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Background: Bladder cancer (BLCA) continues to be a significant cause of cancer

mortality in the urinary tract, with therapeutic resistance representing a major

barrier to improving patient outcomes. Within the tumor microenvironment

(TME), cancer-associated fibroblasts (CAFs) are pivotal drivers of BLCA

progression, contributing to immune evasion and therapy resistance. This

study leverages single-cell analysis to delineate CAF subclusters and explore

the immune characteristics of CAFs-based BLCA classification.

Materials and methods: Signal-cell RNA sequencing (scRNA-seq) datasets were

used to identify CAF subpopulations in BLCA, and bulk RNA-seq datasets were

used to construct CAFs-based BLCA classification. Next, we comprehensively

explored the distinct heterogeneity and characteristics for four CAFs-based

BLCA subtypes. Moreover, machine learning algorithms were applied to

identify novel potential targets for each subtype, and experimentally validate

their effects.

Results: This study identified CAFs closely associated with BLCA development

based on scRNA-seq datasets. Through further systematic clustering and

functional analysis of CAFs, we successfully identified 10 distinct CAF sub-

clusters, including PSCA+ Pericyte, ISG15+ Pericyte, ACTA2+ Smooth muscle

cell (SMC), ACTG2+ SMC, CCL21+ inflammatory Pericyte, CD74+ apCAF, STMN1

+ pCAF, CXCL14+ mCAF, APOD+ iCAF, CFD+ iCAF. The study identified four

pCAFs-based BLCA distinct subtypes with different molecular, functional, and

immunologic characteristics. C3 exhibited an immune-rich subtype
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accompanied by poor clinical prognosis, cell death pathway enrichment, higher

expression of MHC molecules and co-stimulatory/co-inhibitory molecules.

Conversely, C4 subtype has a smaller number of patients and an optimal

prognosis, associated with lower levels of cell death pathway enrichment,

lower frequency of tumor mutations, and an “immune desert” TME. C1 is

mainly enriched in metabolism-related pathways, and C2 is mainly enriched in

the activation of genome instability pathways, accompanied by more frequent

mutations and higher Atezolizumab response. Furthermore, this study identified

potential target genes or prognostic markers for each subtype.

Conclusion: Various heterogeneous CAF subgroups exist in BLCA, which is

closely associated with the development of BLCA. This study identified a

promising platform for understanding heterogeneity of CAFs-based BLCA

subtypes, providing novel insights into the intricate molecular mechanisms of

BLCA. Potential target genes for each subtype provide a basis for diagnosis and

screening of BLCA patients.
KEYWORDS

bladder cancer, single-cell RNA-seq, cancer-associated fibroblasts, molecular subtypes,
immune microenvironment
1 Introduction

Bladder cancer (BLCA) represents a globally significant health

burden with pronounced epidemiological impact, particularly among

males (1, 2). BLCA not only affects the quality of life of patients, but

also places a heavy financial burden on the healthcare system. The

molecular mechanisms underlying the pathogenesis of BLCA have not

been fully clarified to date. Emerging studies underscore the critical role

of the tumor microenvironment (TME) in BLCA. The TME is mainly

composed of cancer-associated fibroblasts (CAFs), immune cells,
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extracellular matrix, and numerous signaling molecules, interacting

with each other during tumorigenesis to promote tumor progression

and drug resistance. Of note, CAFs play the multi-faceted roles in

driving BLCA progression, facilitating immune evasion, and conferring

resistance to therapies (3–6). CAFs constitute a remarkably

heterogeneous and functionally diverse cell population within the

TME, originating from various sources and characterized by distinct

molecular markers and biological activities (3, 7–9). Through single-cell

RNA sequencing (scRNA-seq), Xu et al. identified a new CAF

subgroup, MMP11+ myofibroblast (mCAF), which gradually

accumulates during BLCA progression and is significantly associated

with poor prognosis (10). Utilizing scRNA-seq and spatial

transcriptomics, Zheng et al. also identify a previously unknown

CAF subset in early-stage BLCA, which is associated with

lymphovascular invasion, lymph node metastasis, and poor

prognosis in early-stage BLCA (11). In short, CAFs play a crucial

role in tumor progression, and their heterogeneity influences treatment

response and prognosis.

The increasing importance of immunotherapy and targeted

therapies has created an urgent need for novel molecular

subtyping of BLCA to develop personalized treatment strategies

(12, 13). To elucidate the molecular mechanisms of BLCA and

guide individualized patient treatment, various gene expression-

based classification systems have classified BLCA into molecular

and clinical subtypes (13–15). These findings emphasize the critical

role of molecular classifications in prognostic prediction for BLCA

patients. Clinical decision-making and tailored therapeutics will

benefit from these results, providing a valuable reference for further

treatment. However, their specific roles, molecular diversity, and

CAF-based classifications in BLCA have remained underexplored.
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The bulk RNA-seq analysis intrinsically limits the resolution

needed to accurately delineate and characterize these functionally

distinct CAF subclusters in TME. Recent advances in high-

resolution scRNA-seq and transcriptomic analysis could

systematically unravel the heterogeneity of CAFs (16). Therefore,

this study leverages scRNA-seq data to comprehensively define

molecularly distinct CAF subpopulations within BLCA. The novel

pCAF-based classification system was subsequently developed and

rigorously validated using different datasets of bulk RNA-seq.

Finally, machine learning algorithms were applied to identify

novel potential targets for each subtype and experimentally

validate their effects.
2 Materials and methods

2.1 Data sources and single-cell RNA-seq
processing

The single-cell RNA-seq datasets, including GSE130001,

GSE129845, GSE135337, GSE190888, and GSE222315 were

downloaded from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). The R package Seurat (version

4.4.0) is used for single-cell data preprocessing. Potential doublets were

predicted and removed using DoubletFinder (17). Low-quality cells

(datasets with fewer than 1000 cells, cells with fewer than 500 genes, or

more than 20% mitochondrial content) were removed. Normalization

was performed using the LogNormalize method with a scale factor set

to 1e5. For downstream analysis, the top 2000 highly variable genes

were identified using the FindVariableFeatures function. The unwanted

sources of variation were regressed out using the ScaleData function.

Dimensionality reduction was performed using principal component

analysis (PCA) with the first 30 components. The Harmony algorithm

was used for batch correction before clustering analysis (18). The

FindNeighbors function was used to construct a shared nearest

neighbor (SNN) graph based on edge weights between cells.

Subsequently, cell clusters were identified using the FindClusters

function and visualized using the uniform manifold approximation

and projection (UMAP) algorithm (19). In the initial round of

annotation, each cluster was annotated based on known markers

collected from established literature (11, 20–22), including Epithelial

cells (EPCAM, CD24, KRT18, KRT8, KRT19, CLDN4), Endothelial

cells (VWF, PECAM1, CDH5, ENG, CLDN5, ACKR1, PLVAP),

Stromal cell (COL1A1, COL1A2, COL3A1, MYH11, ACTA2, DCN),

T cells (CD2, CD3D, CD3E, TRAC, TRBC1, CD4, CD8A, CD8B,

IL7R), NK cells (PRF1, KLRF1, KLRD1, FGFBP2, NKG7, XCL2), B

cells (CD19, CD79A, CD79B, MS4A1), Plasma cells (TNFRSF17,

MZB1, IGHG1, IGHA1), Mast cells (TPSAB1, TPSB2, MS4A2), and

Myeloid cells (CD14, CD68, CD163, LYZ, S100A8, FCGR3A).
2.2 Cell type distribution

To explore the heterogeneity of the TME in each sample, this

study demonstrated the composition of the broad cell types in each
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sample. Next, we further investigated the association between the

proportion of cell types and tumor grade to explore potential

clinical associations. In addition, we further compared the cell

proportion profiles in non-muscle invasive bladder cancer

(NMIBC) samples and normal samples. The cell proportion

profile further confirmed the importance of CAFs (containing

mural cells) in tumorigenesis and development. Subsequently, we

clustered all the fibroblasts (containing mural cells) into sub-

clusters. Likewise, the top 2000 highly variable genes were

identified using the FindVariableFeatures function. The unwanted

sources of variation were regressed out using the ScaleData

function. Dimensionality reduction was performed using PCA

with the first 30 components. The Harmony algorithm was used

for batch correction before clustering analysis (18). The

FindNeighbors function was used to construct an SNN graph

based on edge weights between cells. Subsequently, cell clusters

were identified using the FindClusters function and visualized using

the UMAP algorithm (19). Based on unsupervised clustering

analysis, we chose the medium clustering resolution parameter

(RNA_snn_res.0.2) for cellular clustering of fibroblasts

(containing mural cells). In the second round of annotation, each

cluster was annotated based on known markers collected from

established literature (11, 22, 23), including Mural cell (CALD1,

NDUFA4L2, COX4I2, RGS5, NOTCH3, DES, MYH11),

inflammatory CAF (iCAF) (CCL2, COL14A1, CXCL14, CXCL1,

CXCL12, CXCL2, CXCL8, CCL13, IL6, IL11, IL8, CCL5, CCL22,

CLEC3B, COL14A1, LY6C, CCL17, CXCL1, CXCL2, CXCL12,

CXCL14, LIF, HGF, APOD, IGF1, C3, C7, ITM2A, MGP,

CCL11), mCAF (AOC3, COL12A1, COL15A1, COL1A2,

COL1A1, COL8A1, FAP, MYL9, TAGLN, MYLK, TPM1, TPM2,

POSTN, HOPX, PDGFA, COL5A1, VIM, COL6A1, aSMA, TGFb,
TAGN, CTHRC1,THY1, CTGF, CTA2, FAP, COL12A1, FBLN1,

SERPINF1, VCAN, COL11A1, COL10A1, ACTC2), vascular CAF

(vCAF) (VEGFA, FGF, PDGF, PDGFa, PDFGRb, ANG2, CLIC3,
ACTA2, ANG1, MMP1, MMP2, MMP3, MMP9, MMP11, MMP14,

PDPN, IMF1), antigen-presenting CAF (apCAF) (CD74, HLA-

DRA, HLA-DRA1, HLA-DPA1, HLA-DQA1, CD52, IGFBP3,

SLP1, SAA3, FSP1), proliferating CAF (pCAF) (NUSAP1,

TOP2A, CENPF, PTTG1, SCG2, STMN1, PLAU, TUBA1B,

IFI27, IGFBP2). To identify the subpopulations most relevant to

tumor grading, we again explored the proportional profile of the

CAF sub-clusters.
2.3 Enrichment analysis and deconvolution
algorithm

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) were used to analyze the biological process and

pathway enrichment of each CAF sub-clusters through the

“clusterProfiler” R package. Gene set variation analysis (GSVA)

was performed on hallmark pathways obtained in the Molecular

Signatures Database (MSigDB, version 7.0).

Bulk RNA-seq data and clinical information about BLCA were

sourced from the TCGA database (https://xenabrowser.net/
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datapages/). The deconvolution algorithm serves as a tool to infer

TME composition (different cell populations) and gene expression

in bulk RNA data based on scRNA-seq data. In this study, we

analyzed the relationship between CAF sub-clusters and survival by

deconvolution algorithms such as Multi-subject single cell

deconvolution (MuSiC), Convolutional pose machine (CPM),

Dampened weighted least squares (DWLS), Bayesprism, and

InstaPrism. Survival analysis was performed for each CAF sub-

cluster using the optimal cutoff value.
2.4 Construction and verification of STMN1
+ pCAF-based subtypes

This study performed unsupervised consensus clustering (k-

means algorithm, 1,000 iterations) using 1,215 marker genes in the

STMN1+ pCAF (adjusted p-value < 0.05, mean log2 fold-change >

1) via the “FindMarkers” function. Subsequently, we applied the

Nearest Template Prediction (NTP) algorithm to classify TCGA-

BLCA tumors into four subtypes. NTP computes subtype

probabilities by projecting bulk transcriptomes onto predefined

gene signatures through a cosine similarity metric, inherently

mitigating technical batch effects. The reproducibility of this

subtyping was rigorously validated in four independent cohorts

(GSE13507, GSE48075, E−MTAB−4321, and IMvigor210 cohort),

and a Meta-data cohort (including GSE13507, GSE19423, and

GSE37815). IMvigor210 cohort that was additionally downloaded

as external datasets using the “IMvigor210CoreBiologies” R package

and the GEO cohorts were used to confirm the stability of STMN1+

pCAF-derived subtypes.
2.5 Association of four subtypes with
clinicopathological characteristics

Four distinct molecular subtypes (C1, C2, C3, C4) were

delineated through consensus clustering. To characterize their

clinical relevance, we evaluated each subtype association with

clinicopathological parameters: age, sex, TNM stage, histological

grade, and growth pattern.
2.6 Cell death-related modalities and
functional enrichment analysis for four
subtypes

To investigate the cell death patterns of each subtype, we

downloaded 56 pathways of seven cell death types including

apoptosis (n = 12), autophagy (n = 19), necrosis (n = 10),

lysosome-dependent cell death (n = 11), pyroptosis (n = 2),

necroptosis (n = 1), and ferroptosis (n = 1) from MSigDB

(https://www.gsea-msigdb.org/gsea/msigdb/human/search.jsp) and

then assessed their enrichment in the four subtypes (24). What’s

more, we used the online tool Metascape to construct a network of

statistically significant enrichment profiles in the four subtypes to
Frontiers in Immunology 04
explore the functional differences and the associated pathways. The

input genes were screened specifically for each subgroup and have

been pre-screened by the COSG algorithm. Meanwhile, KEGG

pathway enrichment analyses were performed for the four pCAF-

based BLCA subtypes.
2.7 Immune microenvironment and
genomic alteration analysis

This study quantified the relative abundance of 22 immune cell

types across samples from the TCGA-BLCA cohort using

CIBERSORT analysis, an algorithm widely used to assess immune

cell infiltration. Moreover, unique scores for gene sets in specific

samples were calculated by single-sample gene set enrichment

analysis (ssGSEA), a method commonly used to assess immune

cell infiltration abundance. Based on the R language package

“GSVA”, we used ssGSEA to obtain the infiltration status of 28

immune cells within each sample from the TCGA-BLCA data,

which enabled the characterization of immune cell properties

among different subtypes. Meanwhile, we analyzed the expression

levels of 27 immune checkpoints in the BLCA cohort and compared

the differential expression among the four groups. To assess the

predictive power of cancer immunotherapy risk scores, we included

inflammatory genes associated with immune checkpoint blockade

(ICB) response. Differences in mutation patterns among the four

groups were examined using the “maftools” software package.

Additionally, tumor neoantigen load, an indicator of genomic

instability, was evaluated.
2.10 Machine learning-driven identification
of hub genes in four subtypes

To further identify pivotal genes associated with four subtypes,

we used two machine learning algorithms, namely Random Forest

(RF) and Least Absolute Shrinkage and Selection Operator

(LASSO) regression analyses. The RF models were analyzed using

the ‘randomForest’ R package (version 4.7-1.1), and genes with

MeanDecreaseGini values greater than 0.6 were selected as

candidate genes. LASSO regression using the “glmnet” R package

(version 4.1-8). The genes cross-identified by two algorithms were

considered as potential hub genes. Thereafter, the hub genes were

analyzed for single-gene GSEA enrichment using the “GSEABase” R

package (version 1.60.0). The relationship between the three hub

genes and 22 immune cells was analyzed using the “corrplot” R

package (version 0.92).
2.11 Survival analysis of hub genes

The prognostic role of hub genes was evaluated in the TCGA-

BLCA cohort and patients were categorized into high and low

expression groups using the median expression threshold for each

gene to plot the Kaplan-Meier survival curve. Furthermore,
frontiersin.org
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differences in stage and grade between the two groups were also

compared. Staging and grading differences between the two groups

were also compared.
2.12 Protein extraction and western blot
analysis

Protein extraction andWestern blot analysis refer to the steps of

our previous studies (14). Among them, primary antibodies

included: FAT4 (1:1000; PA5-72970, Invitrogen, China), RPL37P1

(1:1000; ab228542, Abcam, China), FGFR1 (1:1000; R381166,

Zenbio, China), RNASEH1 (1:1000; 82771-1-RR, Proteintech,

China), AHNAK2 (1:1000; 680021, Zenbio, China), SLC9B2

(1:1000; 24065-1-AP, Proteintech, China), MN1 (1:1000; 24697-1-

AP, Proteintech, China), TTLL3 (1:1000; PA5-70598, Invitrogen,

China), FABP6 (1:1000; 126828, Zenbio, China), TBC1D3 (1:1000;

DF3346, Affinity, China).
2.14 Statistical analysis

All data processing was done using R 4.2.2 software. The

“survival” R package was utilized to assess disease-specific survival

(DSS), progression-free survival (PFS), and overall survival (OS)

among subtypes using the Kaplan-Meier method and log-rank test.

Specifically, statistical analyses were performed as follows: 1)

Continuous variables: Kruskal-Wallis test for multi-group

comparisons; Wilcoxon rank-sum or Student’s t-test for pairwise

comparisons; 2) Categorical variables: Fisher’s exact or Chi-square

test; 3) Pathway enrichment: Mann-Whitney-Wilcoxon Gene Set

Test. Statistical significance was defined as two-sided P< 0.05.
3 Results

3.1 Single-cell atlas reveals CAFs
heterogeneity in BLCA

In this study, T-SNE and UMAP dimensionality reduction

resolved seven major cell clusters within BLCA. The cell types in the

clusters were identified by characterized genes and cell type markers in

the established literature (11, 20–22), including epithelial cells,

fibroblasts, endothelial cells, myeloid cells, TNK cells, plasma cells,

and mural cells. Figure 1A presents the expression of significant

markers in all cell types. Analysis of cell type distribution revealed

pronounced inter-patient heterogeneity (Figure 1B), corroborating

significant heterogeneity of TME among individuals. Of note, the

proportion of the seven cell subgroups varied among staging

(Figure 1C), implicating that changes in cell type may drive tumor

progression. Since there were only two cases of muscle-invasive bladder

cancer (MIBC) samples, in order to reduce the error caused by too

small amount of samples, we compared the cellular composition

between NMIBC and paracancerous tissues. Numerous studies have

pointed out that CAFs significantly impact tumor progression (20).
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Likewise, in our study, the proportion of CAFs was significantly higher

in tumor tissues compared with paracancerous tissues (Figure 1D),

further demonstrating that CAFs were intimately associated with

tumor progression. The percentage of endothelial cells was also

higher in the tumor tissues compared to the paracancerous tissues.

Interestingly, T/NK and B cells were higher in the paracancerous

tissues, which may suggest that the tumor margin region is the primary

place for adaptive immune responses.

Unsupervised clustering of CAFs identified five general clusters:

comprising apCAF, iCAF, mCAF, pCAF, and Mural cells (Figure 1E).

Specifically, this study annotated each of the sub-clusters based on their

characteristic genes and functional enrichment, including PSCA+

Pericyte, ISG15+ Pericyte, ACTA2+ Smooth muscle cell (SMC),

ACTG2+ SMC, CCL21+ inflammatory Pericyte (iPericyte), CD74+

apCAF, STMN1+ pCAF, CXCL14+ mCAF, APOD+ iCAF, CFD+

iCAF (Figure 1F). Heatmap showed each cluster-specific gene

expression pattern. Among sub-clusters, STMN1+ pCAFs were

significantly enriched in NMIBC samples compared to

paracancerous tissues (Figure 1F and Supplementary Figure S1A).

Deconvolution analysis showed that patients with high STMN1+

pCAFs abundance exhibited significantly reduced overall survival

(Figure 1G and Supplementary Figure S1B), suggesting a

strong association between STMN1+ pCAFs and aggressive

progression of BLCA. GSEA analysis revealed the enrichment of

Hallmark_e2f_targets, Hallmark_g2m_checkpoint, Cytochrome-c

oxidase activity, Cytochrome complex, Glutathione metabolism,

Oxidative phosphorylation, P53 signaling pathway (Figure 1H and

Supplementary Figures S1C, D). These pathways collectively explain

pCAF-driven proliferative characteristics, which may potentially

contribute to BLCA progression.
3.2 Identification and validation of STMN1+
pCAFs-based BLCA heterogeneity subtypes

Firstly, we obtained 1215 STMN1+ pCAF-specific expressed genes

with adj_pval < 0.05 and log2FC > 1 (Supplementary Table S1), further

screened 85 STMN1+ pCAF-specific prognosis-related genes

(Supplementary Table S2), and finally obtained the expression of

specific prognosis-related genes in TCGA-BLCA for clustering

analysis. Consensus clustering was performed to define tumor

subtypes, with sample similarity quantified by proximity metrics. The

optimal cluster number (k=4) was determined by convergence of the

delta area plot and consensus cumulative distribution function (CDF)

curve (Figure 2A), resulting in the identification of four pCAF-based

BLCA subtypes in the TCGA cohort. A total of 98 patients were

assigned to C1 (31.2%), 88 to C2 (28.0%), 91 to C3 (29.0%), and 37 to

C4 (11.8%). Figure 2B showed that the survival analysis was statistically

significant (n=314, OS, P = 0.007; DSS, P = 0.003; PFS, P = 0.012). C3

subtype demonstrated poor survival outcomes. Conversely, C4 was

characterized by superior survival outcomes and a lower recurrence

rate. Next, we extracted the characteristic genes for each subtype,

namely 90 genes for C1, 86 for C2, 54 for C3, and 51 for C4

(Supplementary Table S3). Subsequently, we verified the classification

capabilities of these characteristic genes in multiple external cohorts
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using NTP. Similarly, in the IMvigor210 cohort, four subtypes can be

clearly distinguished. C3 displayed the worst prognosis and C4 showed

superior prognosis (n=213, P = 0.032, Figure 2C), in agreement with

the aforementioned results, validating the accuracy and consistency of

the classification. C3 with the worst prognosis had the highest

proportion of non-responders to atezolizumab in the IMvigor210
Frontiers in Immunology 06
cohort. Interestingly, C2 exhibited the most favorable response to

atezolizumab in the IMvigor210 cohort, suggesting that C2 may be

more sensitive to chemotherapy (Figure 2D). Likewise, in the meta-

cohort (n=106, P = 0.043, Figure 2E), GSE13507 (n=81, P = 0.019,

Supplementary Figure S2A), GSE48075 (n=39, P = 0.016,

Supplementary Figure S2B), and E−MTAB−4321 (n=219, P < 0.01,
FIGURE 1

Cellular atlas and identification of CAFs in BLCA. (A) The tSNE (left) and UMAP (right) graphic in BLCA and paracancer tissues, color-coded by cell
types. Bubble diagram for expression of marker genes in each cell type (bottom). (B) The distribution plots of cell types in every samples. (C) The
distribution plots of cell types in different tumor stages (left) and tissues (right). (D) The relative proportions of 7 cell types in NMIBC and paracancer
tissues. (E) The CAFs’ tSNE (left) and UMAP (right) graphic, color-coded by cell types. Bubble diagram for expression of marker genes in each cell
type (bottom). (F) The tSNE (left) and UMAP (right) graphic in BLCA and paracancer tissues, color-coded by CAFs sub-cluster. The relative
proportions of 5 CAFs in NMIBC and paracancer tissues. (G) The survival curve based on pCAF in TCGA BLCA cohort (Bayesprism). (H) Pathway
enrichment analysis based on pCAF marker genes (HAllMARK). Adj, adjacent; N, normal; RT, recurrent tumor; T, tumor.
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FIGURE 2

The identification and verification of pCAFs-based subtypes in bulk cohorts and clinical characteristics for four subtypes. (A) Identifying four
heterogeneity subtypes through consensus clustering. (B) OS, DSS, and PFS among four subtypes in TCGA-BLCA cohort. (C) OS for four subtypes
and NTP results in IMvigor210-cohort. (D) The distribution plots of immunotherapy sensitivity among four subtypes in IMvigor210-cohort. (E) OS for
four subtypes and NTP results in GEO Meta cohort. (F) The distinct clinical characteristics among four BLCA subtypes. (G) The distribution plots of
age and tumor growth pattern among four subtypes in TCGA cohort. (H) Sankey diagram of pCAF-based BLCA classifications and previously
described consensus molecular classifications, comprising NMIBC_class, MIBC_class, CIT.subtype, Lund.subtype, MDA.subtype, TCGA.subtype, and
UNC.subtype. nsP > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2025.1580986
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2025.1580986
Supplementary Figure S2C), the survival analysis showed a comparable

trend with the training cohort, confirming the rationality of the

subtyping. Collectively, the robustness and generalization of pCAF-

based BLCA classification were validated by large-scale RNA-seq data.
3.3 Comparisons of clinicopathological
characteristics across four pCAF subtypes

Clinical characteristics from the TCGA-BLCA cohort were

analyzed to assess the clinical significance of the four subtypes.

Age, Ts, and growth pattern varied significantly across the four

subtypes (P < 0.05, Figures 2F, G and Supplementary Figure S2D).

The C3 subtype with the worst prognosis had the highest

proportion of patients greater than 65 years of age and was

associated with a higher proportion of non-papillary growth

patterns (Figure 2F). Moreover, the proportion of C3 subtype at

stage T1/T2 was the lowest (Figure 2G). These findings may be

related to the worst prognosis of C3 subtype. To evaluate the

correlation between our classification and other BLCA consensus

classifiers, the pCAF-based BLCA classification of 314 samples was

compared with various classifiers (Figure 2H). As expected, CAFs-

based BLCA subtypes have limited overlap with other

classifications, indicating the novelty of our subtypes and their

complementary role to previous BLCA classifications.
3.4 Identification of cell death-related
modalities among four BLCA subtypes

As is well documented, cell death significantly affects tumor cell

proliferation, invasion, metastasis, and the efficacy of

chemotherapy, thereby influencing the prognosis of BLCA (25–

27). The results showed that most of cell death-related pathways

were significantly up-regulated in the C3 subtype, while most of

these pathways were only weakly enriched in C4 (Figure 3A),

suggesting that these cell death-related pathways are closely

associated with prognosis of BLCA. The expression levels of C1

and C2 in the cell death-related pathways were located between C3

and C4. The hypothesis can be drawn that the enrichment of

stronger cell death pathways may promote tumor malignancy (28).
3.5 Distinctive biological features of four
subtypes

Functional enrichment analyses revealed that C1 is mainly enriched

in molecu lar metabo l i sm-re la ted pathways such as

g aba_ s yn the s i s _ r e l e a s e_ r eup t ak e_and_deg r ada t i on ,

a l an in e_a spa r t a t e_and_g lu t ama t e_me t abo l i sm , and

butanoate_metabolism (Figure 3B). C2 are mainly enriched in cell

cycle and DNA repair pathways, exhibiting concerted activation of

genome instability pathways, including mitotic_spindle_checkpoint,

inhibition_of_replication_initiation_of_damaged_DNA_by_rb1_e2f1,

mitotic_prometaphase, trna_processing_in_the_nucleus, and
Frontiers in Immunology 08
resolution_of_sister_chromatid_cohesion (Figure 3C). C3 subtype

identified unique enrichment in keratinization and immune-

modulatory pathways such as formation_of_the_cornified_envelope

and antiviral_mechanism_by_ifn_stimulated_genes (Figure 3D). C4

subtype are mainly enriched in substance transport and metabolism

pa thway s , i n c l ud ing t r an spo r t _o f_o rgan i c_an ions ,

eicosanoid_ligand_binding_receptors, recycling_of_bile_acids_and_salts,

and triglyceride_catabolism (Figure 3E). Overall, the C1-C4 subtypes

exhibit different bio-functional states.
3.6 Immune landscape for the four pCAF-
based BLCA heterogeneity subtypes

Considering that the tumor immune microenvironment plays a key

role in BLCA progression, we comprehensively explored the infiltration

levels of immune cell subsets and the expression of various immune-

related markers. Cibersort and ssGSEA was performed to assess the

infiltration abundance of different immune cells across four subtypes

(Figure 4A, Supplementary Figures S2E, F). The degree of infiltration of

immune cells, including natural killer cells, CD8+ cells, CD4+ cells,

neutrophil, regulatory T cells, and myeloid-derived suppressor cells

(MDSCs), is the highest in the C3 subtype. The C4 subtype had the

lowest degree of immune infiltration among the four subtypes.

Immuno-radargrams further demonstrated that C3 is an immune-

infiltrating tumor and C4 is an “immune-desert” tumor (Figure 4B).

We further compared the immunogenicity-associated indicators of the

four subtypes to further explore the characteristics of the immune

microenvironment (Figure 4C). C2 subtype had higher immunogenicity

and higher genomic instability, such as single-nucleotide variant (SNV)

neoantigens, indel neoantigens, loss of heterozygosity (LOH) segments,

LOH fraction alterations, and homologous recombination defects,

accompanied by a higher T-cell receptor (TCR) richness (TCR

richness and Shannon). The C1 and C4 subtypes have lower levels of

these indicators, which may reflect poor survivor outcomes.

Nevertheless, C4 had higher SNV neoantigens and Indel neoantigens,

suggesting that C4, as an immune-desert tumor, has higher neoantigens

at the same time, but fails to elicit an effective immune response.

Next, we explore the characteristics of the immune molecules of the

four subtypes. C2 and C3 showed increased activation of co-stimulatory

immune checkpoint inhibitors (ICIs) such as CD226, CD27, CD28, and

TNFRSF14, and co-inhibitory receptors such as CD160, CD244, CD48,

CD274, CD276, LAG3, LGALS9, and CTLA4, MHC molecules like

HLA-A/B/C and HLA-DQA1/2 (Figure 4D). However, expressions of

immune checkpoints were scarce in the C1 and C4 subtypes, suggesting

that ICI therapy might not be effective (Figures 4E, F). Furthermore,

antigen presentation efficiency was further assessed using the antigen

processing and presenting machinery score (APS) (Figure 4G). It has

been demonstrated in numerous studies that tumor inflammation

signatures (TIS), APS, and neoantigen score are all predictive

biomarkers for tumor immunotherapy, where higher values generally

correlate with better immunotherapy outcomes (24). Similarly, higher

TIS, APS score, score, and neoantigen score further demonstrate that

the C2 and C3 subtypes could achieve greater clinical efficacy with

immunotherapy (Figure 4G).
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Moreover, this study further explored the gene mutations in the

four subtypes (Figures 4H–J). Figure 4I shows that C2 and C3 have

significantly higher TP53 and RB1 mutation frequencies than C1

and C4. TP53 mutations could cause DNA damage repair defects

and RB1 mutations could cause chromosome segregation errors,

thereby promoting the development of multiple tumors. It was

demonstrated that RB1 and TP53 co-mutations are strongly

associated with genomic biomarkers of ICI response in urothelial

BLCA (29). The higher mutation frequencies tend to portend a poor

prognosis. However, studies have shown that high tumor

mutational load (TMB) is associated with longer survival after ICI

therapy (30). C2 and C3 have higher single-nucleotide

polymorphism (SNP), insertion-deletion (INDEL), and TMB

compared to C1 and C4, which further demonstrates the

suitability of C2 and C3 for immunotherapy.
3.7 Identification and validation of hub
genes for C1 subtypes

To explore the molecular mechanisms and prognosis-related

markers of the four subtypes, machine-learning algorithms were used

to identify hub genes. For C1 subtype, the randomForest algorithm

analysis screened two potential hub genes using a node size threshold of

3. LASSO regression analysis finally screened five target genes. By taking

the intersection of the genes identified by the two algorithms, we
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identified two key genes, FAT4 and RPL37P1, that are closely

associated with the malignant progression of BLCA (Figure 5A). The

survival curves illustrated that the high-expression FAT4 had a poor

prognosis and the high-expression RPL37P1 had a favorable prognosis

(Figure 5B). Moreover, significant differences were observed in the

expression levels of hub genes across different stages, with higher

expression levels of FAT4 in patients at higher stages and higher

expression levels of RPL37P1 in patients at lower stages (Figure 5B).

Likewise, high-grade BLCA patients had higher gene expression levels of

FAT4 and lower gene expression levels of RPL37P1, further

corroborating that FAT4 gene was positively correlated with the

degree of BLCA malignancy and RPL37P1 gene was protective

(Figure 5B). Next, their functions and correlations with immune cells

were examined. FAT4 is predominantly enriched in pathways

associated with driving malignant phenotypic transformation and

microenvironmental remodeling such as HALLMARK_

EPITHELIAL_MESENCHYMAL_TRANSITION, HALLMARK_

ANGIOGENESIS, HALLMARK_TGF_BETA_SIGNALING, and

HALLMARK_KRAS_SIGNALING_UP, while RPL37P1 is

predominantly enriched in pathways related to metabolic

reprogramming and genomic destabil ization, such as

HALLMARK_DNA_REPAIR, HALLMARK_P53_PATHWAY, and

HALLMARK_GLYCOLYSIS (Figure 5C). Moreover, FAT4 was

significantly positively correlated with mast cells resting, T cells CD4

memory resting, Macrophages M2, and monocytes. RPL37P1 was

significantly positively correlated with T cells CD4 naive, T cells
FIGURE 3

Distinctive cell death-related modalities and biological features among four BLCA subtypes. (A) Heatmap demonstrated differences in cell death
signaling pathways among the four subtypes. Enrichment map network and KEGG enrichment analysis in C1 subtype (B), C2 subtype (C), C3 subtype
(D), C4 subtype (E).
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gamma delta, and B cells memory, closely related to immune response

(Figure 5D). The results of Western blot analysis showed that higher

stages were correlated with higher gene expression levels of FAT4.

However, the relationship between RPL37P1 expression level and

staging was not significant (Figure 5E).
3.8 Identification and validation of hub
genes for C2 subtypes

For C2 subtype, randomForest algorithm analysis screened

three potential hub genes and LASSO regression analysis screened

14 target genes, finally identifying three key genes, namely FGFR1,

RNASEH1, DDX1 (Figure 6A). Among them, the two hub genes
Frontiers in Immunology 10
FGFR1 and RNASEH1, are associated with survival in BLCA

patients. The KM curves illustrated that the high-expression

FAT4 and RNASEH1 had poor prognosis (Figure 6B) and

patients with advanced stages and grades have higher levels of

gene expression of FGFR1 and RNASEH1 (Figure 6C), indicating

that these genes were malignant and protumorigenic. Likewise,

FGFR1 was also predominantly enriched in pathways associated

w i t h m a l i g n a n t p h e n o t y p i c t r a n s f o rm a t i o n a n d

microenvironmental remodeling, while RNASEH1 was

predominantly enriched in pathways related to genome stability

(Figure 6C). Moreover, FAT4 and RNASEH1 were significantly

positively correlated with macrophages (Figure 6D). The results of

western blot analysis showed that higher stages were correlated with

higher gene expression levels (Figure 6E).
FIGURE 4

The immune landscape across distinct BLCA subtypes. (A) Heatmap of immune cell infiltration by SsGSEA in four subtypes. (B) Radar plot of immune gene
expression levels. (C) Comparison of immune indicators in the four subtypes. (D) The relative expression of co-stimulatory and co-inhibitory immune check
points and specific MHC molecules. (E) Heatmap of immune checkpoints of four BLCA subtypes. (F) The relative expression of immune checkpoints of the
four subtypes. (G) The tumor inflammation signature (TIS) score, antigen presentation score (APS), and neoantigen in BLCA subtypes. (H) Mutation landscape
in TCGA BLCA cohort. (I) Expression heatmap of the top 20 highly mutated genes in the four subtypes. (J) Tumor mutational burden, single nucleotide
polymorphism, and insertion-deletion in BLCA subtypes. ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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3.9 Identification and validation of hub
genes for C3 subtypes

Similarly, three key genes (AHNAK2, SLC9B2, and MN1) in C3

subtype were identified (Figure 7A). The high-expression of these

genes is strongly associated with a poor prognosis (Figure 7B).

What’s more, these genes are expressed at higher levels in advanced

and highly graded patients (Figure 7B). Interestingly, They are all

predominantly enriched in HALLMARK_EPITHELIAL_

MESENCHYMAL_TRANSITION and are closely related to

Macrophages (Figures 7C, D). Western blot analysis

demonstrated a progressive increase in the expression of these

genes with staging (Figure 7E).
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3.10 Identification and validation of hub
genes for C4 subtypes

In C4 subtype, this study illustrated that the high expression of

four key genes (TTLL3, FABP6, TBC1D3, and CYP4F35P) are

associated with the favorable prognosis in the TCGA cohort

(Figures 8A, B). These genes are more lowly expressed in patients

with high staging and advanced grade (Figure 8B). Enrichment

analysis indicated that Each gene has a different enrichment

function and are all closely related to T cells CD4 naive and T

cells gamma delta (Figures 8C, D). To further validate the

aforementioned results, the expression levels of three hub genes

(No CYP4F35P antibody) were quantified across the four different
FIGURE 5

Machine learning algorithms to obtain hub targets of C1 subtype. (A) The identification of potential targets using the randomForest (left) and Lasso
(right) algorithm. Venn diagram for identifying hub genes of C1 subtype. (B) Survival analysis in TCGA BLCA cohort, respectively, for the grouping of
the median expression of FAT4 and RPL37P1. The relative expression of different stages (left) and grades (right) for FAT4 and RPL37P1, respectively.
(C) GSEA enrichment analysis for FAT4 and RPL37P1 based on hallmark gene set. (D) Correlation between 22 infiltrating immune cells and FAT4 and
RPL37P1, respectively. (E) WB and the relative expression of FAT4 and RPL37P1 proteins in different tumor stages. *P < 0.05, **P < 0.01, ***P < 0.001.
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stages of BLCA tissues (Figure 8E). Taken together, we identified

the corresponding hub genes for each subtype. The specific role of

these genes remains to be validated in further clinical practice.
4 Discussion

CAFs have been shown to have var ious ce l lu lar

communications with tumor cells and immune cells, which not

only secrete cytokines and mediate extracellular matrix remodeling

to indirectly affect tumor cells and immune cells, but also promote

tumor cell proliferation, invasion, and metastasis through direct

cell-to-cell interactions (3, 7, 8, 31), further promoting immune

escape, chemotherapy resistance, and tumor recurrence. This study

identified CAFs closely associated with BLCA development based
Frontiers in Immunology 12
on scRNA-seq datasets. Through further systematic clustering and

functional analysis of CAFs, we successfully identified 10 distinct

CAF sub-clusters. The novel pCAF-based BLCA classification

system was subsequently developed and rigorously validated using

different datasets of tumor bulk RNA-seq data with excellent

robustness and generalizability.

The four CAF-based BLCA subtypes have different molecular,

functional and immunological characteristics. The C3 subtype

exhibits a malignant phenotype with poor clinical prognosis, with

a higher enrichment of the cell death pathway, a significant immune

infiltration, and higher expression of MHC molecules and co-

stimulatory/co-inhibitory molecules, suggesting that C3 is an

immune-enriched phenotype and may be sensitive to

immunotherapy. The higher TIS, APS, neoantigen score, and

TMB further implied that C3 was potentially responsive to
FIGURE 6

Machine learning algorithms to obtain hub targets of C2 subtype. (A) The identification of potential targets using the randomForest and Lasso
algorithm. Venn diagram for identifying hub genes of C2 subtype. (B) Survival analysis in TCGA BLCA cohort, respectively, for the grouping of the
median expression of FGFR1 and RNASEH1. The relative expression of different stages and grades for FGFR1 and RNASEH1. (C) GSEA enrichment
analysis for FGFR1 and RNASEH1 based on hallmark gene set. (D) Correlation between 22 infiltrating immune cells and FGFR1 and RNASEH1,
respectively. (E) WB and the relative expression of FGFR1 and RNASEH1 proteins in different tumor stages. *P < 0.05, **P < 0.01, ***P < 0.001.
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immunotherapy. Moreover, some studies indicate that cell death

signals play an important role in the immune environment, and

targeting cell death signaling pathways may enhance the efficacy of

tumor immunotherapy (28, 32). Therefore, it is possible that cell

death inducers and immunotherapy used together will achieve
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better results for C3. In contrast, the C4 subtype has a smaller

population and a better prognosis, as characterized by a lower

enrichment of cell death pathways, a lower frequency of tumor

mutations, and an ‘immune desert’ TME. C4 had lower expression

levels of immune molecules, APS, and TMB, further suggesting
FIGURE 7

Machine learning algorithms to obtain hub targets of C3 subtype. (A) The identification of potential targets using the randomForest and Lasso
algorithm in C3 subtype. (B) Survival analysis for AHANK2, SLC9B2, and MN1. The relative expression of different stages and grades for AHANK2,
SLC9B2, and MN1, respectively. (C) GSEA enrichment analysis for AHANK2, SLC9B2, and MN1 based on hallmark gene set. (D) Correlation between
22 infiltrating immune cells and AHANK2, SLC9B2, and MN1, respectively. (E) WB and the relative expression of AHANK2, SLC9B2, and MN1 proteins
in different tumor stages. ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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resistance to immunotherapy. C1 subtype was mainly enriched in

metabolism-related pathways, whereas C2 subtype was mainly

enriched in genome instability pathway activation, with a higher

frequency of mutations and better response to atezolizumab
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treatment. The expression levels of cell death-related pathways

and the degree of immune infiltration of C1 and C2 were

intermediate between C3 and C4. Collectively, CAF-based BLCA

classification effectively distinguished independent BLCA groups
FIGURE 8

Machine learning algorithms to obtain hub targets of C4 subtype. (A) The identification of potential targets. (B) Survival analysis in TCGA-BLCA
cohort for the TTLL3, FABP6, TBC1D3, and CYP4F35P. The relative expression of different stages and grades for TTLL3, FABP6, TBC1D3, and
CYP4F35P. (C) GSEA enrichment analysis for TTLL3, FABP6, TBC1D3, and CYP4F35P. (D) Correlation between 22 infiltrating immune cells and TTLL3,
FABP6, TBC1D3, and CYP4F35P, respectively. (E) WB and the relative expression of TTLL3, FABP6, TBC1D3, and CYP4F35P proteins in different tumor
stages. ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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with low overlap with existing transcriptional classification

methods, demonstrating unprecedented predictive value. Besides,

this study identified two potential key genes (FAT4 and RPL37P1)

as significantly associated with C1, two potential target genes

(FGFR1 and RNASEH1) for C2, three potential target genes

(AHNAK2, SLC9B2, and MN1) for C3, and four potential target

genes (TTLL3, FABP6, TBC1D3 and CYP4F35P) for C4. These hub

genes play critical roles in BLCA patients and provide potential

molecular targets and clinical strategies for designing targeted

therapeutic regimens for BLCA patients.

FAT4 (FAT atypical cadherin 4) is a member of the cadherin

family and is involved in cell adhesion, epithelial-mesenchymal

transition (EMT), and the regulation of the TME (33–36). It has

been verified that FAT4 could affect tumor metastasis and regulate

TMB and microsatellite instability to influence the immunotherapy

response through calcium signaling pathways and chemokine signaling

pathways (34). Additionally, the interaction between FAT4 and CAFs

could reshape the TME and promote BLCA progression (34, 35).

Likewise, in our study, FAT4 shows that high expression is associated

with poor prognosis. RPL37P1 (Ribosomal Protein L37 pseudogene 1)

is a pseudogene related to ribosome biogenesis (37). Its parent gene,

RPL37, plays a crucial role as a ribosomal protein in protein translation

and participates in regulating the tumor suppression (38). RPL37 can

bind and inhibit the E3 ubiquitin ligase activity of MDM2, thereby

stabilizing p53 and inducing cell cycle arrest or apoptosis (38), which is

closely related to the prognosis of patients in various cancers.

Moreover, DNA damage (such as exposure to ultraviolet rays or

treatment with cisplatin) can trigger the proteasomal degradation of

RPL37, and then activate p53 pathway through a L11-dependent

manner, indicating that RPL37 and its pseudogene may be involved

in the DNA damage stress response (39). In summary, FAT4 and

RPL37P1 play important roles in reprogramming the TME and have

the potential to become a cancer prognostic marker and therapeutic

target for C1 subtype.

FGFR1 (fibroblast growth factor receptor 1) is a transmembrane

receptor with tyrosine kinase activity, belonging to the FGFR family

(FGFR1-4) (40). FGFR1 regulates cell proliferation, differentiation, and

migration by activating downstream signaling pathways (such as

MAPK/PLCg and PI3K/AKT) (41, 42). Overexpression or abnormal

splicing of FGFR1 can promote EMT, enhance invasion andmetastasis

ability, and drive cell proliferation through MAPK/ERK or COX-2

pathways, which is closely related to tumor malignancy progression

(43–45). It has been found that FGFR1 overexpression is an

independent factor for poor prognosis in patients with MIBC, and is

associated with shorter recurrence time and overall survival (43).

Moreover, the abnormal activation of FGFR1 can be further

strengthened by collaborating with molecules like TTYH3, thereby

reinforcing downstream oncogenic signals (46). Although pan-FGFR

inhibitors like erdafitinib are effective for BLCA with FGFR3

mutations/fusions, their efficacy is limited for FGFR1-dependent

tumors (44, 47). RNASEH1 (Ribonuclease H1) is a nucleolytic

endonuclease that specifically degrades RNA-DNA hybrids (R-

loops), which plays a crucial role in maintaining genomic stability,

regulating DNA replication and repair (48–50). RNASEH1 could

prevent replication stress and DNA damage by removing R-loops,
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and dysfunction of RNASEH1 is closely related to the progression of

various cancers, including gastric cancer, B-cell lymphoma, and

melanoma (51–54). Some cancer cells may rely on the telomerase-

independent ‘Alternative Lengthening of Telomeres’ pathway to

maintain telomere length (49). RNASEH1 regulates the balance of

hybrid structures between telomere DNA and long non-coding RNA

TERRA, affecting homologous recombination efficiency. Abnormal

expression of RNASEH1 may lead to telomere dysfunction or

excessive recombination, promoting the immortalization and

invasiveness of cancer cells. A pan-cancer analysis revealed that

overexpression of RNASEH1 is associated with the regulation of the

TME and poor prognosis, suggesting that RNASEH1 may promote

BLCA immune escape by inhibiting anti-tumor immunity (48). Our

study also showed that high expressions of FGFR1 and RNASEH1

related to poor prognosis. In conclusion, FGFR1 and RNASEH1 may

affect BLCA progression through multiple mechanisms and may

become prognostic markers or therapeutic targets for BLCA.

AHNAK2 is a large molecular nuclear protein with a molecular

weight exceeding 600 kDa, belonging to the AHNAK protein family,

regulating tumor progression by activating signaling pathways such as

ERK, MAPK, Wnt, and MEK, as well as promoting EMT (55).

AHNAK2 is abnormally highly expressed in numerous cancers and

is closely associated with poor prognosis (55, 56). Several researchers

have revealed that high expression of AHNAK2 is significantly

correlated with the malignancy of BLCA (56–58). For patients who

underwent radical cystectomy and have high AHNAK2 expression in

tumor tissues, their disease-free survival and cancer-specific survival

were significantly shortened, and multivariate analysis confirmed that

AHNAK2 was an independent poor prognostic factor (56). From the

molecular mechanism perspective, the expression of AHNAK2 in the

tumor hypoxic microenvironment is regulated by HIF-1a, which may

drive tumor progression by inducing EMT and enhancing tumor stem

cell characteristics (59). It is noteworthy that the level of AHNAK2

protein in the urine of BLCA patients is significantly elevated, especially

in MIBC, making it a potential non-invasive diagnostic marker (58).

SLC9B2 (also known as NHA2) is a unique Na/H antiporter, belonging

to the SLC9B subfamily, with 14 transmembrane segments and

forming a unique lipid-sensitive dimer structure (60, 61).

Nevertheless, there are relatively few direct studies on SLC9B2 in

BLCA. In terms of physiological functions, SLC9B2 is highly expressed

in the distal convoluted tubules of the kidney, participating in blood

pressure homeostasis and electrolyte balance by regulating the WNK4-

NCC signaling pathway (62). Interestingly, SLC9B2 exhibits abnormal

expression in various pathological conditions. In polycystic kidney

disease, SLC9B2 is significantly upregulated and positively correlated

with cyst size, regulated by the polycystin-1/Ca2+/NFAT signaling axis,

which can be induced by vasopressin and methylxanthine drugs (63).

What’s more, SLC9B2 is related to the pathogenesis of diabetes and

hypertension, and is crucial for sperm motility and fertility (64, 65).

The MN1 (Meningioma 1) gene is an important transcriptional co-

regulatory factor that is initially discovered in meningiomas and has

been confirmed to be involved in the occurrence and development of

various malignant tumors in recent years (66, 67). MN1 enhances

mRNA stability through m6A methylation modification mediated by

METTL14, promoting tumor progression and chemotherapy
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resistance in osteosarcoma (68). In astrocytoma and other nervous

system tumors, MN1 gene rearrangements (such as MN1-BEND2 and

MN1-CXXC5) drive tumor occurrence via activating the PDGFRa
signaling pathway (69). However, the high expression of MN1 in low-

grade gliomas actually predicts a better prognosis, and this tissue-

specific difference suggests that the regulatory network of MN1 is

highly complex (66). Of note, MN1 exerts a pro-tumor effect through

the XIST/miR-15a-5p/MN1/FZD2 signaling axis, and its significantly

high expression is observed in female patients with poor prognosis,

whichmay be an important molecular basis for the gender difference in

BLCA (70). The expression regulation of MN1 may involve epigenetic

regulation of long non-coding RNAs, and the activation of its

downstream effector molecule FZD2 may affect the remodeling of

TME (70). In C3, high expression of AHNAK2, SLC9B2, and MN1 is

correlated with poor survival and may be potential therapeutic targets.

These findings provide a novel perspective for understanding the

molecular mechanism underlying the poor prognosis of BLCA.

TTLL3 is a tubulin glycine ligase that regulates the assembly of

cilia, which plays a crucial role in maintaining the structure and

function of cilia (71). Studies have shown that TTLL3 is expressed

in colon tissues, and its absence or decreased levels of its expression

lead to the deficiency of tubulin glycosylation and a reduction in

primary cilia, thereby promoting the development of colorectal

cancer (72). FABP6 (Fatty Acid Binding Protein 6) is an

intracellular lipid transporter protein, which precisely regulates

metabolic pathways, signal transduction, and gene expression

(73). It is abnormally expressed in various cancers and is closely

related to the occurrence and progression of cancer. In colorectal

cancer, FABP6 is negatively correlated with immune infiltration,

and its downregulation can enhance tumor immunogenicity and

promote the recruitment of CD8+ T cells (74). FABP6 is regulated

by the transcription factor REST and participates in gastric cancer

progression by influencing autophagy and the Akt/mTOR pathways

(75). Knockdown of FABP6 can significantly inhibit the

proliferation and motility of BLCA cells, while downregulating

the expression of cell cycle proteins such as CDK2 and CDK4

and blocking the AKT-mTOR signaling pathway, enhancing the

therapeutic effect of cisplatin (76). Interestingly, some researchers

indicate that FABP6 has been identified as a protective gene in the

prognostic model of BLCA, and its expression level is related to the

survival period of patients (77). TBC1D3, a hominoid-specific

oncogene belonging to the TBC1 domain protein family, is

encoded by a cluster of paralogues located on chromosome 17q12

(78). TBC1D3 enhances cell migration ability in breast cancer by

activating the TNFa/NF-kB signaling pathway and upregulating

the expression of OLR1 (79). The oncogenic mechanism of

TBC1D3 involves the regulation of multiple key signaling

pathways, including maintaining the stability of EGFR through

interaction with the microtubule network, delaying EGFR

degradation, and enhancing Ras activity to promote cell

proliferation, as well as affecting gene expression through

epigenetic regulation (80, 81). However, there are relatively few
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direct studies on TBC1D3 in BLCA. CYP4F35P is an lncRNA

derived from a pseudogene and belongs to the cytochrome P450

family (82, 83). In recent years, it has been found to have regulatory

effects in various cancers. In laryngeal squamous cell carcinoma and

tongue squamous cell carcinoma, CYP4F35P shows differential

expression patterns and forms a co-expression network with

genes such as MUC21 and CEACAM1, suggesting that it may

affect tumor progression by regulating cell adhesion and signal

transduction processes (83, 84). In BLCA, CYP4F35P has been

identified as one of the seven key prognostic-related lncRNAs, and

its expression characteristics are significantly correlated with the

survival rate of patients (82). The risk scoring model based on it can

effectively predict the prognosis of BLCA patients (82). These

findings suggest that TTLL3, FABP6, TBC1D3, and CYP4F35P

may become potential biomarkers for the diagnosis and prognosis

assessment of BLCA. Future research needs to further verify the

specific functional mechanism of these genes in BLCA and their

potential value as a diagnostic marker and therapeutic target.
5 Limitations and conclusions

Several limitations need to be noted. Firstly, CAF clustering and

CAF-based BLCA classification were constructed from retrospective

data from public databases. And the inconsistent number of patient

stage distribution and the lack of prior treatment history in these

public databases further limited our study. Thus, future validation in

more prospective, multi-center BLCA cohorts is needed. Secondly, we

only initially explored the key genes for each subtype, and subsequent

studies will need to delve deeper into their potential mechanisms of

action in the development of BLCA. In conclusion, this study

identified a promising platform for understanding CAF

heterogeneity and BLCA classification, which could provide novel

insights into the complex molecular mechanisms of BLCA. Each

heterogeneous subtype possesses different unique molecular,

functional and immunological characteristics, implying a different

therapeutic strategy, further facilitating personalized medicine for

BLCA patients.
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