. (C) Serum levels of amylase and lipase, N=6 each group. (D) The serum levels of IL-6, MCP-1 were
detected by ELISA. N= 6 each group. *P < 0.05, **P < 0.01 and ***P < 0.001.
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hypothesize that Grb2 may play a role in AP by regulating

macrophage activation.

We discovered up-regulation of Grb2 in M1 macrophage

activation through single-cell RNA-sequence analysis, whereas

there was no significant alteration in M2. The result was validated

by western blot. Subsequently, we further investigated the function

of Grb2. Inhibition of Grb2 hindered M1 macrophage activation,

but had no impact on M2. M1 macrophage activation affects AP.

Inhibition of M1 macrophage activation can effectively mitigate AP

(42, 50, 51). To study the effect of Grb2 in the pathological process

of AP, we employed the Grb2 inhibitor prexigebersen to treat

caerulein-induced AP mice and found that prexigebersen
Frontiers in Immunology 10
alleviated the severity of AP and decreased the inflammatory

response in AP mice.

A number of studies have demonstrated that Nlrp3 and NF-kB

play a crucial role in M1 macrophage activation (52–55). We

discovered that Nlrp3 and NF-kB were up-regulated in M1

macrophage activation. Both in vitro and in vivo experiments

have proved that Nlrp3 and NF-kB were significantly up-

regulated in M1 macrophage activation or macrophages of AP

group, and Grb2 inhibitor prexigebersen inhibited the expression of

Nlrp3 and NF-kB in macrophages. In summary, Inhibition of Grb2

can alleviate AP by down-regulating Nlrp3 and NF-kB

of macrophage.
FIGURE 6

Nlrp3 and NF-kB were inhibited by the Grb2 inhibitor in macrophages of AP mice. (A) The volcano plot of Differential Expression Gene in NOD-like
receptor signaling pathway of GSE117176. (B) Protein levels of Nlrp3 and NF-kB in M1 macrophage activation were analyzed by western blotting.
(C, D) Relative density of Nlrp3 and NF-kB. Beta-actin was used as control for protein loading, N=3 each group. *P < 0.05, **P < 0.01. (E) Representative
Immunofluorescence images for Nlrp3 and F4/80 expression in macrophage of AP mice. (F) Representative Immunofluorescence images for NF-kB and
F4/80 expression in macrophage of AP mice. Scale Bar = 20mM.
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Conclusion

Overall, our study firstly demonstrates that inhibition of Grb2

can effectively prevent M1 macrophage activation and alleviate AP.

Grb2 may potentially be an effective target of macrophage

activation for the treatment of AP.
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