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cervical cancer
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Chengdu, China
Human papillomavirus (HPV), a double-stranded DNA virus linked to various

malignancies, poses a significant global public health challenge. In cervical

cancer, persistent infection with high-risk HPV genotypes, particularly HPV-16

and HPV-18, initiates immune evasion mechanisms within the tumor

microenvironment. The polarization of tumor-associated macrophages (TAMs)

from M1 to M2 phenotypes promotes cervical carcinogenesis, metastasis, and

therapeutic resistance via establishing an immunosuppressive microenvironment.

This review provides a comprehensive overview of HPV-induced immune evasion

pathways, including MHC downregulation, T-cell impairment, regulatory T cell

induction, and cGAS-STING pathway inhibition. Furthermore, describe the pivotal

role of TAMs in cervical cancer progression, focusing on their phenotypic plasticity,

pro-tumoral functions, and potential as therapeutic targets. By elucidating these

cellular and molecular dynamics, this review aims to support advanced research.

Targeting TAM polarization through immunotherapies and nanomedicine-based

strategies represents a promising strategy for enhancing patient outcomes.
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1 Introduction

Human papillomavirus (HPV) induces hyperproliferation of squamous epithelium in

human skin and mucous membranes (1). High-risk types, notably HPV-16 and HPV-18,

are strongly linked to malignant tumors such as cervical, anal, and oral cancers, collectively

termed HPV-related tumors. While the immune system typically clears HPV in

immunocompetent individuals, certain immune evasion strategies enable progression to

malignancy. Recent studies have detailed HPV’s mechanisms to evade host adaptive

immunity, closely associated with HPV-related tumor development.

Cervical cancer has seen significant advancements in prevention and diagnosis,

including vaccines, HPV detection, cytological screening, and colposcopy. Persistent

infection with high-risk HPV-16 and HPV-18 is the primary driver of cervical cancer.

The tumor microenvironment (TME) (2–5), composed of tumor cells, bone marrow-

derived cells, and stromal cells, fosters an immunosuppressive microenvironment that
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promotes tumor immune evasion, growth, and metastasis (6–8).

Despite these insights, treatment outcomes for advanced and

recurrent cervical cancer remain suboptimal. TAMs within the

TME play a pivotal role in tumorigenesis and progression by

promoting invasion, migration, angiogenesis, and suppressing

anti-tumor immunity (9, 10). This review consolidates current

knowledge on TAM polarization, their functional roles, and

therapeutic targets in cervical cancer, aiming to advance research

on its progression and treatment.
2 Mechanisms of HPV-induced
evasion of host adaptive immune
responses

2.1 MHC downregulation to prevent
cytotoxic T lymphocyteactivation

CTLs are crucial in anti-tumor immunity, eliminating mutated

or tumor cells through perforin-granzyme and Fas-FasL/TNF-

TNFR pathways. Their ability to recognize exogenous peptides is

governed by MHC class I and II molecules, with MHC contributing

to variability in immune responses—a critical regulatory

mechanism. Tumors frequently harbor mutations that disrupt

MHC antigen presentation pathways (11). Genome-wide

association studies have identified HA locus mutations potentially

influencing susceptibility to HPV-related cancers. HPV employs

gene expression modulation to inhibit antigen presentation,

preventing viral antigens from being displayed on MHC class I

molecules during infection. Specifically, the HPV E5 protein

induces late endosome alkalization, disrupting the trafficking of

peptide-MHC class I complexes to the cell surface and hindering

the presentation of tumor-associated antigens, thereby suppressing

CTL activation (12). In head and neck squamous cell carcinoma

(HNSCC), HPV E5 overexpression confers CTL resistance by

reducing antigen presentation, while treatment with the HPV E5

inhibitor gemcitabine can enhance MHC class I expression and

mitigates this effect (13).
2.2 Regulation of CD4+ T cell activation

CD4+ T cells regulate CTL activation and secrete cytokines and

chemokines that support anti-tumor immunity. In murine models,

CD4+ T cell depletion impairs CTL responses to the HPV E7

protein (14). Clinically, HIV-infected patients with CD4+

deficiency exhibit a higher incidence of HPV-related cancers. In

cervical cancer, CD4+ T cells exhibit impaired responses to HPV

peptides, contributing to tumor immune tolerance (15). Anti-HPV

activity is associated with CD4+ T cell phenotypes rather than

quantity, with the CD4+CD161+ subset linked to improved survival

(16, 17). In HPV-related oral cancers, CD4+ T cell abundance does

not predict prognosis (18). Cervical cancer patients display a Th2-

skewed CD4+ response and reduced IFN-g levels (19). Conversely,
in HPV-related oropharyngeal carcinoma, Th1 responses mediated
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by CD161+ and CD103+ T cells are prognostic (16). Furthermore,

stromal fibroblasts secrete CCL20, driving pro-tumorigenic Th17

responses during invasive carcinoma progression, although their

persistence across stages remains unclear (20).
2.3 Induction of regulatory T cell
generation

Tregs suppress immune responses, disrupting normal host

immunity. HPV-related tumors induce Tregs and other regulatory

cells to inhibit anti-tumor immunity. Clinically, Treg levels are higher

in HPV-infected individuals than in healthy controls, with chronic

infections showing greater Treg elevations than those who clear the

virus, suggesting impaired cellular immunity allows persistent infection

(21, 22). Cervical HPV infections are typically localized to lesions with

rare viremia, making local immunity crucial for infection outcomes. In

cervical cancer, low-proliferative Foxp3+ Tregs are present at primary

tumors, metastatic lymph nodes, and peripheral blood, indicating

systemic immune tolerance and potential tumor metastasis (23).

Studies on Treg levels in HPV-positive versus HPV-negative HNSCC

are inconsistent (24, 25). However, the Treg/CD8+ T cell ratio remains

a prognostic marker in HNSCC irrespective of HPV status (26).
2.4 Regulation of the cGAS-STING pathway

The cGAS-STING pathway senses exogenous DNA by

synthesizing cGAMP from ATP and GTP, triggering STING,

IRFs, and NF-kB to induce interferons and pro-inflammatory

cytokines. While it mediates antiviral effects against DNA viruses,

HPV evades this defense through mechanisms like HPV18 E7’s

LCXCE domain blocking STING (27) and HPV16 E7 destabilizing

STING via NLRX1 (28). Depletion of NLRX1 boosts type I

interferon-dependent T cell infiltration and tumor suppression

(29). In HPV16-positive HNSCC, the LCXCE domain of HPV16

E7 may disrupt cGAS-STING signaling (30). STING expression

correlates positively with tumor-infiltrating lymphocytes and

improved survival outcomes (31). HPV-positive HNSCC exhibits

higher STING mRNA levels than HPV-negative cases, suggesting

partial pathway activation despite HPV-mediated inhibition.

STING activation may also enhance cetuximab-induced NK cell

activity, driving tumor regression (32).
2.5 PD-1/PD-L1 immune checkpoint
regulation

The PD-1/PD-L1 immune checkpoint is a conserved inhibitory

mechanism regulating immune responses and plays a key role in

inducing tumor immune tolerance during tumorigenesis (33–36).

HPV-related tumors upregulate PD-1/PD-L1 to enhance immune

tolerance. Preliminary analysis of 27 HNSCC tumors shows higher

PD-L1 expression in HPV-positive versus HPV-negative tumors

(30). In a study of 214 oropharyngeal cancer patients, 85.2% of
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HPV-positive cancers expressed PD-L1 compared to 57.1% of

HPV-negative ones, and HPV-positive tumors also exhibited

greater T cell infiltration (31). Additionally, IFN-g secretion by T

cells upregulates PD-L1 expression, potentially intensifying the

inflammatory response in the tumor microenvironment. Analyses

of TCGA and MSK-IMPACT cohorts indicate that HPV-positive

status is a superior predictor of HNSCC outcomes compared to

immune checkpoint inhibitor responses, independent of PD-L1

levels, and correlates with higher expression of inflammatory genes

and CD8+ T cell infiltration in HPV-positive HNSCC tumors (37).

In summary, HPV-infected tumor cells evade host adaptive

immunity through multiple mechanisms, including downregulating

MHC molecules, suppressing CD4+ T cells, inducing regulatory T

cells, and disrupting signaling pathways, thereby facilitating

tumorigenesis. Establishing effective cellular immunity is essential

for eliminating persistent HPV infections. Further investigation

into HPV-related immune evasion will aid the development of

vaccines, anti-tumor therapies, and prognostic tools.
3 The role of TAMs in cervical cancer

3.1 Phenotypic alterations of macrophages
during cervical cancer progression

Macrophages exhibit a strong correlation with cervical

intraepithelial neoplasia (CIN) progression, with their prevalence

increasing linearly alongside tumor advancement (38). Human HPV

manipulates innate and adaptive immune responses through various

mechanisms, enabling immune evasion and persistent infection. In

low-grade CIN (CIN I-II) associated with HPV, pro-inflammatory

cytokines and infiltrating inflammatory cells are markedly reduced,

fostering malignant transformation. While immune cell infiltration

escalates from high-grade CIN (CIN III) to invasive cervical cancer,

immune suppression endures, with the phenotype and function of

infiltrating immune cells being tightly regulated.

Macrophage phenotypes dynamically shift across cervical

cancer stages (39), contributing to tumor proliferation, invasion,

and metastasis through multiple pathways. Within the cervical

cancer microenvironment, monocyte differentiation into dendritic

cells is impaired, while prostaglandin E2 (PGE2) and interleukin-6

(IL-6) secreted by cancer cells induce differentiation into M2

macrophages (40). Cervical cancer cells convert M1 to M2

macrophages, consistent with the high prevalence of M2 types in

the tumor microenvironment (41). Supernatants from cancer cell

lines stimulate macrophages to secrete elevated IL-6, IL-10, MCP-1,

IL-8, GM-CSF, PDGF-AA, PDGF-BB, and VEGF. IL-6 and VEGF

promote angiogenesis and tumor growth, while IL-4, MCP-1, and

other cytokines create an immunosuppressive environment. GM-

CSF and IL-6 synergistically enhance M2 polarization (42).

Furthermore, cervical cancer cells reduce STAT1 and NF-kB p65

phosphorylation in M1 macrophages while increasing STAT6

phosphorylation to activate M2 macrophages, thereby impairing

macrophage-mediated anti-tumor immunity.
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3.2 TAM polarization facilitates HPV-
induced cervical cancer progression

HPV comprises three genomic regions: six early genes (E1, E2,

E4, E5, E6, E7), two late genes (L1, L2), and a non-coding region.

Persistent infection with high-risk HPV types is the primary driver of

cervical cancer. Studies demonstrates a positive correlation between

cervical cancer progression and the expression of CD68+ or CD163+

macrophages, with macrophage infiltration increasing linearly with

high-risk HPV infections (43). In HPV-positive cervical cancer

specimens, M2-type macrophages are significantly enriched and

exhibit elevated expression of antigen presentation genes, including

CD74 and HLA-A (44). P-selectin glycoprotein ligand 1 (PSGL-1) in

macrophages reprograms their function to activate T cells,

contributing to anti-tumor immunity. In HPV16/18-positive CIN

tissues, PSGL-1 expression is closely linked to infection status, lesion

severity, immune infiltration, and prognosis (45). The HPV E6/E7

genes suppress CCL20/MIP3a secretion, impairing Langerhans cell

migration (46), while HPV-positive cells secrete elevated levels of G-

CSF, IL-6, IL-8, promoting the recruitment of tumor-associated

neutrophils and M2 macrophages (47).
3.3 Impact of tumor-associated
macrophages on cervical cancer prognosis

Increased TAM infiltration is associated with poorer patient

prognosis (48–50). High-risk HPV infection is the primary cause of

cervical cancer; however, immune responses against HPV antigens

eliminate most infections and precursor lesions, with only a

minority of infected individuals developing persistent infections

leading to malignancy. Interleukin-10 (IL-10) inhibits the

production of other cytokines, such as IL-2, IFN-g, IL-12, and
TNF-a, and is associated with downregulation of MHC class I

molecules, resulting in reduced Th1 responses. In cervical cancer,

TAMs secrete IL-10, inducing the proliferation of HPV-specific

regulatory T cells and suppressing the anti-tumor activity of effector

T cells, thereby contributing to adverse prognosis. During

tumorigenesis and progression, cancer cells proliferate by

absorbing nutrients via blood vessels, a process closely linked to

TAMs (38). TAMs promote tumor angiogenesis and metastasis,

suggesting that TAMs may facilitate the extensive growth of new

blood vessels through factor secretion, synergistically promoting the

malignant progression of cervical cancer (51).

TAMs are closely associated with recurrence and metastasis in

cervical cancer. CD163 and CD68 are common TAM markers. The

increased CD163+ macrophage count was significantly associated with

reduced recurrence-free survival, whereas CD68+ macrophages were

not correlated with recurrence in Stage I squamous cell carcinoma of

the cervix (52). Moreover, M2-polarized TAMs reduce sensitivity to

chemoradiotherapy, and a higher M1/M2 ratio independently predicts

unfavorable survival. Targeting macrophage polarization to prevent

M2 differentiation effectively impedes tumor progression (53, 54),

thereby improving cervical cancer prognosis (Figure 1).
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4 Therapeutic targeting of TAMs

4.1 Phenotypic remodeling of TAMs

M1-type macrophages show anti-tumor, pro-inflammatory

roles in cervical cancer, whereas M2-type macrophages correlate

with poor prognosis and are more prevalent in cervical cancer

tissues than non-tumorous samples (55, 56). 6Because macrophages

are highly plastic, promoting M1 polarization and inhibiting M2

differentiation effectively treats cervical cancer via phenotypic

remodeling. Such a strategy fosters monocyte differentiation into

M1, curbs M2 polarization, and represents a viable therapeutic

intervention for cervical cancer.

4.1.1 Vaccines
To date, three prophylactic HPV vaccines, like bivalent,

quadrivalent, and nonavalent, have been approved for preventing

common HPV infections (57). However, current prophylactic HPV

vaccines cannot eliminate existing HPV infections or interfere with

the progression of precancerous lesions to malignancy (58). CHE

YX et al. (59) employed a therapeutic vaccine containing HPV16 E7

43-77 peptides and adjuvants to treat cervical cancer in murine

models, observing a downregulation of IL-10 and TGF-b expression

in M2-type macrophages and an upregulation of CXCL9 and

CXCL10 chemokines in M1-type macrophages. This induced

significant reduction in the percentage of M2-type TAMs,
Frontiers in Immunology 04
decreased tumor microvascular density, and reduced Ki-67

indices, suggesting a macrophage shift from M2 to M1. Similarly,

Sonia et al. (60) demonstrated that HPV16 E7 peptides and CpG

ODN reduced TAMs and genital tumor growth. Moreover, low-

dose naltrexone decreases the number of M2-type macrophages and

reduces serum IL-10 secretion, thereby inhibiting cervical cancer

progression (61).
4.1.2 TAM-derived exosomes
Exosomes are extracellular vesicles containing nucleic acids,

proteins, metabolites, and other bioactive molecules (62, 63),

mediating “crosstalk” between tumor and immune cells, including

TAMs. They serve as valuable mediators for TAM-targeted

immunotherapy. In cervical cancer, tumor-derived exosomes

promote TAM polarization toward M1, reducing PD-1 expression

(64). Exosome-derived miR-423-3p targets CDK4/p-STAT3,

silencing IL-6 and inhibiting M2 polarization (65). Inflammatory

factors widely involve in diseases’ progression (66–69). In DC/

HPV16 E7, silencing CAT2 in exosomes induces M1 differentiation,

increasing IL-12 and TNF-a and curtailing tumor growth (70).

SEPT9 methylation confers radio-resistance via miR-375

“crosstalk” to TAMs, favoring M2 polarization and tumor

progression (71). TAM-derived exosomes also affect ferroptosis

by transferring miR-660-5p through the IL-4/IL-13/p-STAT6

pathway, suppressing ALOX15 (72). Due to their wide

distribution, abundance, stability, and plasticity, exosome-based
FIGURE 1

The Role of tumor-associated macrophages in cervical cancer.
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technologies hold significant promise for cervical cancer therapy.

Hence, understanding their mechanisms is essential for developing

novel therapeutic strategies and improving patient prognosis in

cervical cancer. By harnessing these vesicles, clinicians may

optimize treatment outcomes.

4.1.3 Mixed lineage kinase domain-like protein
Necroptosis, a programmed cell death mechanism, triggers pro-

inflammatory cytokines and anti-tumor immunity, thereby

contributing to tumor necrosis. Hence, molecules in necroptosis

pathways are promising therapeutic targets (73). MLKL, the key

necroptotic effector, undergoes RIPK3-mediated phosphorylation,

oligomerizes, relocates to the plasma membrane, and disrupts

membrane integrity, a hallmark of necroptosis (74). Cervical cancer

cells may limit M1 macrophage polarization by reducing macrophage

necroptosis, particularly in HPV-positive contexts (75). Plasma MLKL

and HPV DNA are readily measurable in clinical labs, suggesting their

combined detection in cervical cancer diagnosis and disease

monitoring. Additionally, blocking MLKL expression might regulate

macrophage polarization, offering a novel therapeutic strategy for

cervical cancer. Future studies are further needed to elucidate

MLKL’s clinical role in both prevention and therapy.
4.2 Inhibition of TAM viability

TAMs drive cervical cancer proliferation, invasion, and

metastasis, making their depletion a key therapeutic strategy.

Metastasis is initiated by tumor cell dissemination and the

acquisition of invasive capabilities, often mediated by epithelial-

mesenchymal transition (EMT). The TME, comprising TAMs,

extracellular matrix, hypoxia, and tumor-mesenchymal interactions,

fosters EMT (76). Low-dose naltrexone (LDN) has been shown to
Frontiers in Immunology 05
reduce TAMs in vitro, suppress M2-type macrophage-mediated

cervical cancer proliferation, invasion, and migration, promotes

apoptosis, and inhibits EMT (61), positioning it as a potential

adjunct therapy targeting TAM survival to curb tumor progression.

Chlorophosphonates induce TAM apoptosis and inhibit tumor

growth in HPV16 E6/E7-expressing TC-1 murine models without

affecting TC-1 cell viability (77). Additionally, mitomycin C (MMC)

combined with MG132 enhances FasL expression in TAMs both in

vivo and in vitro, amplifying their bystander effect on cervical cancer

cells and suppressing tumor growth.

Angiogenesis is a critical process in tumor progression.

DiNardo et al. (78) reported that zoledronic acid (ZA) in K14-

HPV16 transgenic female mice suppresses MMP9 in TAMs,

reduces VEGF-receptor binding, and suppresses angiogenesis,

thereby inhibiting cervical cancer cell proliferation and metastasis.

Moreover, chlorophosphonate-loaded liposomes deplete TAMs,

boost tumor-specific CD8+ T-cell responses, and inhibit TC-1

tumor growth in murine models (79).
4.4 Regulation of TAM recruitment to the
microenvironment

4.4.1 Interference with chemokines to inhibit M2
macrophage recruitment

Cytokines and chemokines within the TME drive monocyte and

macrophage recruitment to tumors and their subsequent differentiation

into the TAM phenotype. As previously discussed, administering a

cervical cancer vaccine containing HPV16 E7 43-77 peptides to TC-1

murine models alters the immune microenvironment, decreases the

expression of chemokines such as CCL2 and CCL5, suppresses

myeloid-derived suppressor cell (MDSC) recruitment to tumors, and

significantly reduces M2-TAMs within tumors (59). The natural
TABLE 1 Summary of TAM-targeted interventions in cervical cancer.

Targets Agents Mechanism

Phenotypic Remodeling HPV16 E7 peptide-based vaccines; CpG ODN;
Low-dose naltrexone (LDN)

Induce M1 differentiation;
Inhibit M2 polarization;
Shift cytokine milieu.

Exosome-Based Approaches Exosomal miR-423-3p;
DC/HPV16 E7 exosomes.

Deliver miRNAs or proteins to modulate macrophage polarization
Inhibit IL-6 expression;
Enhance M1 immune responses.

Necroptosis Induction Targeting MLKL expression
RIPK3/MLKL pathway modulation.

Trigger MLKL-mediated cell death;
Enhance inflammatory signals to stimulate anti-tumor immunity.

Inhibition of TAM Survival Chlorophosphonate-loaded liposomes; LDN;
MMC+MG132 (FasL induction).

Deplete TAMs directly;
Reduce pro-survival signals in TME.
Promote apoptosis of M2 macrophages.

Anti-Angiogenic Approaches Zoledronic acid (ZA); MMP9 inhibitors. Suppress TAM production of VEGF/MMP9;
Block tumor vascularization.

Inhibition of Recruitment HPV16 E7 peptide vaccine;
Swainsonine;
Anti–Nrp-1 therapy.

Interfere with chemokine pathways (CCL2, CCL5); Block Nrp-1-
mediated macrophage migration.

Nanomedicine Delivery Silica-based nanocomposites (miR-125a); Nanoemulsions
(TLR7/8 agonists);
Mannose-modified PEI nanomicelles.

Utilize nanoparticles to deliver immunomodulatory agents;
Enhance infiltration of immune cells;
Polarize M2→M1 macrophages.
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anticancer compound swainsonine competitively inhibits a-
mannosidase, modulates TAM phenotypes, and suppresses the

secretion of CCL2 and IL-10, thereby reducing macrophage

recruitment within the microenvironment (80). Under hypoxic

conditions in cervical cancer, high expression of neuropilin-1 (Nrp-1)

is significantly associated with TAM recruitment and migratory

function. Researchers have found that interfering with Nrp-1

expression markedly impairs TAM migration (81).

4.4.2 Nanomedicine delivery systems to enhance
immune cell recruitment

Nanomedicine-based immunotherapy harnesses nanoparticles

to deliver drugs or immune cells, enhancing efficacy and

minimizing toxicity. Targeting TAMs in cervical cancer shows

promise, exemplified by silica-based nanocomposites with miR-

125a that shift macrophages to M1, reducing tumor growth (82).

Nanoemulsions with TLR7/8 agonists increase M1/M2 ratios in

bone marrow-derived macrophages, elevating MCP-1/CCL2 and

MIP-1a/CCL3 to bolster immune cell recruitment (83). In HPV E6/

E7-pos i t i ve TC-1 tumor mode l s , mannose-modified

polyethyleneimine nanomicelles loaded with R-848 target

dendritic cells and macrophages in draining lymph nodes,

polarizing M2 to M1 macrophages, activating CD8+ T cells, and

enhancing anti-tumor responses (84) (Table 1).
5 Conclusion

In conclusion, TAMs in cervical cancer predominantly exhibit

an M2-like phenotype, contributing to tumor progression, immune

suppression, and therapy resistance, while strategies targeting TAM

reprogramming toward an M1 phenotype or reducing M2

polarization show promising therapeutic potential. Future

research should focus on elucidating the molecular mechanisms

of TAM plasticity, exploring combinational therapies such as

vaccines and immune checkpoint inhibitors, and investigating

HPV-mediated macrophage manipulation to develop novel

immunomodulatory approaches. Clinically, TAM-targeted
Frontiers in Immunology 06
therapies could complement existing treatments, with biomarkers

like CD163 and IL-10 guiding personalized interventions,

ultimately improving tumor control and patient outcomes

through optimized multimodal strategies.
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