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Multiple sclerosis: etiology in the
context of neurovascular unit
and immune system involvement
and advancements with in vitro
blood–brain barrier models
Aya A. El-Taibany*, Parichehr Heydarian, Daniel A. Porada,
Michael C. Seeds and Anthony Atala

Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine,
Winston-Salem, NC, United States
Multiple sclerosis affects a significant portion of the world’s adult population and

is the most common nontraumatic neuroimmunology disorder. Although the

specific etiology of multiple sclerosis remains unknown, it has been associated

with autoimmune components. While current treatment options relieve some

symptoms in MS patients, most are immunosuppressive and only delay the

progression of the disease without conferring definitive curative measures.

Hence, a thorough understanding of disease pathobiology, the contribution of

the neurovascular unit (NVU), and biological body-on-a-chip systems that

replicate the blood–brain barrier may open new horizons for the discovery of

potential therapeutics for MS.
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Introduction

Multiple sclerosis is a chronic inflammatory demyelinating disorder of the CNS that

affects adults aged 20–40 years and disproportionately affects the female population at a

ratio of nearly 3:1 (1). One study reported that approximately 1.7 million people were

diagnosed with MS globally in 2019, resulting in 22,438 deaths (2).

Many risk factors have been implicated both in the development of MS and in

modulating the clinical severity of the disease. Most MS patients show evidence of

previous Epstein–Barr virus (EBV) infection, which is reflected by increased IgG

antibody titers to EBV nuclear antigens (EBNAs) (3–5), and the same association has

been reported in meta-analysis studies (6–8). It has been proposed that EBV increases the

risk of multiple sclerosis via molecular mimicry (9) and that EBNA-1-specific T cells are

cross-reactive with myelin antigens (10). Another study linked an increased risk of MS to

increased BBB permeability due to acute primary EBV infection (11). Furthermore, one
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study reported that B cells infiltrating the CNS were infected with

EBV (12, 13), but the same finding was not confirmed in other

studies (14). One review concluded that CNS infection with EBV

has not been effectively proven (15).

Vitamin D has a well-established immunoregulatory function

involving major histocompatibility complex (MHC) genes involved

in antigen presentation that may impact MS (16–18). Additionally, the

presence of vascular comorbidities worsens the progression of MS (19).

Smoking has been identified as a risk factor for increased susceptibility

to MS due to the release of carbon monoxide and nitric oxide (20, 21).

Other environmental factors that affect MS and may lead to

exacerbations are high altitude, which has been implicated as a risk

factor for MS due to changes in oxygen levels, cerebral

vasoreactivity, and changes in the immune system (22). Latitude

can affect the disease course of MS leading to earlier onset and

higher prevalence. People living in high latitudes are more prone to

develop MS. The prevalence is estimated to be a 10-fold increase

between the equator and 60° north and south (23, 24).
Genetic susceptibility

Genetic susceptibility toMS has been described through family and

twin-concordance studies where researchers reported a 25% recurrence

risk in monozygotic twins and a 2–5% risk rate in dizygotic twins and

first-degree relatives (25). Additionally, genome-wide association

studies and the International MS Genetics Consortium have

discovered 230 genetic susceptibility loci for MS (26). Most of these

loci are linked to the immune system, and the strongest genetic

association is linked to major histocompatibility complex II (MHC

II) molecules, which are responsible for antigen presentation to T cells

and their activation. Approximately 32 associations belong to themajor

histocompatibility complex (MHC). One highly associated link was

HLA-DRB1*15, which confers a threefold increase in MS risk (27, 28).

A more recent GWAS study integrated with single cell accessibility

data revealed the association of signals with B cell and monocyte/

microglial cell-types (29).Transcriptional analysis studies are crucial to

understanding the relation between genetic variants and gene

expression. Transcriptional analysis helps decipher the pathogenic

mechanisms in MS and identify potential therapeutic targets (30).

Beyond GWAS and transcriptional analysis, genetic predispositions to

MS have been revealed by variety of methods and thoroughly reviewed

in other articles (31, 32).

Notably, some of these immune system gene variants have a

potential link to disrupted NVU components that increase the

complexity of disease etiology (33). This evidence implies that the

integrity and function of the BBB warrant further investigation for

its potential to ameliorate MS.
Clinical manifestations

MS manifests in four different clinical forms. Approximately 80%

of patients present with relapsing–remitting MS (RRMS), where they

experience flare-ups of the disease that coincide with the formation of
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new contrast-enhancing lesions in the brain and spinal cord followed

by periods of remission where symptoms improve or disappear. Optic

neuritis and brainstem and spinal cord syndromes are the most

common manifestations, with cortical presentations being less

common. After each relapse episode, there is a residual cumulative

neurological deficit. After many relapses, remission tends to be

incomplete. Approximately 50% of RRMS patients will develop

secondary progressive MS (SPMS), in which the disease process

becomes slowly progressive with or without periods of remission.

However, 10–15% of patients will develop primary progressive MS

(PPMS), in which the disease progressively worsens from the start with

no remission. PPMS affects the spinal cord more with fewer lesions in

the brain and commonly presents with progressive spastic paraparesis.

The evidence of active lesions is much less common in PPRM than in

SPMS. The progressive nature of the disease is reflected by the presence

of the brain and spinal cord atrophy. An exceedingly rare form is

progressive relapsing MS (PRMS), where the disease progresses from

the start, and the patient can additionally suffer from periods of

worsening symptoms (34–38).

These forms lack distinctive differential pathologies but

represent a spectrum of disease progression starting from active

infiltration and inflammation accompanied by demyelination to

progressive irreversible damage to neurons and a decrease in the

neurological reserve (35).
Neuropathology

The hallmarks of MS disease in the CNS are the formation of

focal lesions of demyelination, the death of oligodendrocytes,

astrogliosis, and the activation of microglia with infiltration of

immune cells (39). These lesions are mostly found in the

perivascular space and are localized mainly in the white matter,

although they have been found to a lesser extent in the gray matter,

deep brain stem nuclei and the spinal cord (40–42). These MS

lesions show variable degrees of remyelination (43, 44). The lesions

can be categorized into active lesions, chronic active lesions, and

chronic inactive lesions (45, 46). The inactivity of the lesion is

determined histologically by the absence of microglia and

macrophages and the absence of myelin degradation. Active

lesions are more highly expressed in acute relapsing patients,

whereas chronic lesions are mostly found in patients with the

progressive form of the disease (46). Focal white matter lesions

may be less abundant or equal in PPMS than in SPMS (46–49). Both

adaptive and innate immune system cells are found within lesions,

but their composition varies with disease stage and activity.

Lesions in primary progressive MS show less immune cell

infiltration than those in secondary progressive MS do (50),

whereas active lesions show the most infiltration. In chronic

progressive disease, the immune cell infiltrate is mostly composed

of MHC class I-restricted CD8+ and, to a lesser degree, MHC class

II-restricted CD4+ T cells (51–53), whereas the CD4+ T-cell

population comprises the bulk of cells found in the active lesions.

CD20+ B cells can also be detected, especially in active lesions, with

more plasma cells present in chronic progressive lesions (53, 66). The
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presence of oligoclonal immunoglobulin bands in the CSF of

approximately 85% of MS patients supports the role of B cells in the

pathogenesis of the disease (73).

Innate immune system cells, including activated microglia and

macrophages, have been observed at CNS lesion sites in both acute

and progressive MS but are present to a greater extent in the active

disease state. Another form of aggregated immune cells is found in

the Virchow Robin spaces of the periventricular veins and

meninges, which, in severe cases, form tertiary lymphoid follicles

(76, 77). These follicles have been reported to be associated with

SPMS and rapidly progressive PPMS but not slowly progressive

PPMS (78, 79).

Cortical demyelination and neurodegeneration have been

reported in MS patients, especially those with SPMS and PPMS

(80). These lesions have been observed in autopsy samples from

early disease stages and increase in frequency and size in progressive

stages (40, 81). These cortical lesions are associated with diffuse

periventricular white matter abnormalities, which have not yet been

well characterized but are likely associated with diffuse

inflammation and secondary degeneration due to neuronal loss in

the cortex (80). These lesions can also be detected in deep gray

matter nuclei and spinal cord gray matter (82–84). Additionally,

macroscopically normal white matter can show evidence of

demyelination (80, 85), and MS severity is related to the severity

of cortical demyelination (86). Cortical demyelination can be

associated with meningeal inflammation, but meningeal

inflammation by itself does not appear to be a prerequisite for

cortical demyelination to occur (78, 79).

The diffusion of soluble neurotoxic factors may activate

microglia and cause demyelination in the cortex or direct damage

to myelin (40, 87). Some of these factors, including ceramide and

semaphoring, have been previously characterized in MS patients

(88, 89). In demyelinated cortical lesions, microglia are activated,

which can be induced by soluble factors from B cells found in the

meningeal cell infiltrate (68, 69).

The pathological hallmark of MS white matter lesions can be

readily detected via conventional magnetic resonance imaging

(MRI) (90, 91). However, the severity of these lesions has not

been linked to neurological deficits or disability in MS patients. This

is attributed in part to the presence of macroscopically undetected

chronic injury in normal white matter, which can be detected by the

magnetic resonance (MR) magnetization transfer ratio and

diffusion tensor imaging (92–94). The definitive pathology of

these lesion areas has not yet been fully elucidated but has been

shown to include axonal injury, secondary demyelination, increased

blood–brain barrier permeability, and microglial activation (95, 96).

These normal-appearing white matter (NAWM) abnormalities

have been linked to the presence of active focal lesions and

demyelination that results from axonal loss, known as secondary

Wallerian degeneration (97, 98).

NAWM changes have also been demonstrated to be associated

with meningeal inflammation and are independent of focal lesion

presence (99). Furthermore, metabolic disturbances in myelin

phospholipids have been reported in areas of the NAWM (100, 101).

These observations raise the possibility that MS could be a primary
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neurodegenerative disease that elicits immunological interactions in

the CNS. It has been hypothesized that focal lesions inMS patients are

only the “tip of the iceberg” of a more diffuse injury occurring in the

CNS (102). Thus, elucidating the pathology of NAWM lesions and

their associated BBB damage would provide insights into the

pathogenesis of MS and aid in the development of therapeutics that

target the disease process, as it might represent events prior to lesion

formation (103, 104).
Blood–brain barrier pathology

The evolution of MS lesions in the CNS includes myelin

autoreactive encephalitogenic CD4+ T cells breaching the blood–

brain barrier (BBB) and gaining access to the CNS parenchyma to

initiate the lesion.

The function of the BBB is to maintain CNS homeostasis by

regulating the passage of molecules into the CNS and providing

efflux of metabolic waste and harmful materials from the brain. The

BBB is formed mainly by brain microvascular endothelial cells

(BMECs) surrounded by pericytes and astrocyte-end feet and

regulated by CNS parenchymal cells such as microglia, neurons,

and oligodendrocytes in a structure known as the neurovascular

unit (NVU) (105). BMECs acquire their barrier properties through

the formation of interendothelial sealing tight junctions (TJs) and

adherent junctions (AJs) formed by specialized junctional

complexes and accessory proteins (106–109).

BMECs also possess a highly specialized membrane transport

system (110), decreased pinocytic activity, and lack the

transendothelial fenestrations observed in other capillary systems

(105). As a result, BBB transendothelial electric resistance (TEER)

ranges from 1,000 to 1,500 Ω/cm2 (111). Two major tight junction

proteins expressed by BMECs are occludins (112) and claudins

(113). The integrity of the BBB was shown to be maintained after

occludin expression was knocked down, but the integrity of the BBB

was lost after claudin expression was knocked down (114–116).

Accordingly, there is increasing scientific awareness of the role of

claudin-5 in the integrity of the BBB and its involvement in many

neurological disorders (117). Consequently, this protein has been

investigated for its therapeutic potential in many of these disorders,

and its manipulation has been investigated as a vehicle for drug

delivery into the CNS (118, 119). In addition to the main junctional

complex proteins, accessory junctional proteins, such as the

cytoplasmic zonula occludins proteins ZO-1, ZO-2, and ZO-3

(120), are membrane-associated guanylate kinases that interact

with other intracellular molecules, including cingulin (121), the

7H6 antigen (122), and other cytoskeletal proteins. Additional

proteins coexist with junctional proteins, including junctional

adhesion molecules (JAMS) (123, 124) and platelet/endothelial

cell adhesion molecule-1 (PECAM-1) or CD31 (125). PECAM-1

is involved in transendothelial transmigration, and PECAM-1-

deficient mice exhibit increased BBB permeability (126).

Histopathological studies revealed abnormalities in the BBB in

active as well as inactive lesions in multiple sclerosis (127, 128).

More recently, BBB abnormalities have been reported in NAWM
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(102, 129). This finding suggests that such barrier disruption occurs

even before obvious lesion formation and immune cell infiltration

are evident, which makes the mechanisms of BBB disruption in

diseases such as MS particularly important to study, as they might

provide novel insights into the process of disease development.

Whether BBB dysfunction is a consequence or cause of increased

immune cell infiltration in the CNS is still debated, with evidence

supporting both hypotheses (130–132).

The transmigration of immune cells through the BBB occurs

through a highly regulated series of sequential events. Initially,

activated leukocytes are captured by endothelial cells via

interactions between selectins and their receptors on the surface

of the inflamed brain endothelium. Binding to selectins leads to

slowing of immune cells (crawling) followed by the activation of

leukocytes by chemokines through G-protein signaling and induces

their firm adhesion to BMECs through the binding of endothelial

cell adhesion molecules to their receptors on the surface of activated

T cells (133). One of the most prominent inflammatory changes in

the BMECs in MS is the upregulation of the selectin family of

endothelial adhesion molecules; cell adhesion molecules such as

ICAM-1, VCAM-1, MCAM, and ALCAM; chemokines on the

luminal surface of brain endothelial cells; and the upregulation of

class II MHC molecules (134), which contribute to the migration of

immune cells into the brain.

Selectins are transmembrane glycoproteins. E-selectin and P-

selectin are expressed on the surface of activated brain endothelial

cells and are responsible for the initial adhesion of leukocytes to

endothelial cells. L-selectin is expressed on leukocytes and is

involved in directing leukocytes to inflammatory sites and

binding leukocytes to other immune cells to recruit them. P-

selectin glycoprotein ligand (PSGL-1) is the receptor for these

three selectins and can also bind to CD44 (133, 135–137).

The intercellular adhesion molecule 1 (ICAM-1) and vascular

cell adhesion molecule-1 (VCAM-1) bind to their respective

ligands, aLb2 [lymphocyte function-associated antigen 1 (LFA-

1)], and a4b1 [very late antigen 4 (VLA-4)] integrins, which are

upregulated in encephalitogenic CD4+ T cells. It has been proposed

that a4b1-integrin binding to VCAM-1 helps in the transmigration

process in spinal cord microvessels, whereas LFA-1 binding to

ICAM-1/2 regulates Th17 adhesion to the endothelial barrier in the

brain ( (138, 139). Melanoma cell adhesion molecule (MCAM)

(140, 141) is another adhesion molecule involved in T-cell

transmigration, and its expression is a marker for GM-CSF, IL-

22, and IL-17A/IFN-g, which coproduce Th17 cells. Recently, avb3
integrin was shown to control Th17 transmigration, and depletion

of the b3 subunit improved symptoms in an EAE model (142). In

addition to this cellular upregulation, soluble forms of these

adhesion molecules can be detected in patient sera and CSF, and

their levels are associated with the severity of disease activity

(143–145).

The factors that influence the pathway used by different

immune cell subsets are still under investigation, although it has

been demonstrated that the remodeling of certain junctional

proteins influences transmigration routes, favoring either

paracellular diapedesis (146, 147) or the transcellular route (148,
Frontiers in Immunology 04
149), and that experimental interference via one route increases the

utilization of the other commensurately. These findings indicate

that BBB proteins are very important in determining the route

of transmigration.

The activation of brain microvascular endothelial cells and

disruption of the BBB in MS result either from the direct effects

of cytokines secreted by activated myelin-specific T cells or

indirectly from the effects of these cytokines on neurovascular

unit (NVC) astrocytes and pericytes (129). Leaks in the BBB lead

to increased infiltration of immune cells and their soluble

immunomodulators; for instance, fibrinogen leakage across the

BBB can be detected early in the disease process and signifies

disruption of the BBB (150, 151).

Exposure to cytokines leads to many alterations in junctional

complexes. Alterations in BBB TJs and AJs in MS have previously

been described in many studies. These changes could result from

various mechanisms, such as downregulation of expression,

destruction of junctional proteins, their internalization, or

changes in their binding affinities. As an example of these

alterations, occludin expression decreases with exposure to IFN-d
alone or paired with TNF-a (152, 153), but TNF-a alone does not

decrease occludin expression (154). TNF-a has also been shown to

cause VE-cadherin phosphorylation (155) and induce the

internalization of junctional proteins by upregulating NF-Kb,
which in turn induces the transcription of myosin light chain

kinase (MLCK), which is responsible for this delocalization (156).

IFN-d can also affect ZO-1 through downregulating its expression

and changing its subcellular localization (157, 158), as well as

inducing endocytosis of occludin and claudin-1 (159). The

downregulation of occludin and ZO-1 expression has also been

reported in BMECs treated with IL-17 and IL-22 (160, 161). ZO-1,

occludin, claudin-5, and junctional adhesion molecules can be

cleaved by increased expression of MMP-9 (162, 163) induced by

IL-1b (164). Matrix metalloproteinase-9 mediates hypoxia-induced

vascular leakage in the brain via tight junction rearrangement (165).

Other factors in addition to cytokines can lead to BBB disruption,

such as oxidants, which cause ZO-1 and occludin breakdown, and

VEGF, which induces the phosphorylation of tight junctions (166).

These effects were demonstrated by studies in which MS patient

sera were used to treat brain endothelial cells in vitro to identify

soluble mediators that disrupt BBB integrity and learn how to

counteract their effects (167, 168).

This BBB pathology extends to astrocytes, which exhibit

astrogliosis, an inability to upregulate AQP4, and astrocytic end-

feet retraction from the glia limitans (169, 170). The basement

membrane (BM) also shows irregularity and deposition of its

degraded components, mostly because of the secretion of MMPs

and other enzymes by immune cells that cleave the BM, especially

those associated with active lesions (171, 172). Some studies have

concluded that the volume of Virchow Robin spaces (VRSs) is

greater in MS patients than in controls, as shown via MRI; this

increase in VRSs is associated with white matter and gray matter

lesions, and VRSs accumulate immune cells that participate in the

neurodegenerative process in MS, as previously mentioned

(173, 174).
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All of the described changes lead to increased BBB permeability,

reflected by leakage of gadolinium contrast material during MRI

examination, and consequently lead to increased solute

permeability and infiltration of immune cells into the CNS (175).

Chemokines play an effector role in guiding immune cell

adherence and infiltration across the BBB. They are secreted by

many cells, such as microglia, astrocytes, and immune cells.

Cytokines might also be potent contributors to chemokine

production. Many chemokines are upregulated on the surface of

brain endothelial cells during MS, and research is ongoing to

identify key chemokines in MS that could be potential targets for

treatment. For example, CCL19, CCL21 and their receptor CCR7

are upregulated Th1 in inflamed BMECs. The knockdown or

inhibition of these cytokines leads to decreased myelin-specific T-

cell adhesion to BMECs (176). Similarly, CXCL13 is increased in the

CSF of MS patients compared with normal controls, and its level is

correlated with increased immune cell infiltration. The interaction

of chemokines with their receptors changes the low-affinity selectin-

mediated interaction of leukocytes with the brain endothelium to a

more potent integrin-mediated interaction (177). Chemokines bind

to transmembrane G protein-coupled receptors on leukocyte

surfaces and mediate the upregulation of integrins through G

protein signaling (178). Presenting further detail about these

chemokines is beyond the scope of this article but can be found

in detail in other reviews (179).
Immunopathogenesis

T cells

CD4+ T cells are the main initiators of MS lesions in the CNS on

the basis of histopathological examination, disease modeling from

in vivo experimental autoimmune encephalomyelitis (EAE) animal

models, and the association of MS with variants in MHC class II

genes and regulatory molecules involved in their interactions (54).

CD4+ cells are either Th1 or Th17 CD4+ T- cells. Th1 cells secrete

TNF-a and IFN-g, and their differentiation is dependent on T-cell

transcription factor (TBET) (58–61). Th17 T cells mainly secrete IL-

17, and their differentiation is driven by IL-23 (62–65). Both Th1

and Th17 cytokines are highly elevated in the patient’s plasma

before active disease and decrease with remission (180). It has been

proposed that activated myelin-specific Th1 cells lead to spinal cord

inflammation, whereas Th17 cells induce inflammation in the

brainstem, cerebellum, and cerebrum (181, 182).

CD4+ T cells and CD8+ T cells in MS lesions show evidence of

clonal expansion, targeting myelin autoantigens. This clonal expansion

implies that they are activated by specific antigens, although despite

decades of research, these antigens remain unidentified (55, 56). Some

studies have suggested that these antigen-specific T cells could serve as

brain-resident T cells against neurotropic viruses that are activated by

specific cytokines released from sources or events that are not specific

to their antigens (57).

The activation of myelin-specific T cells in the peripheral

circulation by molecular mimicry, where T cells are activated by
Frontiers in Immunology 05
viral or bacterial antigens that share homologous sequences with

CNS antigens, has been a long-standing theory for peripheral

activation of the immune system in MS (183, 184). Recent

evidence suggests that the gut and lymphoid tissue contribute to

the activation of these cells (185, 186). Both activated myelin

autoreactive T cells and those reactive to antigens other than

neural antigens can cross the BBB. However, only those specific

to myelin are able to induce lesions in the CNS because of their

reactivation by antigen-presenting cells inside the CNS (187, 188).

There is no definite evidence for any difference in the frequency of

myelin-specific T cells between MS patients and normal controls

(189–192). Some studies have demonstrated functional differences

in the increased secretion of IFN-a, IL-17, and GM-CSF by myelin-

reactive T cells between MS patients and healthy controls (193).

Additional functional differences include the suppressive ability of

regulatory T cells in RRMS patients compared with controls and the

resistance of effector T cells in MS patients to regulatory T-cell

suppression (194, 195). It has also been suggested that peripheral

activation of myelin-reactive T cells yields an autoproliferative

ability that bypasses the need to be activated and maintains the

capacity to produce IFN-a (196, 197). Another study hypothesized

that myelin-specific T cells have what is called ‘T-cell degeneracy’,

which means that they can be activated by many ligands even if they

do not share homology with the original stimulus (198).

After crossing the BBB, inflammatory T cells cross the basement

membrane (BM) via the binding of a6b1 integrin on the leukocyte

surface to laminin a4 in the BM (199). Finally, immune cells reach

the perivascular space, where they recognize their specific

autoantigens via antigen-presenting cells and become reactivated

to augment the immune response (200, 201). Ultimately, the entry

of these activated immune cells into the CNS parenchyma requires

passing through the glia limitans, which are enriched with laminin

a1 and a2 (183, 202–204). Passage is achieved by the effect of

secreted MMPs, whose level is correlated with disease activity.

MMPs also target b-dystroglycan, a receptor that anchors

astrocytic end feet to the parenchymal basement membrane, the

disruption of which activates astrocytes and increases their

chemokine secretion (183).
Other immune cells

B cells are also indirectly involved in the pathogenesis of MS

lesions through their antigen-presentation capabilities (67) and are

directly involved through their suggested role in producing factors

that trigger demyelination and neurodegeneration (68, 69). The role

of CD20+ B cells in MS has been highlighted by the success of

rituximab (a therapeutic antibody against CD20), which decreases

patient disease progression (70–72). The extent of increase in B cells

correlates with the clinical severity of MS in patients (86, 205).

Myelin-specific antibodies may contribute to lesional

demyelination, likely by binding to target antigens and activating

the complement system. Additionally, increased oligoclonal bands

in patients with clinically isolated syndrome (CIS) are highly

predictive of an increased risk of conversion to MS (206).
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Innate immune cells as macrophages and microglia interact

with adaptive immune T and B cells and can induce direct damage

to myelin and neuronal axons. This damaging effect has been

proposed to be mediated by the production of reactive oxygen

and nitrogen species (74, 75). The microglia and macrophages

phagocytose myelin debris from the lesion, and the presence of

degradation products correlates with the activity of the lesion in

terms of demyelination and neurodegeneration.
The inside-outside theory

Failure to cure or arrest disease progression in RRMS patients

treated with current immunosuppressive and immunomodulatory

drugs and failure to identify specific autoantigens against which

autoreactive T cells are especially prevalent in MS despite decades of

research poses many questions regarding the nature of MS disease

(57, 207). An existing hypothesis is that MS originates from a

disease process inside the CNS itself that leads to the activation of

resident immune cells, the microglia, which in turn could lead to

BBB disruption and peripheral immune system activation. In this

context, immune cell infiltration is recognized as a secondary

response to a primary event inside the brain rather than immune

system activation outside the CNS. The presence of some areas in

MS brains that show loss of oligodendrocytes with minimal

immune cell infiltration is suggested to represent an early

prephagocytic phase. This could favor the interpretation of the

disease having an intrinsic origin within the CNS (103, 208, 209).

The inside-out theory of the CNS implies the presence of a

draining lymphatic system with reciprocal access to the brain,

which contradicts the old concept that the CNS is an immune-

privileged organ (11, 210–213). Connection of the CNS with the

cervical lymph nodes has been demonstrated, through which CNS

antigens can be processed and presented to peripheral immune

system cells through CNS antigen-presenting cells. Moreover, the

CSF represents a draining system for CNS antigens. Brain

microvascular endothelial cells have been implicated in antigen

presentation to immune cells (214). One study demonstrated the

ability of BMECs to support and promote the proliferation of CD8+

T cells through T-cell receptor and co-stimulation, and another

suggested that myelin/MHC II complexes on the inflamed brain

endothelium are recognized by myelin-reactive T cells and aid their

transmigration (215, 216). Despite this, the presence of primary

oligodendrocyte pathology is not supported by genome-wide

association studies that found no MS variants related to neuro-

glial units, but loci of genetic susceptibility were detected in the

MHC locus and immune cell loci. Furthermore, secondary immune

cell infiltration of the CNS is not achieved in genetic animal models

of primary oligodendrocyte death, which results in the activation of

microglia, suggesting that a primary defect in oligodendrocytes

cannot induce an autoimmune reaction (217). Furthermore,

immune cell infiltration is not a common feature of primary

neurodegenerative disorders (218). Transient CNS infections may

damage oligodendrocytes and cause the release of myelin epitopes

with subsequent activation of myelin-reactive T cells, but in the
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Theiler’s murine encephalitis model of MS (Theiler’s Murine

Encephalitis Virus-Induced Demyelinating Disease (TMEV-

IDD)), immune-induced damage depends on the persistence of

the virus and its clearance leads to disease subsidence (219).

The search for the true etiology of MS pathological events seeks

to fill gaps in the existing body of knowledge, including the failure of

current pharmacotherapeutics to halt the progress of MS disease in

RRMS (130), the presence of diffusely abnormal white matter

changes, axon death and demyelination with minimal immune

cell infiltration, and the presence of the same pathology in pre-

phagocytic lesions, together with the accumulating evidence of BBB

disruption before lesion formation and in areas of NAWM (220,

221). In studies examining changes in the level of myelin in MS,

myelin abnormalities were detected in the inner myelin sheath,

which does not support the idea that myelin injury is immune- or

antibody-mediated. Genome-wide association studies revealed a

strong link between the MHC cluster and immune cell

polymorphisms in patients with the RRMS variant of MS owing

to its greater prevalence. For these patients, the immune system

reaction to a primary event in the brain could be overwhelming and

primarily reflect an increased immunogenetic predisposition to the

unknown CNS disease process releasing autoantigens. This, in turn,

could explain the wide spectrum of disease variants, which may

reflect different degrees of the immune system response to the

primary degenerative event in the brain.

Microglia are the resident CNS immune cells and account for

12–16% of the total human parenchymal CNS cells (222). They

originate from erythro-myeloid progenitors of yolk sac

(mesodermal) origin; they are self-renewing and are not replaced

by blood-derived monocytes (223–225). Microglia proliferate and

increase in number when activated, and this activation has been

discovered in many neurodegenerative disorders, including MS,

Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral

sclerosis (226). In contrast, the choroid plexus and meningeal and

perivascular macrophages are collectively known as border-

associated macrophages (BAMs). These cells are nonparenchymal

and reside at the interface of the CNS and blood–brain barrier

(227, 228).

Under normal physiological conditions, microglia have

important functions in CNS development (229), including

synaptic pruning, remodeling, myelination (200, 230, 231) and

the modulation of synaptic plasticity (200). In addition, microglia

contribute to surveillance of the CNS microenvironment via the

expression of pattern recognition receptors, such as Toll-like

receptors (TLRs), the lipid and phosphatidylserine receptor

TREM2, complement receptor 3, and the C-type lectin receptor

DC-SIGN87. In response to any change in the CNS

microenvironment, microglia can proliferate, change their

morphology, present antigens, phagocytize macromolecular

agonists, and secrete cytokines and chemokines (232). Microglia

are traditionally classified as M1 proinflammatory microglia or M2

anti-inflammatory microglia. Recently, there has been increasing

evidence for different subtypes of microglia with different regulatory

functions and characteristics that form a vast phenotypic spectrum

(233, 234).
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In MS, activated microglia can be found in active lesions as well

as in normal white matter (209, 235, 236). Microglia are also found

in areas without inflammatory infiltration, and these areas are

preactive lesions (235). Furthermore, microglial activation was

shown to precede immune cell infiltration from the peripheral

circulation in MS mouse models of Theiler ’s murine

encephalomyelitis, virus-induced demyelinating disease, and

experimental autoimmune encephalomyelitis (EAE). In EAE

mice, microglia first take up myelin antigens and present them to

T cells through MHC II and costimulatory molecules (237), and the

infiltration of inflammatory cells coincides with microglial

activation (238).

During MS, activated microglia secrete nitric oxide (NO) and

reactive oxygen species (ROS) that damage myelin and

oligodendrocyte progenitor cells (239). Activated microglia also

produce proinflammatory cytokines (TNF-a, IFN-d, and IL-1b)
and chemokines (MCP-1), which damage the BBB and

downregulate VE-cadherin, occludin, and claudin-5 proteins in

the BBB (240). Microglia secrete MMPs that contribute to the

breakdown of the blood–brain-barrier basement membrane in

multiple sclerosis (241, 242). One of the more interesting

pathways through which microglia are activated during brain

injury is the production of danger-associated molecular patterns

(DAMPs), which activate microglia and initiate neuroinflammation

(243–245). In MS brains and EAE brains, activated microglia and T

cells are usually closely associated, especially at sites of

demyelination (74, 81, 246), and their presence is correlated with

axonal damage (34, 247). Microglia aid in recruiting T cells into

brain tissue (248, 249) and act as antigen-presenting cells by

upregulating the expression of class I and II MHC molecules and

coexpressing costimulatory molecules (250).

Conversely, microglia can also act protectively in MS and help

remyelinate CNS cells through the secretion of neuroprotective

molecules and anti-inflammatory cytokines (251), assist in

oligodendrocyte proliferation, and phagocytize myelin debris

(252). For example, previous studies in CX3CR1 knockout mice

revealed reduced myelin debris clearance and remyelination due to

the absence of phagocytic function of microglia (253). Microglia can

increase the production of neuroprotective substances such as

brain-derived neurotrophic factor and neurotrophin when

exposed to MBP-primed Th2 cells (254).

The potential of some drugs to modulate the activation of

microglia and hence their damaging effects in experimental

models of MS or on the BBB suggests that microglia are a central

contributor to inflammation in MS brains. This makes microglia an

attractive therapeutic target for MS; this opportunity may be

especially applicable in the progressive form of the disease for

which no therapeutics are currently available. Glatiramer acetate, a

drug approved for treating relapsing MS, has a demonstrated

neuroprotective effect, which is thought to be mediated by

activated M2 microglia (255). Other drugs that have been shown

to be effective at modulating the severity of EAE in an animal model

of MS through effects on microglia or macrophages include

forskolin (233), bryostatin-1 (256), and ethyl pyruvate (257). The

inhibition of microglia by minocycline reduces their deleterious
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effects on the BBB, supports the differentiation of oligodendrocyte

precursors into immature oligodendrocytes and facilitates

remyelination (258–261). Additionally, dipyridamole reduces

microglial activation and cytokine secretion (262). Microglia can

also be skewed toward an M2 anti-inflammatory phenotype by

targeting AMP-activated protein kinase (AMPK) (263). In vitro

models incorporating microglia have become advantageous for

testing therapeutic targets that engage with microglia to develop

MS therapeutics.
Treatments

An evolving demand to investigate other potential therapeutics

for MS that target different arms of the disease process, such as BBB

dysfunction and microglial activation as more central processes

orchestrating inflammation, is imposed by the failure of current

therapeutics to treat the disease or prevent progression of the

associated disability, as well as the lack of available drugs to treat

the chronic progressive form of MS.

In vivo and in vitro modeling systems are important in the

processes of drug discovery and translation of research outcomes to

the clinic. It is therefore important to look critically into the model

systems available and their ability to mimic complex inflammatory

processes and the diversity of cells and pathways involved. It is also

important to consider how well models account for human genetic

makeup differences.

New treatments for multiple sclerosis have been investigated

intensely for more than 30 years (Table 1). The first drug to be

approved for the treatment of RRMS was injectable INF-b, an anti-

inflammatory cytokine, in 1993 (264–266), followed by the approval

of another injectable anti-inflammatory drug, glatiramer acetate.

Clinical trials have demonstrated the success of these compounds in

altering MS disease progression and severity in patients as disease-

modifying therapies (DMTs). This was followed by the FDA

approval of the first humanized monoclonal antibody,

natalizumab, which targets the a-4 integrin component of very

late antigen-4 (VLA-4) on the surface of leukocytes and thus

prevents their adhesion to VCAM-1 on the surface of endothelial

cells (267). The first oral drug to be approved was fingolimod, an

analog of sphingosine 1-phosphate (S1P) that acts as an S1P

antagonist to block the flow of T cells from secondary lymph

organs into the peripheral circulation (268, 269). For pediatric

MS, fingolimod is the only approved oral DMT drug (270). Each

of these drugs has been approved for RRMS but not for progressive

MS. Siponimod, a selective S1P1 and S1P5 modulator, is approved

for treating patients with relapsing forms of MS, including RRMS

and active SPMS (271). Ozanimod and ponesimod are other S1P

modulators that are approved for RRMS (270, 272).

Other drugs have been used for the treatment of RRMS, such as the

oral drug teriflunomide, which inhibits the proliferation of B and T-cell

blasts (273–275), and oral dimethyl fumarate, which exerts its

immunomodulatory function through shifting T-helper (Th) cells

from proinflammatory Th1 to anti-inflammatory Th2 cells (276).

Additionally, oral Cladribine is an active purine nucleoside analog
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prodrug that accumulates in lymphocytes due to the low activity of the

5’-nucleotidase required for their inactivation, causing the death of

these cells (277, 278). Additionally, alemtuzumab is another humanized

monoclonal antibody therapeutic, which is anti-CD52, a receptor

expressed on lymphocytes (279–281).

The efficacy of these drugs was evaluated in clinical trials by

assessing the reduction in disability via an expanded disability status

scale (EDSS) and measuring the reduction in the number of relapses

via the annualized relapse rate (aRR). These parameters were

assessed in combination with other parameters, including the

appearance of lesions on MRI and brain atrophy. The EDSS
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reflects the relative disability of MS patients on the basis of

neurological examination of symptoms and signs of eight

functional systems: vision; brain stem function; pyramidal and

extrapyramidal systems; and cerebellar, cerebral, sensory, bowel,

and bladder functions (282). All drugs approved for MS achieved a

significant reduction in the aRR and in disability worsening when

the EDSS score was equal to or greater than one third, with

statistical clinical significance. Natalizumab stands out as yielding

the greatest reduction in the aRR, reaching almost 70% (267).

Interestingly, despite the number of drugs approved for RRMS,

there are currently very few drugs for primary progressive MS.
TABLE 1 Current therapeutics available for multiple sclerosis.

Drug Mechanism of action Adverse effect Approved for Reference

Interferon ß Immunomodulation Common: injection site reaction, headache, flu-like symptoms
serious: depression, hepatotoxicity, thrombocytopenia,
leukopenia, thrombotic microangiopathy, seizure

CIS, RRMS,
active SPMS

(428)

Glatiramer
acetate

Immunomodulation Common: immediate postinjection reaction presenting with
anxiety, chest tightness

CIS, RRMS,
active SPMS

(429)

Teriflunomide Inhibits dihydroorotate dehydrogenase
leading to reduce de novo pyrimidine
synthesis preventing
lymphocyte proliferation

Common: Headache, GI upset, hair thinning
Serious: hepatotoxicity, peripheral neuropathy, elevated
blood pressure

CIS, RRMS,
active SPMS

(274)

fumarates Activates nuclear factor like 2 Common: GI upset, flushing
Serious: hepatotoxicity, lymphopenia, infections

CIS, RRMS,
active SPMS

(430)
(431)

fingolimod Sphingosine-1-phosphate receptor
modulator/reduction in lymphocyte
trafficking to brain

Common: headache, infection
Serious: bradycardia and cardiac arrhythmia, hepatotoxicity,
seizure, hypertension, macular edema, skin cancer

CIS, RRMS, active
SPMS,
pediatric MS

(269)

Siponimod Sphingosine-1-phosphate receptor
modulator/reduction in lymphocyte
trafficking to brain

Common: headache, infection,
Serious: hepatotoxicity in CYP2C9*3/*3 genotype, bradycardia
and brady arrhythmia, macular edema, Hypertension, VZV
reactivation, disease activity rebound after stopping

CIS, RRMS,
active SPMS

(300)

ozanimod Sphingosine-1-phosphate receptor
modulator/reduction in lymphocyte
trafficking to brain

Common: headache, upper respiratory infection
Serious: sleep apnea

CIS, RRMS,
active SPMS

(432)
(428)

ponesimod Sphingosine-1-phosphate receptor
modulator/reduction in lymphocyte
trafficking to brain

Common: headache, infection,
Serious: bradycardia and bradyarrhythmia, seizure, macular
edema, hypertension, VZV reactivation, disease activity
rebound after stopping

CIS, RRMS,
active SPMS

(272)

Cladribine Impairs DNA synthesis/cytotoxic on B &
T cells

Common: headache, upper respiratory infection, fatigue
Serious: fetal risk, risk of malignancy, risk of VZV reactivation

RRMS,
active SPMS

(433)

Natalizumab Α4ß1 integrin inhibition Common: headache, infusion related reactions, joint pain,
fatigue
Serious: PML, encephalitis, liver failure, rebound syndrome

CIS, RRMS,
active SPMS

(267)

ocrelizumab Anti-CD20 cytolytic mab Common: infusion-related reaction, mild infection
Serious: reactivation of HBV, severe reaction, severe
infection, malignancy

CIS, RRMS, active
SPMS, PPMS

(294)

ofatumumab Anti-CD20 cytolytic mab Common: post injection reaction, mild infection
Serious: recurrent or severe infection, HBV reactivation

CIS, RRMS,
active SPMS

(295)

ublituximab Anti-CD20 cytolytic mab Common: infusion-related reaction, infection
Serious: reactivation of HBV

CIS, RRMS,
active SPMS

(296)

Alemtuzumab Anti-CD52 cytolytic monoclonal antibody Common: infusion reaction, headache
Serious: risk of autoimmune disease, strokes

RRMS,
active SPMS

(281)

mitoxantrone antineoplastic anthracenedione that
intercalates into DNA, causing damage, and
it inhibits topoisomerase II

Serious: cardiac toxicity, bone marrow suppression, risk
of malignancy

SPMS, RRMS,
worsening RRMS

(284)
(289)
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However, some drugs have been tested for SPMS, including

lamotrigine, dronabinol and dirucotide, but they do not

demonstrate significant effectiveness (283–286). In a randomized

trial of injectable drugs to treat SPMS and PPMS, the results were

not positive (284, 287, 288). It was only later, after testing

mitoxantrone, an anticancer drug, for the treatment of SPMS and

PPMS that IFN-b and mitoxantrone were approved for the

treatment of SPMS, not PPMS, and only in patients with

worsening disease and evidence of inflammation, leaving PPMS

with limited treatment options (284, 289, 290). Trials for fingolimod

in PPMS (291) and natalizumab in SPMS (292) also failed to

produce positive results.

With the accrual of evidence suggesting the role of B cells in the

pathogenesis of MS, monoclonal antibodies such as rituximab and

ocrelizumab, which target CD20 on the surface of B cells, have

emerged as therapeutic candidates (72, 293, 294). In a phase III

clinical trial of ocrelizumab for the treatment of RRMS, compared

with subcutaneous IFN-b, the drug resulted in a 45% reduction in

aRR and in the progression of disability (294). Surprisingly, phase

III trials for the same drug in the PPMS have shown positive results,

and ocrelizumab was recently approved by the FDA as the first drug

for the treatment of PPMS (72). In 2020, ofatumumab, a fully

human IgG1 kappa anti-CD20 monoclonal antibody, RRMS AND

SPMS, was approved for the treatment of CIS (295). In 2022,

Ublituximab, a chimeric anti-CD20 monoclonal antibody, was

approved for RRMS and SPMS (296).

Despite the significant efficacy of drugs approved for RRMS,

most RRMS patients still progress to SPMS, which reflects an

ongoing disease process. These drugs confer symptomatic

treatment of the disease and slow progressive disability but are

not a cure. Furthermore, some of these drugs have serious side

effects, including fulminant hepatitis reported with IFN-b;
opportunistic CNS infection known as natalizumab-associated

progressive multifocal leukoencephalopathy (PML) (297, 298);

bradycardia or conduction defects detected with fingolimod (268,

269); and increased disease activity after the withdrawal of

natalizumab, fingolimod and other drugs (299). These side effects

and the persistent potential to convert to progressive disease

highlight that these DMTs are immunosuppressive and

immunomodulating agents that act only on the peripheral

inflammatory component of the disease. These drugs are

immunosuppressive, which could explain why they lack efficacy

in progressive forms of MS where there is less immune cell

infiltration into the CNS and where disease progression is led by

innate immune mechanisms of the CNS mediated by microglia and

macrophages (72, 300).

There remains a need to explore and delineate pathobiological

pathways that could be targeted by therapeutics to stop the

progression of MS, which might include efforts to increase

myelination or change the polarization of microglia. As

previously mentioned, microglia appear to be important

mediators of the chronic progressive disease process in PPMS and

SPMS, with research revealing that they exert their effects on the

surrounding CNS parenchymal cells and the BBB. The presence of

activated microglia in the NAWM of MS patients, which are
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believed to be prelesional areas, further makes microglia

extremely attractive targets for treating MS.
In vivo disease models

Different animal models have been used to investigate MS in

vivo (Table 2), especially the experimental autoimmune

encephalomyelitis (EAE) model (301, 302), which includes

inflammation of the CNS triggered by infiltration of autoreactive

T cells and monocytes, causing demyelination (303). The EAE

model can be induced in vertebrates—mostly rodents (mice, rats,

and guinea pigs)—either by active immunization with a CNS

antigen or by adoptive (passive) transfer of activated T cells to

naive animals (304–306).

During active immunization with a CNS antigen, signs of the

disease appear within 10–17 days, whereas it takes 5–7 days in

adoptive transfer (307). Adaptive immunization can be incomplete

in that disease induction is dependent only on transferred CD4+ T

cells and lacks the contributions of CD8+ T cells and B cells. The

basic myelin proteins used for the sensitization of immune cells in

active EAE models include myelin basic protein (MBP) (308, 309),

myelin oligodendrocyte glycoprotein (MOG) 26959137, and

proteolipid protein (PLP) (310); more recently, small antigenic

peptides of these proteins, such as MBP1-37, MBP1-11, MBP1-9,

MOG55-75, and PLP139-151, have been used (310, 311). Different

animal strains have different potentials for developing

autoreactive T cells upon immunization and hence different

clinical and pathological presentations of the disease. The

animals’ response is also affected by the type and dose of the

antigen used as well as the animal’s age and sex (312, 313).

Nevertheless, all actively immunized animals share an initial first

finding of perivascular infiltration into white matter. Furthermore,

most pathological changes associated with EAE are noted in the

spinal cord and optic nerve but not in the brain (314–316).

The active induction of EAE recapitulates many aspects of MS,

including the development of inflammation with immunoglobulin

deposition, demyelination, and axonal damage, including gliosis

and remyelination. In contrast, other features, including primary

neurodegeneration, the involvement of CD8+ T cells, and cortical

lesions, are not accurately modeled (317–319). As mentioned

previously, some lesions in MS patients lack the prominent

immune response features of demyelination and microglial

activation. This category of lesion does not appear in EAE

models, in which lesions are primarily immune mediated.

Many aspects of progressive MS are still not reflected in animal

models, which contribute to the deficient development of

therapeutics for progressive MS despite decades of MS research.

The incidence of inflammatory demyelination in EAE patients

decreases after the removal of the sensitizing brain antigen from

the periphery (320, 321). Conversely, disease severity in progressive

MS increases with time, which implies that a persistent stimulus

must exist throughout the course of the disease, whether it is

endogenous or exogenous to the CNS. Thus, EAE cannot

recapitulate the progressive nature of the disease. One of the
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models mimicking secondary progressive MS involves repeated

injections of the MOG 35-55 peptide, which causes long-term

expression of the disease phenotype (322).

Owing to the potential viral etiology of MS, virus-induced in vivo

models have been developed, including experimental demyelinating

disease induced by Theiler’s murine encephalomyelitis virus (TMEV)

(323, 324) and mouse hepatitis virus (MHV) (325). These are superior

models to EAE with respect to the progressive accumulation of

disability during demyelination and the longer incubation period

before the appearance of symptoms, but there is a higher mortality

rate in these animals in addition to the hazards associated with working

with some of these viruses (326, 327).

Toxin-induced models for studying demyelination also exist, in

which demyelination is induced by cytotoxic agents and does not

result from immune attack (328). These models are useful for

studying demyelination and remyelination mechanisms as well as

potential remyelinating therapeutics (329). Examples of these

focally used agents include lysolecithin (330), ethidium bromide

(EtBr) (329, 331), and cuprizone. Lesions induced by these toxins

differ from each other with respect to the process by which myelin is

degraded as well as the degree of astrocyte loss (329).
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Although naturally occurring animal models of EAE do not

exist, researchers have discovered spontaneous autoimmune

encephalomyelitis in transgenic mice expressing T-cell receptors

specific to myelin antigen peptides (332–334). Humanized EAE

mouse models have been developed in trials to overcome species-

related differences in the molecular mechanisms of MS, especially

the antigen presentation process, cell adhesion, and role of

chemokines in disease pathogenesis (335, 336).

EAE has served as an experimental tool for the development of

MS therapeutics, such as glatiramer acetate, mitoxantrone, and

natalizumab (337, 338), and has been used to investigate the

efficacy and safety of many other treatments, including

methylprednisolone (339) for MS relapses and IFN-b, which
cause disease exacerbation after treatment discontinuation (340).

There are nevertheless also drugs that decrease disease activity in

animal models but either fail to show any therapeutic efficacy in

clinical trials or generate adverse effects. Examples of these drugs

include monoclonal anti-tumor necrosis factor antibody cA2, which

increases MRI activity in patients but does not improve symptoms

(341); anti-CD28 Mab TGN-1412, which causes cytokine storms

(342) and multiple organ failure; linomide, which causes
TABLE 2 In vivo preclinical models of multiple sclerosis.

Model Mechanism of induction Importance Limitation Reference

Experimental
autoimmune
encephalitis

Active immunization with antigens derived from
basic myelin protein OR passive immunization
with transfer of activated T cells

Understanding basic mechanisms of
inflammation in Multiple Sclerosis

-Dominance of CD4+ T Cells
over CD8+ T Cells
-Mostly involves spinal cord
rather than the brain

(317)

Theiler’s Murine
Encephalopathy

virus

Encephalomyelitis Presenting chronic progressive
demyelination phase with plaque
formation and axonal injury
Understanding mechanisms of viral
clearance
Understanding the role of each
lymphocytic population in
disease progression

Only induces encephalomyelitis
in susceptible strains of mice

(317, 434)

Mouse
Hepatitis Virus

Encephalomyelitis Presenting chronic demyelination phase
with plaque formation and axonal injury

Complex disease pathogenesis
beyond dissection

(434, 435)

Semliki
Forest Virus

Encephalomyelitis Presenting chronic demyelination phase Complex disease pathogenesis
beyond dissection

(435, 436)

Ethidium
Bromide induced

Interferes with DNA transcription in glial cells Presenting focal model of demyelination
and remyelination
Degeneration of oligodendrocytes
and astrocytes

Does not stimulate all the
inflammatory
processes involved

(436)

Lysolecitin-
induced

Integrating into cell membrane which causes
increased permeability and lipid disruption thus
causing damage in lipid membrane-rich
myelin sheath

Presenting focal model of demyelination
and remyelination

Does not stimulate all the
inflammatory
processes involved

(436, 437)

Lipopolysacharide Evoking inflammatory reaction Demyelination expanding beyond point
of injection

Does not stimulate all the
inflammatory
processes involved

(437, 438)

Cuprizone (oxalix
acid bis)

Oligodendrocyte apoptosis (probably through
disfunction of mitochondrial enzymes),
innate immunity

Presenting demyelination followed by
spontaneous remyelination, and ongoing
axonal injury even in myelinated fibers

B cells and T cells do not play
a crucial rule
Rapid and extensive
remyelination and not
presenting the remyelination
failure seen in MS

(438, 439)
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cardiotoxicity (341) and oral tolerance (343); and sulfasalazine

(344), which has no therapeutic effect. The translational failure of

these therapeutics may be attributed in part to the differing genetic

makeup between humans and rodents. In conclusion, there is no

perfect in vivo animal model for MS, and the selection of a model

should be based on the primary aim of the research and pathological

mechanisms being investigated (345, 346).
In vitro models

With the advent of the era of translational medicine and the

rapid advancement of in vitro models, researchers are increasingly

directed toward in vitro models for neurodegenerative disease and

CNS disorders. In vitro models have strong potential to overcome

some of the limitations mentioned in the in vivomodels of MS, such

as the differences between the human and rodent genomes and the

resulting differences in molecular mechanisms. These limitations, at

least in part, contributed to the failure of the translation of many

therapeutics from animal models to clinical trials and the lack of a

definitive cure for the disease process. In addition, one of the most

important hurdles is the lack of models for progressive disease, as

well as treatments. One of the main advantages of these in vitro

models is the ability to scale them to enable high-throughput

screening of drug targets and extensive studies of molecular

mechanisms to reveal more therapeutic hits. In these models,

interactions between different CNS cells and immune cells can be

studied closely in a simple setting and manipulated with a high

degree of precision.

With increasing awareness of the involvement of blood–brain

barrier dysfunction in many neurological and psychological

disorders, efforts have been made to model the BBB in vitro to

offer a simplified, reproducible biological platform to study these

disorders and translate findings into clinical practice.

BBB dysfunction has been reported in a variety of

neurodegenerative disorders in addition to the previously

discussed MS, including Alzheimer’s disease (AD) (347–350),

amyotrophic lateral sclerosis (ALS) (351), Parkinson’s disease

(PD) (352), and Huntington’s disease (HD) (353). Furthermore,

BBB breakdown in epilepsy is thought to adversely affect the CNS

microenvironment and neuronal physiology (354). Cognitive and

neurological decline during aging is also attributed in part to BBB

dysfunction (355, 356). Furthermore, posttraumatic epilepsy and

neural degeneration, which are cognitive and psychological

disorders that occur after traumatic brain injury, are related to

BBB dysfunction (357–359). BBB dysfunction has even been

implicated in neuropsychological disorders such as schizophrenia

and autism. (360).

Different models have been developed to investigate BBB

dysfunction in brain disorders, screen drugs for their ability to

cross the BBB (361), and study neuroimmunological interactions at

the BBB interface (362). These BBB models differ in the source and

the type of brain microvascular endothelial cells used (Table 3).

During the last few years, the design of in vitro BBB models has

progressed from using 2D monolayers or transwell models to more
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sophisticated designs that include shear stress induced by fluid flow

in microfluidic devices or 3D organoid (Table 4). The developments

also included using more than one cell type in a co-culture rather

than just using BMVECs alone. Coculture BBB models can provide

endothelial cells with the necessary signals from other cells in the

NVU when combined with astrocytes, pericytes, and neurons,

which contributes meaningfully to barrier properties (363, 364).

These barrier properties are not intrinsic to brain endothelial cells

but rather depend on the microenvironment of the NVU (365, 366)

Each of the cell types or the designs has its own advantages and

disadvantages to be considered while picking up a model to answer

a specific research question.

In vitro BBB models were initially developed with brain

endothelial cells cultured on transwell inserts. These systems

allow the measurement of transendothelial electrical resistance

(TEER) values across the monolayer and direct measurement of

permeability by sampling from luminal (blood facing) and

abluminal (brain-facing) compartments (367–370). Transwell

systems using cocultures of brain endothelial cells, astrocytes

(371–375) and pericytes (376–378), either in contact or

noncontact settings, presented increased TEER values, which was

reflected by decreased permeability to tracer molecules such as

lucifer yellow, sodium fluorescein, sucrose, and dextrans. Move

to table

The transwell in vitro BBB model has been used to study

immune system interactions at the BBB interface. In these

models, endothelial cells can be stimulated by pathogenic factors

such as LPS (379–382) or by proinflammatory cytokines such as

TNF-a, IL-6, IL-1b, and IFN-d (382–384). These systems have been

extensively used to study the regulation of the transmigration of

monocytes, neutrophils, and lymphocytes across the BBB (385–387)

and to investigate the effects of adhesion molecules on leukocyte

transmigration (148, 385, 388–392).

Transwell coculture models have also been used to study the

involvement of the BBB in MS. Some studies have used 2D brain

endothelial cell cultures to study the ability of patient-derived sera

to modulate BBB properties, especially tight junction protein and

adhesion molecule expression. Using a transwell BBB model,

Shimizu et al. reported that serum from MS patients disrupts

BBB function by decreasing claudin-5 expression and decreasing

the TEER value, which reflects increased BBB permeability.

VCAM1 expression increased in response to exposure to sera and

IgG from different types of MS patients. Disruption can be

prevented by the addition of MMP inhibitors. (167). Similarly,

Minagar et al. demonstrated that sera from patients with

exacerbated MS could decrease the expression of occludin and

VE-cadherin in endothelial cells (168). Sheikh et al. demonstrated

that sera from MS patients could alter the metabolic function of the

brain endothelium by decreasing glycolytic activity, the oxygen

consumption rate and the expression of endothelial glucose

transporter 1 (GLUT-1) (393).

Additionally, other studies used in vitro transwell BBB models

to study the capacity of immune cells isolated from the peripheral

blood of MS patients to cross the BBB. Prat et al. showed that,

compared with healthy control lymphocytes, MS patient
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lymphocytes exhibited enhanced migration across the in vitro

transwell BBB and that transmigration could be reduced via the

use of an anti-monocyte chemoattractant protein 1 monoclonal

antibody (394). In another study, the authors showed that CD4+ T

cells from MS patients presented increased expression of P-selectin

glycoprotein ligand-1 (PSGL-1). Compared with PSGL-1-negative

T cells, CD4+ T cells positive for PSGL-1 showed an increased

capacity to transmigrate across the BBB (395). Despite the

popularity, relative simplicity, and low cost of transwell BBB

models, they may not reflect the complex interactions and contact

between different cellular and acellular elements of the NVU and

may lack the physiological shear stress that helps maintain several

BBB properties (396).

3D BBB models have been developed to overcome this contact

issue via coculture of primary brain endothelial cells, astrocytes and

pericytes under low-adherence conditions, allowing the formation

of BBB multicellular organoids, which exhibit BBB properties (397,

398). These organoids have the advantages of direct contact

between cells, are reproducible, and can be cost-effective relative

to animal models. BBB organoids could be used to study drug

transport across the BBB, investigate neurological disease

mechanisms, and develop therapeutics (397). 3D BBB models

have been used to study general inflammatory conditions by
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exposing organoids to exogenous inflammatory cytokines to

mimic neuroinflammatory conditions. The use of 3D BBB models

to study MS-specific features has not been widely applied (399).

The absence of neurons and glial cells is a limitation of most

BBB organoids, as they are critical contributors to BBB

development and are necessary to study neurovascular coupling

in neurological disorders in conjunction with the BBB. Nzou et al.

reported the development of a human neurovascular unit organoid

model that contains all six constituent human cell types found

within the brain cortex: brain microvascular endothelial cells;

pericytes; astrocytes; microglia; oligodendrocytes; and neurons,

with endothelial cells enclosing the brain parenchymal cells (400).

This 3D in vitro system contains all major cell types found in the

adult human brain cortex and provides a platform to understand

the fundamental principles at play with the BBB and its function

and to understand the effects of substances that cross the BBB. This

sophisticated human brain model system has been used to study

hypoxia, inflammation, and the delivery of therapeutic agents

across the BBB (401–404).

The development and incorporation of iPSC-derived brain

endothelial cells (iBECs) in BBB coculture models resulted in a

BBB with high TEER values (405, 406). These models have been

widely used to study disease pathophysiology (407–409) and drug
TABLE 3 Cell source for in-vitro BBB models.

Cell source Advantages Disadvantages References

Species

Non-Human
Pigs

Cows
Rats
Mice

Relatively Inexpensive

Easy to get from animal tissues

Different genetic profile than humans

Complicate translation of results to humans

(440)
(441)
(375)

(442)

Human Human Genetic profile and functional molecules

Facilitate translation to humans

Can express disease phenotype of the disease

Difficult to get from human biopsies

Limited sources
Expensive

(443, 444)

Cell type

Primary Express BBB properties

Express important BBB markers and functional molecules

Limited Availability

Limited capacity to proliferate

Relatively low TEER value

(445, 446)

Immortalized High yield and easy to expand

Sustained source

Depend on oncogenic factors to proliferate

Low TEER values

Do not express all BBB markers

(447, 448)

IPSC-derived High TEER value

Keep genetic profile of donor cells

Possibility of modeling disease of donors

Do not depend on oncogenic factors to proliferate

Sustained source

Lengthy multistep protocols to differentiate (449–451)
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screening (410, 411). HiPSCs have been used to model many brain

disorders, including Parkinson’s disease (PD) (412) and

Alzheimer’s disease (AD) (413).Although they have not yet been

applied directly to study MS, they present great potential for

integrating NVU cells from MS patients to study the contribution

of the genome to MS pathophysiology. In addition, these iPSC-

derived endothelial cells can be manipulated by gene editing to

introduce specific genetic mutations to study their effects on NVU

function (414). One of the most recent advances in the field of brain
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organoids with relevance to multiple sclerosis is the induction of

myelination in human cortical spheroids, which makes them good

platforms for studying demyelination events in neurodegenerative

disorders (415).

With advancements in microfluidic technology, BBB-on-a-chip

models have emerged, allowing perfusion of the BBB in two-

dimensional microfluidic models (416–418), hybrid systems (419,

420), or self-organizing 3-D multicellular BBB models (421, 422).

3D self-assembled BBB organoids could be incorporated into
TABLE 4 Designs for in-vitro BBB models.

Model Set up Advantages Disadvantages References

Transwell
monoculture

Brain microvascular endothelial cells cultures on upper
surface of porous membrane of transwell insert

Relatively Inexpensive
Simple set up

Possibility of measuring
TEER values

Possibility of sampling
from abluminal surface

Do not have other cells of the
neurovascular unit

Endothelial cells not subjected to sheer
stress

No media flow

(452)

Transwell
coculture

Brain microvascular endothelial cells cultures on the
upper surface of transmembrane insert

Other cells such as astrocytes, pericytes and neurons are
cultures on the lower (abluminal) surface of the insert or
on the bottom of the well

Moderately expensive

Relatively easy set up

Allow for the contribution
of other cells to the barrier
properties

Simple set up

Possibility of measuring
TEER values

Possibility of sampling
from the abluminal surface

Endothelial cells not subjected to sheer
stress

No media flow

Cells are not in direct contact with
each other

(443, 453)

Dynamic Media flow in capillary tubes (hollow fibers) lined with
Brain microvascular endothelial cells

Media flow controlled by using peristaltic or
syringe pumps

Generate shear stress on
endothelial cells

Improve the BBB
properties

Achieves higher TEER
values

Allow for co-culture of
cells surrounding
hollow fibers

Expensive

No direct communication between
cocultured cells

Can not optically examine the cells
Time consuming

Special skills required

(426, 454)

Microfluidic Chips synthesized with channels of small diameters
mimicking microvascular channels

Media flow controlled by using peristaltic or
syringe pumps

Increased TEER value

Shear stress improves BBB
properties

Allow for visualization of
cells by microscopy

Expensive

Time consuming

Special skills required

(455, 456)

3D self-
assembled
organoids

Brain microvascular endothelial cells cocultured with
other cells of neurovascular unit are allowed to form
spheroids in ultra-low attachment plates

Different extracellular matrices could be incorporated in
the model

Direct contact between all
cells of neurovascular units
Scalable

Allow high throughput
screening

Could be incorporated in
microfluidic chips to
experience shear stress

Expensive

Special skills required
TEER values cannot be measured
(permeability is assessed using tracer
molecules of different molecular weight

(400, 402)
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microfluidic chips. Six different human organoids, including a brain

with six different cell types that form a 3D BBB, liver, heart, lung,

vascular and testes, were incorporated into a single microfluidic

body-on-a-chip system to study integrated functional parameters

(423). The same integrated body-on-a-chip system was used to test

the effect of prodrug metabolism by the liver and to prove its toxic

effect on other organoids (424). The metabolism of the alkylating

drug ifosfamide in liver organoids into chloroacetaldehyde results

in BBB neurotoxicity downstream. Although there are no other

multi-tissue organ-on-a-chip models reported to date that include

the BBB with other organs, multiorgan-on-a-chip (multi-OoC)

models represent strong candidates for investigating and better

understanding the human body, systemic illnesses and organ

communications. This system can support screening for drug

efficacy and toxicity prior to translation to clinical trials and can

help reduce the number of animals used for in vivo studies.

These microfluidic devices help investigate the BBB in a more

physiologically relevant microenvironment, but they require special

skills and equipment (425). Microfluidic BBB models have been

used to study the transmigration of immune cells across the barrier.

Flow has been demonstrated to enhance BBB integrity and

upregulate the expression of tight junction proteins. Compared

with that in static models, the transmigration of immune cells is

reduced (426). Nair et al. used a microfluidic BBB model to test the

effects of proinflammatory cytokines on BBB integrity and

permeability. TNFa and interleukin-1 beta (IL-1b) disrupt BBB

integrity and increase BBB permeability. The expression of cell

adhesion molecules increases with the subsequent increase in the

transmigration of human T cells and the inhibition of

transmigration in the presence of natalizumab (427). Microfluidic

BBB models have not yet been fully exploited in the study of the

disease-specific pathophysiology of MS or immune cells in

MS patients.

Even with the great advancements observed in the field of

translational research and modeling platforms, a disease as complex

as MS remains relatively uninvestigated. Owing to the failure of the

translation of many MS drugs from animal models to humans, the

lack of true therapeutic options to cure MS, the severe side effects

imposed by the currently available therapeutics, and the lack of

medications for the progressive forms of the disease, the

exploitation of alternative modeling options with greater

biological relevance to the human body has become a great

opportunity for the scientific community. Improving translational

and regenerative medicine approaches, such as multicellular human

BBB models, create a very promising field to investigate and test

therapeutics for MS. Such models could be used to study more

biologically involved processes; brain organoids, which include an
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immune cell component, could be used to study neuroimmune

interactions at the BBB interface and the crosstalk between immune

cells and CNS parenchymal microglia, and myelinating brain

organoids could be used to study demyelination pathogenesis and

remyelination mechanisms in MS. Recent success in generating

iPSCs from MS patients is a further promising step toward

personalizing brain and BBB models for MS.
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