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Background:Osteoarthritis (OA) is a common chronic degenerative joint disease

worldwide, which seriously affects the quality of life of patients and adds

economic burden. Although genome-wide association studies (GWAS) have

identified multiple genetic loci associated with OA, the functional mechanisms

of these loci remain unclear. Transcriptome association studies (TWAS)

combining gene expression and GWAS data have provided new perspectives to

explore the genetic basis of OA.

Methods: This study integrated cross-tissue and single-tissue TWAS analyses as

well as single-cell sequencing data to identify and validate the key genes

associated with OA. Cross- and single-tissue analyses were performed using

the UTMOST, FUSION, and MAGMA methods, while single-cell sequencing was

applied for the investigation of the expression characteristics, pseudotemporal

trajectories, and cell-to-cell communication patterns of the latent transforming

growth factor beta binding protein 1 (LTBP1) in different cell subtypes.

Results: This study identified multiple candidate genes associated with OA,

among which LTBP1 displayed a significant association in both cross-tissue

and single-tissue analyses (FDR < 0.05) and was validated as a key regulator of

the transforming growth factor-beta (TGF-b) signaling pathway. Single-cell

sequencing revealed that LTBP1 was differentially expressed in different

chondrocyte subtypes and was associated with high enrichment of the Notch

signaling pathway. Pseudotemporal analysis revealed the dynamic regulatory role

of LTBP1 in chondrocyte differentiation.
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Conclusion: Intercellular communication analysis revealed that cells with high

LTBP1 expression activated diverse signaling pathways such as TGF-b and

vascular endothelial growth factor (VEGF), suggesting that it may be involved in

the pathogenesis of OA by regulating the formation of the extracellular matrix

and the immune response.
KEYWORDS

osteoarthritis, transcriptome association study, LTBP1, single-cell sequencing,
genetic susceptibility
1 Introduction

Osteoarthritis (OA) is the most common chronic joint disease

worldwide, with a significant increase in prevalence, especially among

people aged ≥65 years, and its incidence of OA is 50-80% (1). The

most common symptoms of OA are joint pain and dysfunction,

which seriously affect patients’ quality of life (2). Past studies have

demonstrated that the high prevalence of OA is associated with

several risk factors, including age, obesity, gender (with a higher

prevalence in women), joint injury, and genetic susceptibility (3, 4).

OA poses a significant burden on individual patients and has a

significant impact on national health systems and socioeconomics.

According to past studies, the direct healthcare costs and indirect

economic losses (e.g., work absenteeism and reduced productivity)

owing to OA amount to billions of dollars (5). In some countries, OA

is classified as one of the Class A chronic diseases, and the demand for

its treatment has dramatically increased, especially in increasingly

aging societies, indicating the need for future research and policies to

focus more deeply on the prevention, early identification, and

effective interventions for this disease (6).

The rapid development of transcriptomics technology in recent

years has provided new means to explore disease mechanisms from

the perspective of gene expression. Transcriptome-wide association

studies (TWAS) are an approach for identifying genes associated

with complex diseases whose genetic effects may be mediated

through transcriptome (7). TWAS utilize reference genetic and

transcriptome data to estimate the magnitude of the effect of genetic

variation on gene expression (i.e., the effect sizes for broadly

expressed quantitative trait loci, eQTL). These estimated effect

sizes serve as variant weights in gene-based association tests and

facilitate the mapping of risk genes to genome-wide association

study (GWAS) data (8). For example, previous studies have

identified multiple GWAS signals associated with OA, albeit the

functional nature of these loci and specific associations with the OA

phenotype remain unclear (9, 10).

This study aimed to investigate the gene expression patterns

associated with OA in different tissues (e.g., articular cartilage,

synovium, and bone tissues) using cross-tissue transcriptome
02
association analysis and also study their roles in OA

susceptibility. We have integrated multiple databases and

bioinformatics tools with GWAS results to infer the changes in

expression of key genes and explore their roles in OA pathogenesis.

Through this integrated approach, we hope to provide new insights

into the molecular mechanisms of OA and thereby provide a

theoretical basis for future targeted therapeutic strategies.
2 Methods

2.1 Materials and methods

The analysis process is depicted in Figure 1.
2.2 OA GWAS data sources

In this study, the osteoarthritis-related dataset was sourced

from the IEU open GWAS database (https://gwas.mrcieu.ac.uk/

datasets/ebi-a-GCST007092), which includes 39,427 cases and

378,169 European ancestry controls. The dataset originates from a

large-scale genome-wide analysis conducted by Ioanna

Tachmazidou et al. using data from the UK Biobank. The study

aimed to identify new therapeutic targets for OA (11).

The gene expression data used in this study were obtained from

public databases (e.g., GTEx and Tissue Atlas), covering a wide

range of tissue samples, including articular cartilage, synovium, and

bone tissues. We selected the GWAS dataset related to OA to ensure

the analysis is relevant. This dataset included 39,427 cases and

378,169 controls of European ancestry.
2.3 Source of the eQTL files

The GTEx V8 dataset (The Genotype-Tissue (2013) Expression

(GTEx) project. Nat Genet 456:580-585) contains extensive gene

expression data from 49 different tissues.
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2.4 Cross-tissue TWAS analysis

We used cross-tissue UTMOST analysis (https://github.com/

Joker-Jerome/UTMOST?tab=readme-ov-file) to quantify the

overall gene-trait associations at the organism level. This

approach helps identify more genes with enriched trait
Frontiers in Immunology 03
heritability within a tissue, which, in turn, helps improve the

accuracy of the estimation (12, 13). Subsequently, we integrated

gene-trait associations using the generalized Berk-Jones test with

single-tissue statistics of covariance (14). A significance level of false

discovery rate (FDR) < 0.05 was considered to indicate statistical

significance after applying a FDR correction.
FIGURE 1

Analytical flowchart of this study.
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2.5 TWAS analysis of single organizations

We performed TWAS analysis using the FUSION tool (http://

gusevlab.org/projects/fusion/), which combines OA GWAS data

with eQTL data from 49 tissues of GTEx V8 for the estimation of

the association of each gene with the disease (15). Initially, the

linkage disequilibrium (LD) between the prediction model and the

SNPs at each locus of the GWAS was estimated by using 1,000

European genomic samples. Subsequently, FUSION was used to

integrate several prediction models (such as BLUP, BSLMM,

LASSO, Elastic Net, and Top 1) to assess the overall effect of

SNPs on the gene expression weights. The model with the highest

prediction performance was then utilized to determine the gene

expression weights (16). Subsequently, we combined the genetic

effect of OA (OA GWAS Z-score) with these gene weights for the

OA TWAS study. The subsequent studies included candidate genes

that met the following two criteria (1): FDR < 0.05 in the cross-

tissue TWAS analysis (2); FDR < 0.05 in at least one tissue in the

single-tissue TWAS analysis.
2.6 Conditional and joint analyses

FUSION allows the identification of multiple related features in

a locus and determination of conditionally independent ones

among those. Accordingly, we performed conditional and joint

(COJO) analysis (a postprocessing module of FUSION) to identify

independent genetic signatures (17). COJO analysis ensures a more

comprehensive understanding of the genetic architecture of trait

variation by accounting for LD among markers (18). After testing,

genes representing independent associations were referred to as

jointly significant genes, whereas those that no longer showed

significance were considered marginally significant genes.
2.7 Gene analysis

For the gene analysis, we used the default parameters of the

MAGMA software (version 1.08) to summarize the association

statistics at the SNP level into gene scores, thereby quantifying the

degree of association of each gene with the phenotype (19, 20).

Detailed information on the parameter settings and a

comprehensive methodology is available in the original MAGMA

document (21).
2.8 Samples and data collection

The expression matrix and metadata files for the single-cell

RNA sequencing dataset GSE169454 were obtained from the Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/).

This dataset includes 140,039 cells from 3 normal cartilage tissue

samples and 4 osteoarthritic cartilage tissue samples.
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2.9 Single-cell sequencing analysis

Data preprocessing and analysis were performed using the Seurat

R software package. After importing the GEO dataset, quality control

metrics were applied to remove low-quality cells based on the

mitochondrial gene content and the total gene count. We used the

harmony R package to normalize the data and correct for batch

effects. Dimensionality reduction was performed using principal

component analysis via the RunPCA function. A K Nearest

Neighbors graph was constructed using the FindNeighbors

function, and the cell clusters were identified using the FindClusters

function via Shared Neighborhood modular optimization.

Differentially expressed genes (DEGs) between the cells with high

and low latent transforming growth factor beta binding protein 1

(LTBP1) expression were identified using the FindMarkers function.

Gene Set Variation Analysis (GSVA) was performed using the

marker gene sets in MSigDB to assess activity of the pathway in

the LTBP1 high-expression group. The pathway enrichment scores

were calculated using the GSVA software package.

Cell differentiation trajectories were reconstructed using the

Monocle software package to determine the developmental

progression of OA cells. Intercellular communication was

assessed using the CellChat software package, which determines

cell-cell interactions based on known ligand-receptor pairs.
FIGURE 2

Venn diagram. MAGMA identified 361 significant genes associated
with osteoarthritis, FUSION identified 21, and UTMOST cross-tissue
analysis identified 22, of which 1 were common.
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Signaling pathways and communication networks were compared

between the LTBP1 high- and low-expression groups.
3 Results

3.1 Cross- and single-tissue TWAS analysis

We performed cross- and single-tissue TWAS association

analyses for OA using the UTMOST method, the FUSION tool,

and the MAGMA gene annotation and validation method. Through

UTMOST analysis, we identified 22 statistically significant

candidate genes (FDR < 0.05) (Supplementary Table 1). These

genes may play a crucial role in the pathogenesis of OA. Using

the same 49 tissues, the FUSION model selected 21 candidate genes

that were significant in at least one tissue (FDR < 0.05)

(Supplementary Table 2). The MAGMA analysis, based on the

multi-marker gene annotation model, identified 361 candidate

genes (FDR < 0.05) (Supplementary Table 3). On combining the

results from UTMOST and FUSION, we finally identified five

statistically significant TWAS genes. In addition, LTBP1 was

identified as significant in UTMOST, FUSION, and MAGMA

analyses during the MAGMA validation phase and was

particularly validated in the OA correlation analysis (Figure 2).

This finding suggests that LTBP1 is a key pathogenic gene that

warrants further functional validation and biological studies.
3.2 OA TWAS loci are driven by expression
signals

Considering the overlap between certain TWAS signals and

significant OA loci, we performed COJO analyses to ascertain
Frontiers in Immunology 05
whether the associated genes were influenced by multiple related

traits or represented independent conditions. Upon eliminating the

effects of other gene interactions, LTBP1 was found to be

responsible for all signals at its locus. Notably, SNP rs4630744,

which guided the SNPGWAS, exhibited a strong association with

OA (P = 4.62e-08); and this significance was upheld when

conditioned on LTBP1 (P = 3.40032e-05) (Figure 3).
3.3 Functional analysis of the key genes

We specifically focused on LTBP1, as it is closely related to the

OA pathogenesis. Functional enrichment analysis revealed that

LTBP1 plays a key role in the transforming growth factor-beta

(TGF-b) signaling pathway, which is associated with cell

proliferation, cartilage repair, and immune regulation (Figure 4).

This finding suggests that LTBP1 may influence OA progression by

regulating the extracellular matrix (ECM) formation and cell

growth pathways.
3.4 Molecular characterization of LTBP1 at
the single-cell sequencing level

We investigated LTBP1 characteristics in three normal and four

OA samples using single-cell sequencing analysis. Seven cell types

were identified in the normal (Figure 5A) and OA samples

(Figure 5B). Results for LTBP1 expression are illustrated in

Figure 5C. Regulatory cells (RegC) were associated with low

LTBP1 expression, whereas fibroblast cells (FC), hypertrophic

chondrocytes (HTC), and regenerative cells (RepC) exhibited high

LTBP1 expression (Figure 5D). These terms refer to specific groups

of cells in the cartilage environment, not subtypes of chondrocytes.
FIGURE 3

Regional association plot for chromosome 2. The upper portion of the plot displays all genes in the region, while the lower portion presents the
regional Manhattan plot of GWAS data before (gray) and after (blue) the predicted expression regulation.
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Each cell playing a unique role in the pathogenesis of OA. DEGs

among the seven cell types at varying LTBP1 expression levels are

depicted in Figure 5E. GSVA analysis revealed the notch signaling

pathway to be the most enriched signature in cells with high LTBP1

expression. The heatmap of the enriched pathways across different

cell subtypes is illustrated in Figure 5F.

Pseudotime trajectory analysis, performed using the Monocle

package, identified five cell states based on one branch point in OA

cells. The cells transitioned from state 3 to states 4 and 5 with the

progression of pseudotime (Figure 5G). Notably, the LTBP1

expression was highest in state 1 compared with that in the other

states. Homogeneous cells (HomC) were predominantly in states 1

and 5, whereas RepC were in multiple cell states, 2, 3, and 4

(Figure 5G). LTBP1 expression levels varied across states, with a

higher expression in states 1, 2, and 3 and a lower expression in

states 4 and 5 (Figure 5H). The developmental trajectory and dot

plot of the top 6 DEGs are shown in Supplementary Figures 1A, B,

the heatmap of the top 50 DEGs in Supplementary Figure 1C, the

developmental trajectories of different samples in Supplementary

Figure 1D, and the developmental trajectory of LTBP1 in

Supplementary Figure 1E.
3.5 Intercellular communication associated
with LTBP1

We comprehensively analyzed the intercellular communication

of OA cells with high and low LTBP1 expression. The seven cell
Frontiers in Immunology 06
types were categorized into the following four types based on

functional roles: receiver, sender, mediator, and influencer. In the

LTBP1 high-expression group, the communication patterns of the

receivers (incoming signals) were categorized into five different

types, whereas the communication patterns of the senders

(outgoing signals) were categorized into four different types

(Supplementary Figures 2A, B). The dot plots in Supplementary

Figures 2C, D illustrate the communication patterns of the seven

cell types, and the Sankey plots in Supplementary Figures 2E, F

show that HomC were associated with the receiver pathway and

RegC and FC with the sender pathway in pattern 2. In addition, all

receiver and sender pairings are summarized in the dot plots in

Supplementary Figure 2G.

In the LTBP1 low-expression group, the receiver and sender

communication patterns were categorized into three different types

(Supplementary Figures 3A, B). The communication patterns

among the seven cell types were also visualized (Supplementary

Figures 3C, D). Sankey diagrams indicated that HTC and FC were

associated with the receiver pathway, and the HTC with the sender

pathway in pattern 1 (Supplementary Figures 3E, F). The dot plots

in Supplementary Figure 3G show all receiver and sender pairings.

Further exploration of the association between LTBP1

expression and specific signaling pathways revealed that OA cells

with high LTBP1 expression were predominantly activated by the

angiopoietin-like protein (ANGPTL), cyclophilin A (CypA),

fibroblast growth factor (FGF), growth arrest-specific protein

(GAS), insulin-like growth factor binding protein (IGFBP),

leukemia inhibitory factor receptor (LIFR), macrophage migration
FIGURE 4

Pathway enrichment analysis of LTBP1 gene.
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FIGURE 5

Molecular features of LTBP1 at the single-cell level. (A) t-SNE for the dimension reduction and visualization of normal tissues, and 7 cell types. (B) t-SNE
for the dimension reduction and visualization of OA samples, and 7 cell types. (C) t-SNE for the dimension reduction and visualization of cells with high
or low LTBP1 expression. (D) Relative proportion of four cell types in cells with high or low LTBP1 expression. (E) The differentially expressed genes
among the identified 7 cell types at varying LTBP1 expression levels. (F) GSVA analysis of differentially expressed genes between high and low LTBP1
expression. (G) Pseudotime trajectory analysis of OA cells. (H) LTBP1 expression in five cell states based on pseudotime analysis.
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FIGURE 6

Cellular interaction of OA cells with high LTBP1 expression. The cellular interaction network identified cell clusters in various signaling pathways,
including (A) ANGPTL, (B) CypA, (C) FGF, (D) GAS, (E) IGFBP, (F) LIFR signaling pathways.
FIGURE 7

Cellular interaction of OA cells with high LTBP1 expression. The cellular interaction network identified cell clusters in various signaling pathways,
including (A) MIF, (B) PDGF, (C) PTN, (D) SPP1 signaling pathways.
Frontiers in Immunology frontiersin.org08
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inhibitory factor (MIF), platelet-derived growth factor (PDGF),

pleiotrophin (PTN), secreted phosphoprotein 1 (SPP1), TGF-b,
vascular endothelial growth factor (VEGF), and visceral fat-derived

adipokine (VISFATIN) signaling pathways (Figures 6-8). In

contrast, OA cells with low LTBP1 expression predominantly

activated the ANGPTL, CypA, FGF, IGFBP, MIF, SPP1, TGF-b,
and VISFATIN pathways (Supplementary Figure 4A-H).
4 Discussion

In this study, we systematically explored the genes associated

with OA susceptibility and the underlying molecular mechanisms

by combining cross-tissue transcriptome association analysis

(UTMOST), single-tissue analysis (FUSION), and gene

annotation and validation analysis (MAGMA). This strategy of

integrating multiple data analysis methods improved the accuracy

and robustness of the study and broadened the understanding of the

complex genetic background of this disease. Our cumulative

findings revealed, for the first time, the possibility of LTBP1

acting as a potential key gene for OA and verified its important

role in the pathogenesis of OA through the use of multiple

analytical tools. Specifically, LTBP1 displayed significance in

UTMOST, FUSION, and MAGMA analyses, and its potential

function in the TGF-b signaling pathway, in particular, suggests

that it may influence the progression of OA through mechanisms

that regulate ECM formation, inflammatory response, and cartilage

repair. In addition, single-cell sequencing data further revealed the

specific expression patterns of LTBP1 in different cell types and the

developmental trajectories, thereby providing new clues for

analyzing its specific biological functions in OA.
Frontiers in Immunology 09
Our study found that cells with high LTBP1 expression activate

multiple signaling pathways, many of which are closely associated

with OA and other fibrotic and inflammatory diseases. The

ANGPTL signaling pathway is involved in endothelial cell

function and has been shown to affect angiogenesis and fibrosis

in OA. In our study, high expression of LTBP1 is associated with

enhanced endothelial function and ECM remodeling, both of which

are key features of OA pathogenesis. CypA plays a crucial role in

inflammation and ECM remodeling. In OA, elevated CypA

expression is linked to cartilage degradation and synovial

inflammation. LTBP1 may influence inflammation and matrix

degradation by regulating the CypA signaling pathway. FGF are

involved in cartilage and bone repair, processes that are critical in

OA. High LTBP1 expression may enhance the FGF signaling

pathway, promoting chondrocyte differentiation and ECM

synthesis, thereby impacting OA progression. GAS signaling is

related to cellular stress responses and cell cycle regulation.

Through its regulation of the TGF-b signaling pathway, LTBP1

may help maintain the balance between cell proliferation and

apoptosis in OA tissues. IGFBPs regulate growth factors that are

essential for cartilage health and repair. In OA, LTBP1 may

influence the availability of these growth factors, particularly in

chondrocytes, by modulating IGFBP activity. LIFR signaling

pathway plays a role in inflammatory responses and chondrocyte

survival. LTBP1’s regulation of LIFR could contribute to the

recruitment of inflammatory cells, thereby exacerbating joint

damage in OA. MIF is involved in inflammation and cell

migration, which are crucial in OA pathogenesis. High LTBP1

expression may further drive the inflammatory environment in OA

by enhancing MIF activity. PDGF is involved in synovial cell

proliferation and ECM remodeling, both of which are key
FIGURE 8

Cellular interaction of OA cells with high LTBP1 expression. The cellular interaction network identified cell clusters in various signaling pathways,
including (A) TGFb, (B) VEGF, (C) VISFATIN signaling pathways.
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processes in OA progression. LTBP1’s regulation of PDGF signaling

may influence the dynamics of synovial tissue in OA. PTN is

involved in cell migration, growth, and angiogenesis. LTBP1 may

promote tissue repair and angiogenesis in OA through PTN

signaling. SPP1 is a glycoprotein involved in ECM remodeling

and inflammation. LTBP1 may regulate SPP1 expression,

contributing to ECM degradation and inflammation in OA. TGF-

b signaling plays a central role in OA by regulating ECM synthesis

and degradation. LTBP1’s direct interaction with TGF-b highlights

its critical role in maintaining cartilage integrity and regulating

repair mechanisms in OA. In OA, VEGF promotes cartilage

vascularization, and LTBP1’s role in VEGF signaling may affect

angiogenesis in OA joints. Additionally, LTBP1 may influence the

inflammatory microenvironment in OA by regulating

VISFATIN expression.

LTBP1 plays a critical role in the TGF-b signaling pathway,

serving as a key regulator of ECM remodeling and inflammatory

responses (22, 23). First, LTBP1 facilitates the activation and release

of TGF-b by binding to it, which initiates a series of cellular

signaling events essential for maintaining normal cell function

and tissue homeostasis. In terms of ECM remodeling, LTBP1’s

role primarily involves regulating the synthesis and degradation of

ECM components, thus influencing cell adhesion, migration, and

proliferation. Through these mechanisms, LTBP1 is not only crucial

in tissue repair and regeneration but also implicated in various

pathological conditions, particularly in chronic inflammation and

fibrosis. Additionally, LTBP1 may promote local inflammatory

responses by modulating the infiltration and activation of

inflammatory cells (24, 25). Therefore, a deeper exploration of

LTBP1’s functions within the TGF-b signaling pathway, along

with its broader biological roles in ECM remodeling and

inflammation, will enhance our understanding of its significance

in various physiological and pathological states (26–28). It has been

shown that LTBP1 has an important impact on the development of

a variety of diseases through the binding to and modulation of TGF-

b. For example, in fibrotic diseases, LTBP1 accelerates fibrosis by

promoting TGF-b activation (29). In cancer studies, LTBP1 is

highly expressed in esophageal squamous cell carcinoma (ESCC)

tissues, and its overexpression is positively correlated with lymph

node metastasis. Functional experiments have shown that the

knockdown of LTBP1 inhibited the invasive and migratory

abilities of ESCC cells and decreased the epithelial-mesenchymal

transition and cancer-associated fibroblast transformation,

suggesting an oncogenic role of LTBP1 in ESCC progression (30).

Some studies have also explored the potential bridging role of

LTBP1 between depression and glioblastoma and found that

LTBP1 affects glioblastoma and depression/anxiety disorders by

regulating the organization and function of the ECM. Also,

glioblastoma cells with high LTBP1 expression have a

significantly greater proliferation and migration capacity, making

it an important molecule that influences the prognosis of

glioblastoma patients (31). In OA, the TGF-b signaling pathway

has long been shown to play an important role in cartilage ECM

maintenance and cartilage repair (32–34). However, the specific
Frontiers in Immunology 10
mechanism regarding the role of LTBP1 in the pathogenesis of OA

remains unclear. In the present study, we combined the results of

the analysis at the trans-tissue and single-cell levels and clarified

that the high expression of LTBP1 is closely related to the activation

of the TGF-b signaling pathway. We further found that LTBP1 not

only displayed significant expression differences in different types of

chondrocytes but also played an important role in the cell

differentiation trajectory and signaling pathway regulation. These

results suggest that LTBP1 may influence the balance of cartilage

degradation and repair by regulating the activity of the TGF-b
signaling pathway, thereby driving OA pathogenesis. This finding

provides a theoretical basis for the further exploration of the

molecular function of LTBP1 and suggests its potential as a

diagnostic marker or therapeutic target. This study not only fills

the gap in the research related to LTBP1 and OA but also indicates

the direction for future functional validation experiments and

targeted therapy development.

In this study, through single-cell sequencing analysis, we

identified multiple cell types, including FC, HTC, RepC, and

RegC, closely related to OA pathogenesis. FC exhibited high

LTBP 1 expression in OA samples, suggesting their important

role in OA progression, especially through promoting the

formation and regeneration of the ECM. HTC are a type of

chondrocyte found in a degenerative and proliferative state within

the cartilage, commonly observed in the pathological process of OA.

The role of HTC in OA cartilage is closely related to cell

proliferation and differentiation, and they regulate cell function

and survival through the notch signaling pathway. RepC exhibit

regenerative potential and are primarily involved in the repair

process of cartilage in OA. RegC typically play a role in

maintaining immune homeostasis within tissues and regulate

immune responses to either promote or inhibit the progression of

the disease. Furthermore, through pseudotime trajectory analysis,

we identified five major”states”of OA cells, representing different

developmental and differentiation stages in the OA progression.

Specifically, state 1 predominantly consists of HomC with high

LTBP1 expression, which may be involved in the early stages of OA

and contribute to local repair. States 2, 3, and 4, which are enriched

in RepC, are associated with the repair processes and cellular

reprogramming in OA. State 5, consisting mainly of FC, may play

a crucial role in ECM remodeling during the chronic phase of OA.

The functional differences of cells across these states provide new

insights into the mechanisms underlying OA progression,

particularly in the dynamic balance between repair and

degeneration. The results in Figure 6 further highlight this cell-to-

cell communication pattern, especially in the LTBP1 high-

expression group, where FC and HTC act as”sender”and

“receiver”, respectively. This classification not only reveals the

diverse roles that different cell types play in OA development but

also suggests potential therapeutic targets, especially in the

regulation of cell signaling and intercellular communication

mechanisms, thereby providing new directions for future

therapeutic strategies for OA. Overall, these results suggest that

intercellular communication and LTBP1 signaling regulation play a
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central role in OA pathogenesis. Future studies should explore the

specific roles of these cell types and signaling pathways in OA and

their impact on the potential therapeutic strategies.

This s tudy demonstrated s ignificant nove l ty and

methodological advantages over previous OA-related gene studies.

Previous studies, mostly based on GWAS, have identified several

key OA-related genes, such as GDF5, RUNX2, and SMAD3 (35–

37). However, these studies have mainly focused on the association

signals at a single gene locus, making it difficult to directly reveal the

functional genes corresponding to these signals and their roles in

specific tissues. Unlike the traditional GWAS methods, this study

systematically identified and validated the potential role of LTBP1

as an OA candidate gene for the first time through cross-tissue

TWAS analysis and functional verification at the single-tissue level.

As a key regulator of the TGF-b signaling pathway, LTBP1 is

directly involved in the regulation of the ECM and the balance of

chondrocyte differentiation and repair (38). In this study, we found

that LTBP1 not only exhibited significant cross-tissue association in

multiple tissues but also further confirmed its differential expression

and functional specificity in different chondrocyte subtypes through

single-cell sequencing data for the first time. The application of

cross-tissue TWAS compensates for the limitations of traditional

GWAS studies and enables the integration of gene expression

signatures from different tissues to more comprehensively capture

the complex genetic mechanisms of diseases (12, 39). Single-tissue

analysis, on the other hand, further focuses on specific tissues (e.g.,

articular cartilage) to reveal the precise roles of genes under certain

pathological conditions. The combination of the two provides a new

perspective for exploring the multitissue and multiscale genetic

basis of complex diseases. In addition, by integrating LTBP1 with

GWAS results, this study not only verified its prominence as a

candidate gene but also improved the understanding of

biological signals.

While our study provides novel insights into the role of LTBP1

in OA through the integration of multiple data analysis methods, we

acknowledge the limitations inherent to the TWAS approach. First,

while we utilized multiple tissues and single-tissue TWAS analyses,

the reference eQTL data are limited to European populations, which

may affect the generalizability of the results to other ethnicities.

Moreover, gene expression data collected from public datasets such

as GTEx may not fully represent the specific pathological conditions

of OA, as these datasets are typically derived from healthy tissues.

Future studies should incorporate datasets from OA-specific tissues

to better reflect disease-specific gene expression patterns.

Additionally, the cross-tissue nature of TWAS has the potential to

overlook tissue-specific regulatory mechanisms that could be crucial

in disease pathogenesis. The current study’s lack of experimental

validation is a significant limitation that may affect the reliability of

the findings and the validity of the conclusions. Therefore, future

research must place more emphasis on functional validation to

provide a solid empirical foundation. Specifically, adopting a

CRISPR-mediated LTBP1 gene knockout model would be a

promising direction. This model enables precise editing of the

LTBP1 gene, allowing us to observe its role in relevant biological

processes. Not only will this approach validate theoretical
Frontiers in Immunology 11
hypotheses, but it will also deepen our understanding of the

functional significance of LTBP1 within specific biological

pathways. Through such experimental design, we aim to provide

more compelling evidence to clarify the biological importance of

LTBP1, thereby advancing further developments in this field.
5 Conclusion

In this study, the role of LTBP1 as a key candidate gene for OA

was identified and validated for the first time by cross-tissue and

single-tissue transcriptome association analyses and single-cell

sequencing. These results provide an important basis for the

potential of LTBP1 as a diagnostic marker and therapeutic target

and indicate the direction for future research and application.
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SUPPLEMENTARY FIGURE 1

Pseudotime trajectory analysis of OA cells. (A). Developmental trajectory of
the top 6 DEGs. (B). Dot plot of the top 6 DEGs. (C). Heatmap of the top 50

DEGs. (D) . Developmental trajectories of different samples. (E).
Developmental trajectory of LTBP1.

SUPPLEMENTARY FIGURE 2

The communication patterns between the seven cell types in the LTBP1 high-
expression OA cells. (A). The communication patterns of receivers. (B). The
communication patterns of senders. (C). The dot plot for the receivers

communication patterns of the seven cell types. (D). The dot plot for the
senders communication patterns of the seven cell types. (E). The Sankey plot

for the receivers communication patterns of the seven cell types. (F). The
Sankey plot for the senders communication patterns of the seven cell types.

(G). The dot plot for all receiver and sender pairings.

SUPPLEMENTARY FIGURE 3

The communication patterns between the seven cell types in the LTBP1 low-
expression OA cells. (A). The communication patterns of receivers. (B). The
communication patterns of senders. (C). The dot plot for the receivers
communication patterns of the seven cell types. (D). The dot plot for the

senders communication patterns of the seven cell types. (E). The Sankey plot
for the receivers communication patterns of the seven cell types. (F). The
Sankey plot for the senders communication patterns of the seven cell types.

(G). The dot plot for all receiver and sender pairings.

SUPPLEMENTARY FIGURE 4

Cellular interaction of OA cells with low LTBP1 expression. The cellular

interaction network identified cell clusters in various signaling pathways,

including (A). ANGPTL, (B). CypA, (C). FGF, (D). IGFBP, (E). MIF, (F). SPP1,
(G). TGF-b, and (H). VISFATIN pathways.
References
1. Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, et al.
Osteoarthritis. Lancet. (2015) 386:376–87. doi: 10.1016/S0140-6736(14)60802-3

2. Brooks PM. The burden of musculoskeletal disease—a global perspective. Clin
Rheumatol. (2006) 25:778–81. doi: 10.1007/s10067-006-0240-3

3. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB,
et al. Osteoarthritis. Nat Rev Dis Primers. (2016) 2:16072. doi: 10.1038/nrdp.2016.72

4. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al.
OARSI recommendations for the management of hip and knee osteoarthritis, Part II:
OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage. (2008)
16:137–62. doi: 10.1016/j.joca.2007.12.013

5. Kan H, Chan P, Chiu K, Yan C, Yeung S, Ng Y, et al. Non-surgical treatment of
knee osteoarthritis. Hong Kong Med J. (2019) 25:127–33. doi: 10.12809/hkmj187600

6. Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, et al. The global
burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease
2010 study. Ann Rheum Dis. (2014) 73:1323–30. doi: 10.1136/annrheumdis-2013-
204763

7. WangW, Ou Z, Peng J, Zhou Y, Wang N. A transcriptome-wide association study
provides new insights into the etiology of osteoarthritis. Ann Transl Med. (2022)
10:1116–6. doi: 10.21037/atm-22-4471

8. Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho De
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