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Background: M2-like tumor-associated macrophages (TAMs) promote an

immunosuppressive microenvironment and contribute to tumor progression

and metastasis. However, their molecular characterization and prognostic

value have not been fully explored in the field of breast cancer.

Methods: Weighted gene co-expression network analysis (WGCNA) was used to

identify modules significantly associated with M2-like TAMs. Consensus

clustering analysis identified three molecular subtypes with distinct clinical

features, and we explored potential differences in genomic mutations, pathway

enrichment, and immune infiltration in patients between subtypes. Machine

learning algorithms were used to screen key genes and construct M2-like

macrophage-associated prognostic models. Comprehensive transcriptomic

analysis and in vitro phenotyping and polarization experiments were performed

on the key gene DLG3.

Results: M2-like TAMs infiltration was strongly associated with the prognosis of

BC patients, and the associated gene characterization revealed three molecular

subtypes, of which C2 has the worst prognosis with high M2 macrophages,

immune desert phenotype, and immunotherapeutic resistance; C1 had the best

prognosis, rich in stromal and immune cell infiltration, and metabolic pathway

activation; and C3 had a high level of TILs and genomic mutations, with a high

degree of immunogenicity and immunotherapeutic Potential. Risk scores

can effectively predict the prognosis and immunotherapy response of BC

patients, in which DLG3 is a key gene that may be involved in shaping the
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immunosuppressive microenvironment of breast cancer, and down-regulation

of DLG3 can inhibit M2 polarization of macrophages.

Discussion: We constructed and comprehensively solved a model of M2-like

TAM-related molecular subtypes and prognosis, which helps stratify and

customize treatment regimens for BC patients. We also explored the role of

DLG3 in BC progression and macrophage polarization.
KEYWORDS

tumor associatedmacrophages, breast cancer,macrophagepolarization, immunotherapy, DLG3
Introduction

Breast cancer (BC) is the most common malignant tumor in

women worldwide, and after lung cancer is the second most

common cause of cancer deaths (1). Currently, the main

treatment options for BC include surgery, radiotherapy,

endocrine therapy, targeted therapy, and immunotherapy (2).

Among them, significant progress has been made in the

treatment of HER2-positive breast cancer with targeted therapies

such as trastuzumab and pertuzumab (3, 4). However, triple-

negative breast cancer (TNBC) has limited treatment options due

to the lack of clear therapeutic targets. Although immunotherapy

and PARP inhibitors, among others, have provided new therapeutic

directions for TNBC (5, 6), BC treatment still faces challenges such

as the development of drug resistance, therapeutic side effects, and

poor therapeutic response in advanced or metastatic BC. Therefore,

there is a need to find new molecular markers and therapeutic

targets to stratify and customize treatment regimens for

BC patients.

In the tumor microenvironment (TME) of solid tumors,

macrophages are the most abundant immune component of the

innate immune system (7). Macrophages present in the tumor

microenvironment are known as tumor-associated macrophages

(TAMs), which are usually formed by blood monocytes or tissue-

resident macrophages recruited by tumor cells to the tumor site and

polarized (8). TAM are highly heterogeneous and can be polarized

into different subtypes, which are mainly classified into M1-type

(classically activated macrophage) and M2-type (alternatively

activated macrophage). M1-type usually have anti-tumor effects,

while M2 type may promote tumor growth, angiogenesis,

immunosuppression and metastasis (7, 9, 10). In contrast, TAMs

in tumors tend to exhibit an M2-like phenotype and play a tumor-

promoting role, thus a high M1/M2 TAM ratio is associated with

good survival of tumor patients (11). Hypoxic conditions in the

TME may promote the formation of M2-type macrophages, while
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immunosuppressive molecules such as programmed death ligand 1

(PD-L1) may inhibit M1-type macrophage activity (12). Recent

studies have found that Sohlh2 overexpression promotes M2

macrophage polarization, while high Sohlh2 expression in M2-

like macrophages promotes TNBC progression (13). Another study

found that BPIFB1 promoted M2 macrophage polarization and

facilitated tumor progression in HR+BRCA (14). However, most of

these studies have focused on the effects and molecular mechanisms

of specific molecular targets on M2 macrophage polarization and

malignant progression in BC, and no study has adequately explored

the potential role of M2-like macrophage infiltration patterns in the

stratification of BC patients, and the association between the level of

M2-like macrophage infiltration and the immune response and

prognosis of BC patients remains unclear.

Discs Large MAGUK Scaffold Protein 3 (DLG3) is a gene

encoding a family of membrane-associated guanylate kinase

proteins that play key roles in cell polarity and tissue

morphogenesis. DLG3 is down-regulated in glioblastoma

multiforme (GBM), and its overexpression induces mitotic cell

cycle arrest and apoptosis, inhibiting proliferation and migration

(15). However, the role of DLG3 in BC is more complex. High

expression of DLG3 is associated with decreased survival in BC

patients, and its expression is positively correlated with pathological

stage and decreased survival (16). Hypermethylation of the DLG3

promoter upregulates RAC1 and activates the PI3K/AKT signaling

pathway, thereby promoting breast cancer progression (17). In

addition, DLG3 is associated with sensitivity to certain

chemotherapeutic agents in breast and gastric cancers, suggesting

its potential role in precision medicine (18, 19). However, no studies

have reported the effects and molecular mechanisms of DLG3 on

macrophages in BC.

In the present study, we first utilizing the BC single cell data (20)

analyzing the effect of differences in the proportion of M2

macrophages on TME in BC patients as defined by the Cibersort

algorithm, we noted that LVYE1+ macrophages were significant

risk factors in BC (21). TheWGCNA algorithm was used to identify

modules significantly associated with M2-like macrophages, and

further screened for prognostically relevant M2 macrophage-

associated genes for consistency clustering analysis to classify BC

patients into three distinct subtypes. Next, we screened and
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constructed the M2 macrophage-related gene risk score (M2GRS)

by various machine learning algorithms. By correlation analysis we

found that DLG3 was significantly associated with M2 macrophage

infiltration. Pan-cancer and breast cancer multi-cohort analyses

further revealed the immunosuppressive role of DLG3. These

findings will help enhance our knowledge of M2-like TAMs and

guide more effective BC treatment strategies.
Methods

Data download and processing

Clinical information of BRCA patients as well as transcriptome

sequencing data (RNA-seq), DNA methylation, single nucleotide

mutations (SNVs), and copy number variants (CNVs) were

downloaded from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/), and breast cancer samples with complete

survival information (n= 1073) and normal tissue controls

(n=158) for subsequent analysis. The mRNA expression profiles

and clinical information of the GSE20685 (n=327), GSE42568

(n=104), and GSE162228 (n=109) datasets were downloaded

from the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) as a validation cohort. GEO queue

data is de-batched by the "normalizeBetweenArrays" function.

The corresponding protein expression data for the TCGA cohorts

were downloaded from the UCSC Xena database (https://

xena.ucsc.edu/), which was generated and processed in the RPPA

core of the TCGA Proteome Characterization Center at MD

Anderson Cancer Center. The pan-cancer analysis was based on

RNA-seq data and corresponding clinical information for 33 cancer

types in the TCGA database, and the RNA-seq data were

normalized to log2(value+1) format. Also, transcriptomics data of

20 breast cancer GEO cohorts used for pathway enrichment were

downloaded from the GEO database and integrated for analysis. In

addition, spatial transcriptome sequencing (ST-seq) data were used

to analyze the expression specificity of DLG3 in BC, and the data

were processed through the standard Seurat process. The cellular

composition of each spot on 10x Visium slides was assessed using

the transposed convolution analysis technique, and sample sources

can be found in the Supplementary Data.
Data processing and analysis of single-cell
RNA sequencing

We selected 24 BRCA tumor samples with corresponding

transcriptome sequencing (84,155 transcriptomes after quality

control and filtering) from the breast cancer single-cell cohort

GSE176078. Single-cell sequencing data were analyzed using the

“Seurat” software package. Quality control (QC) was performed by

retaining cells with less than 15% of mitochondrial genes and genes

with expression ranging from 200 to 5000 in at least three cells. We

then identified highly variable genes and set the number of highly

variable genes to 2000 for subsequent analysis. Clusters of units
Frontiers in Immunology 03
were constructed using the “FindClusters” and “FindNeighbors”

functions and visualized using the “umap” method. Finally, we

performed cell annotation based on classical genealogical markers.

The percentage of cellular infiltration in the TCGA cohort was

calculated by transposed convolution analysis using the Cibersort

website (22). Differentially expressed genes (DEGs) were identified

for each cluster (FindAllMarkers) and visualized by volcano plot.

scRNAtoolVis was used to map the markers in each cluster

(jjVolcano). The "cytoTRACE" algorithm was used to assess the

cell stemness and developmental potential of the macrophage

subpopulations (23). In addition, metabolic activity was

quantified at single-cell resolution by the “scMetabolism” R

package using the “AUcell” method and KEGG as a reference

gene set (24). The M2GRS model gene set was quantified using

the AddModuleScore, Singsore, AUCell, and UCell algorithms from

the “irGSEA” package. Cellular interactions between high and low-

risk groups were analyzed using the “cellchat” package. In addition,

the CancerSEA online database was used to study the functional

status of DLG3 in BC at single-cell resolution. Single-cell

sequencing data from multiple BC cohorts in the TISCH2

database were used to explore the differential expression of DLG3

among different cells (http://tisch.comp-genomics.org/home/).
Analysis of the immune landscape

The ESTIMATE algorithm was used to assess stromal and

immune scores in BC patients. The immune microenvironment

was evaluated using the xCell, MCPcounter, Cibersort, TIMER,

EPIC, quantiseq, and IPS algorithms of the R package “IOBR” (25).

Single-sample gene enrichment analysis (ssGSEA) was performed

to quantify the relative infiltration of 28 immune cell types in the

TME. Immunophenotype score (IPS) was used to predict patient

response to anti-CTLA-4 and anti-PD-1 data downloaded from The

Cancer Immunome Atlas (TCIA, https://tcia.at/) (26). The Tumor

Immune Dysfunction and Exclusion (TIDE) algorithm was also

used to assess patient response to immunotherapy. T-cell and B-cell

receptor (TCR&BCR) abundance scores, Tumor Infiltrating

Lymphocytes (TILs) scores, and interferon-gamma (IFN-g) scores
were obtained from previous literature (27). Representative images

of the mapping intensity of TILs between subtypes were obtained

from a previous study (28). Cancer immune cycles were analyzed by

expression scores obtained from expression profiles and compared

between groups (29).
WGCNA analysis

Expression profiles of the top 10,000 genes in the TCGA-BRCA

cohort, ranked by median absolute deviation (MAD), were entered

into WGCNA for subsequent analysis (30). Pearson correlation

coefficients were calculated between each pair of genes to obtain a

similarity matrix. The b = 5 automatically calculated by the

pickSoftThreshold function and the scale-free R2 = 0.9

automatically calculated by the softConnectivity function were set
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as the softthreshold parameters to ensure a scale-free topological

network and generate the TOMmatrix. The correlation between the

gray module and the Cibersort-defined M2 macrophage score and

CD8 T cells was 0.22 and -0.18, respectively, and the gray module

was selected for further analysis.
Construction of M2 macrophage-
associated molecular subtypes

A total of 4863 genes associated with M2 macrophage and

CD8T cell infiltration were selected from the gray module and

firstly intersected with 7812 DEGs (screening criteria: |log2FC|

>1&FDR<0.05) identified by the “limma” package between the

tumor tissues and normal tissues, and 2984 differentially

expressed M2 macrophage-related genes were obtained (31).

These genes were analyzed by univariate Cox regression. Then,

109 differentially expressed M2-like macrophage-associated genes

associated with survival in the univariate were entered into the

“ConsensusClusterPlus” package for consistency clustering

(parameters: reps =1000, pItem =0.8, pFeature =1, clusterAlg

=“km”) (32), and the optimal number of clusters was evaluated

by Cumulative Distribution Function (CDF) plots and consensus

heatmaps with an optimal K value of 3.
Machine learning algorithms to validate
subtype grouping and identify features

Convolutional Neural Network (CNN) was utilized to validate

the classification of transcriptome data (33, 34). The dataset was

normalized and coded before feeding it into a CNN architecture

consisting of convolutional, maximal pooling, and fully connected

layers. The model was trained for 50 episodes using the cross-entropy

loss function and Adam’s optimization algorithm. The efficacy of the

model was evaluated by means of a confusion matrix and a series of

classification metrics, including accuracy, precision, recall, and F1

score. In addition, we identified key genes of M2 macrophage-

associated subtypes based on the subtype characteristics of

consensus clustering by means of the least absolute shrinkage and

selection operator (Lasso) and random forest (RF) algorithms.
Construction and validation of M2
macrophage-associated prognostic model

For the 65 M2 macrophage-associated key genes identified

above using Lasso and RF, M2 macrophage-associated prognostic

traits were further constructed by Lasso regression analysis and

stepwise multivariate Cox regression analysis. Based on the risk

coefficients obtained in the multivariate Cox regression analyses

and the expression profiles of BC patients, the M2 macrophage-

associated gene risk score (M2GRS) was calculated for each BC

patient using the following formula: M2GRS = 0.363*DLG3-

0.303*FAM111A-0.192*FOXJ1-0.126*TFPI2+0.367*CCDC9B-
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0.445*ERRFI1-0.174*FLT3-0.172*KRTCAP3-0.24*LRRFIP2-0.667

*MAP2K6 + 1.008*PTGES3 + 0.135*SLC16A2-0.419*PSME1. BC

patients were categorized into two groups, low risk, and high risk,

based on the median risk score. Finally, we assessed the

performance of the risk model in predicting the overall survival

(OS) of patients using time-dependent ROC curves to calculate the

area under the curve (AUC) values at 1, 2, 3, 4, and 5 years in the

validation cohort. Column plots were constructed based on clinical

characteristics and risk scores to predict BC prognosis using the

“rms” package. Calibration curves were generated to assess the

predictive accuracy of the model. The reliability of the model was

assessed using decision curve analysis (DCA). In addition, we

collected an index of previously published breast cancer

prognostic models and compared the performance of M2GRS

with these models.
Functional enrichment analysis

DEGs between subtypes and risk groups were identified using the

“limma” package, and genome enrichment analysis (GSEA) and gene

set variation analysis (GSVA) were used to explore altered biological

processes between subtypes and risk groups. The reference gene set

was downloaded from the Molecular Signatures Database (MSigDB)

v7.4 database. Gene sets “c2.cp.kegg.v7.4.symbols.gmt” and

“h.all.v2023.1.Hs.symbols” were downloaded from MSigDB as

reference gene sets. Specific biological features were obtained from

the gene set (from the IMvigor210CoreBioologies package)

constructed by Mariathasan et al. The “PROGENy” package was

used to assess 14 signaling pathway activities in patients.
Genomic alteration analysis

Somatic mutation and CNV data were downloaded from the

TCGA website. Somatic mutation and CNV (GISTIC output) data

were visualized using the R “maftools” package, and the associated

tumor mutation burden (TMB) and tumor heterogeneity (MATH)

scores of allelic mutations were calculated. Significant CNV

amplifications and deletions were identified by GISTIC 2.0.

Methylation data of TCGA cohort patients were downloaded

from the GDC portal. Methylation differences between subtypes

were analyzed using the R package “ChAMP” (35), which examines

differentially methylated CpG between subtypes by the Wilcox test.

cpGs in the X and Y chromosomes were excluded from the analysis.

cpGs with FDR < 0.05 were characterized as differentially

methylated CpGs.
Prediction of immunotherapeutic response
and drug response

IMvigor210, a cohort of uroepithelial cancers treated with anti-PD-

L1 antibodies, was used to predict patient response to immunotherapy

(36). The GSE78220 cohort, a melanoma cohort treated with anti-PD-1

(pembrolizumab or nivolumab) immunotherapy (37), and cohort
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GSE100797, a melanoma cohort treated with adoptive T-cell therapy

(ACT) (38), were also included as predictors of response to

immunotherapy. The Submap model from the GenePattern website

was used to predict patient efficacy to immunotherapy. The Cancer

Treatment Response Portal (CTRP) (https://portals.broadinstitute.org/

ctrp) and the Parallel Analysis of Relative Inhibition in and

Mixtures (PRISM) database (https://depmap.org/portal/prism/)

were used to obtain drug sensitivity data for DLG3, the dose-

response AUC values were used as a measure of drug sensitivity.
Molecular docking

The 3D structure (.sdf format) of Panobinostat was downloaded

from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/)

database. The 3D structures of the screened target proteins (.pdb

format) were obtained from the PDB database (https://

www.rcsb.org/) database. We first removed water molecules and

ligands from the key protein structure in Pymol software and

converted the pdb form to pdbqt form using OpenBabel software

(https://openbabel.org). Molecular docking of the large molecule

receptor (DLG3 protein) and small molecule ligand (Panobinostat)

was then performed by AutoDock Tools software. Finally, we used

Pymol software to visualize the molecular docking results in 3D.
Cell culture and quantitative real-time PCR

We used MDA-MB-231, SK-BR-3, and THP-1 cells (ATCC,

Shanghai, China) for in vitro experiments.MDA-MB-231 and SK-

BR-3 cells were maintained in DMEM medium (Gibco, USA)

supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin-streptomycin.THP-1 cells were cultured in RPMI 1640

medium containing 10% FBS, and 1% penicillin-streptomycin.

Small interfering RNA (siRNA) targeting DLG3 and siRNA

control were purchased from Gemma Genetics (Shanghai, China).

The sequences of DLG3-targeting siRNAs were as follows:

GCAGUUUCCAAAGGACAAGATT (DLG3 siRNA-1) and

GGGAUGAUUGAGUCUAACATT (DLG3 siRNA-2). For

transient transfection, siRNAs were transfected into MDA-MB-

231 and SK-BR-3 cells using transfection reagent (Lipofectamine

2000, Invitrogen, USA) for 24 h, followed by subsequent

experiments. SYBR Green qPCR mix (Vazyme, China) was used

to synthesize cDNAs for real-time PCR. cDNA for real-time PCR

and GAPDH was standardized as an internal reference gene. Primer

sequences: DLG3, F-AAGAGGTCCTTGTATGTCAGGG, R-

CACCGATCTGCTCACTTTCTC; GAPDH, F-GGAGCG

AGATCCCTCCAAAAT, R-GGCTGTTGTCATACTTCTCATGG.
Proliferation and clone formation
experiments

Twenty-four hours after transfection with DLG3 siRNA, MDA-

MB-231 and SK-BR-3 cells were cultured in 96-well plates (3,000
Frontiers in Immunology 05
cells/well). The proliferative capacity of the treated cells was

determined at 4, 24, 48, and 72 hours. The 10% Cell Counting

Kit-8 (CCK8) reagent (Bio-sharp, Hefei, China) was added to each

plate according to the kit instructions, and the OD 450 values were

analyzed by enzyme markers (BioTek, USA). Regarding colony

formation experiments, 2000 cells were inoculated in cell culture

plates and allowed to grow until visible colonies were formed. We

then fixed the clones with paraformaldehyde for 15 min, stained the

clones with 1% crystal violet for 20 min, and counted the number of

clones (>50 cells).
Transwell migration and invasion assay

Transwell migration and invasion assays were performed by

transfecting MDA-MB-231 and SK-BR-3 cells with DLG3 siRNA

for 24 h and culturing them in 24-well culture plates with 8 mm

pore membrane inserts to measure cell migration and invasion

ability. 4 × 104 cells were inoculated in the upper chamber of the

transwell with 200 ul of serum-free medium, and invasion

experiments required pre-coating the upper chamber with matrix

gel and adding 800 ml of medium containing 10% FBS to the lower

chamber. After 48 hours of incubation, transmembrane migrating

cells were fixed with paraformaldehyde, stained with 1% crystal

violet, and counted under a light microscope (50×).
Flow cytometry

THP-1 cells were treated with 100 ng/ml PMA (absin, China)

for 24 h to induce macrophage-like differentiation, and then

maintained in a medium containing PMA for 24 h to generate

M0 cells. To analyze the effect of DLG3 on macrophage

polarization, THP-1-derived macrophages were co-cultured with

BC (MDA-MB-231) cells in a co-culture transwell system

(LABSELECT, China). BC cells were placed in the upper

chamber and macrophages in the lower chamber. Co-cultured

macrophages were harvested after 48 hours and incubated with PE

anti-Human CD206 antibody (#1840268, absin, China) for 45

minutes on ice. Macrophages were then analyzed using cytek Dxp

Athena (BD Biosciences, USA) and Flowjo software (Tree

Star, USA).
Statistical analysis

Statistical analysis and plotting were performed using R

software (version 4.0.2) and GraphPad software. The Log-Rank

test was used to assess prognostic differences between the two

groups. Wilcoxon test was used between two paired groups. The

chi-square test or Fisher’s exact test was used to compare categorical

variables, and the statistical significance of the cell line experiments

was evaluated by t-test in GraphPad Prism 9 software. Differences

were considered statistically significant at *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001.
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Results

Research flowchart

The workflow of this study is shown in Figure 1. The study design

was outlined in six parts. First, we explored the prognostic value ofM2-

like TAMs in BC patients, i.e., high levels of M2-like TAMs have a poor

prognosis. Then, M2 macrophage-related genes were identified in the

second part. Specifically, the WGCNA algorithm was utilized to

identify gene modules significantly associated with M2 macrophage

scores calculated by Cibersort, and 109 key genes were further

identified by prognostic and differential screening after extraction of

the module genes, and BC was classified into 3 subtypes by consensus

clustering (k-means). In the third part, we carefully analyzed the

prognosis, biological processes, genomic alterations, and immune

features among the subtypes, and the main features of the three

subtypes are summarized in the flowchart. Next, we developed an

M2-like macrophage-associated prognostic feature with a machine-

learning algorithm. The feature was constructed using LASSO, RF, and
Frontiers in Immunology 06
multivariate Cox regression based on the TCGA-BRCA cohort. In the

fifth part, we focused on exploring the potential mechanisms of risk

scores in BC. To validate the prognostic value and immunotherapy

prediction potential of risk profiles, we tested them on four GEO

cohorts and three independent immunotherapy cohorts; potential

differences in biological processes and cellular communication

between high and low-risk groups were also explored. In addition,

DLG3 was found to play a key role in M2GRS and its role in the BC

immunosuppressive microenvironment was explored. Finally, we

performed in vitro experiments to investigate the role of DLG3 on

the malignant progression of BC and in M2 macrophage

polarization (Figure 1).
Heterogeneity and prognostic value of M2-
like TAM revealed by scRNA-seq

Our single-cell data from the GSE176078 cohort of 24 breast

cancers filtered to contain a total of 84,155 cells. After descending
FIGURE 1

Flow chart of this study.
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clustering using the "umap" method, we annotated cell subpopulations

and identified eight cell types, including Epithelial cells, Cycling cells,

Endothelial cells, Mesenchymal cells, T-cells, B-cells, Plasmablasts, and

Myeloid cells (Figures 2A, B). Meanwhile, breast cancer patients were

further categorized into M2 macrophage Low, Median, and High

groups based on the calculated M2 macrophage infiltration ratio of

the 24 samples corresponding to the transcriptome sequencing results

(Figure 2C). The bar-filled graphs showed that the Low group had a

higher comparison of TNBC patients, while the High group had more
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ER+ patients (Figure 2D). Next, we observed a change from the Low

group to the High group, with a significant decrease in the number of T

cells and a significant increase in epithelial cells (Figures 2E, F). To

examine the immune environment of breast cancer at high resolution,

we re-clustered immune cells to identify myeloid cells, and we identified

12 clusters of myeloid cells (Supplementary Figure S1A), and in

combination with differentially expressed genes in different clusters

and classical M1/M2 marker gene expression (Supplementary Figures

S1B, C), we annotated five M2-like (LYVE1+, CX3CR1+, SPP1+,
FIGURE 2

Heterogeneity and prognostic value of M2-like TAM revealed by scRNA-seq. (A) Single-cell UMAP downscaling of the GSE176078 cohort. (B) Marker
gene expression distribution. (C) Stacked histograms grouped according to the proportion of M2 macrophages. (D) Differences in the distribution of
clinical subtypes among the three groups. (E) Cellular UMAP plots grouped according to low/medium/high M2 macrophages. (F) Differences in
immune cell grouping among the three groups. (G) UMAP downscaling of myeloid cell subsets. (H) UMAP plots of myeloid lineage grouped by M2
macrophages. (I) Differences in myeloid cell distribution among the three groups. (J) Mean expression differences of depletion markers in the three
groups. (K) GSVA results of marker pathways between LYVE1+ macrophages and CXCL10+ macrophages. (L, M) Kaplan-Meier analysis of LYVE1+
macrophages and CXCL10+ macrophages in the TCGA cohort.
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FABP5+, and PDE4C+) macrophages, one M1-like (CXCL10+)

macrophage, three dendritic cells (CD1C+, XCR1+, and SLCO5A1+),

monocytes (Mon), and other cells (Figure 2G). Further, we found that

there were more abundant FABP5+ macrophages in the Low group,

while LYVE1+ macrophages were significantly enriched in the High

group (Figures 2H, I). In addition, we assessed the differentiation

potential among different cell clusters by CytoTRACE

(Supplementary Figure S1D), and interestingly FABP5+ macrophages

had the highest differentiation potential, while CXCL10+ macrophages

and LYVE1+ macrophages had weaker differentiation potential. We

then noted that the metabolic scores calculated by scMetabolism

showed significant differences in metabolism between the three

groups, with significant activation of the Arginine biosynthesis

pathway in the Median and High groups, which may support the

M2-type transition in macrophages (Supplementary Figure S1E).

Pathway activity results calculated by PROGENy showed that PDE4C

+ macrophages significantly activated the TGFb pathway, while LYVE1

+macrophages had the highest VEGF pathway activity (Supplementary

Figure S1F). In addition, we noted that most T-cell exhaustion markers

were highly expressed in the Low group (Figure 2J). GSVA enrichment

results showed preferential enrichment of the WNT/b catenin pathway

in LYVE1+ macrophages compared to CXCL10+ macrophages

(Figure 2K). Finally, by the reverse convolution algorithm

(CIBERSORTx) (Supplementary Figure S1G), we found that M2-like

LYVE1+ macrophages were associated with poorer survival in the

TCGA cohort, whereas M1-like CXCL10+ macrophages were a

protective factor (Figure 2L, M).
WGCNA identifies M2 macrophage-
associated molecular subtypes

In the above analysis, we explored the prognostic value of

macrophage subsets in breast cancer. Next, we assessed the

proportion of cellular infiltration in the TCGA cohort by the

Cibersort algorithm (Figure 3A). We categorized the patients in

the TCGA cohort into Low, Median, and High groups of BRCA

patients based on the proportion of M2 macrophage infiltration.

After P-value screening (P<0.05), BRCA patients could be

effectively prognostically stratified according to the M2

macrophage score, and M2 macrophage infiltration was

significantly associated with poor prognosis (Figure 3B). In

addition, the survival curve of the GSE20685 cohort showed

similar results (Supplementary Figure S1H). The heatmap

showed that the gray module (4863 genes) in TCGA-BRCA was

negatively and positively associated with CD8 T cell and M2

macrophage infiltration, respectively (Figure 3C). The venn

diagram showed that the gray module genes were intersected

with 7812 differentially expressed genes in breast cancer to

obtain a total of 2984 differentially expressed M2 macrophage-

associated genes (Figure 3D). Further 109 M2 macrophage-

associated genes with prognostic value were obtained by

univariate Cox regression (P<0.05), and then we performed
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concordance cluster analysis. Combined with heatmap and CDF

curves, we found that K=3 was the optimal clustering number

(Figures 3E, F). Meanwhile, survival analysis showed significant

prognostic differences among the three subtypes, with the C2

subtype having the worst prognosis, the C1 subtype having the

best prognosis, and the C3 subtype being in the intermediate type

(Figure 3G). In addition, we validated that in the GSE20685 cohort,

the heatmap and survival curves showed that the above 109 genes

could effectively stratify the prognosis of BC patients

(Supplementary Figures S1I, J). Heatmap and PCA downscaling

results showed that the 109 M2 macrophage-associated genes

could effectively differentiate the three subtypes, which showed

differential expression in different subtypes (Figures 3H, I). Clinical

characterization circle plots showed that age, stage, and TNM stage

showed significant differences between subtypes, with C2 having a

higher proportion of terminal stage patients (Figure 3J). Violin

plots showed that C3 had the highest level of CD8T cell infiltration;

C2 had the most abundant M2 macrophage infiltration, which may

be associated with its poor prognosis (Figures 3K, L).GSVA

analysis showed that C1 significantly activated hormonal

responses as well as metabolism-related pathways (e.g.,

adipogenesis and bile acid metabolism); relative to C1, C2 and

C3 had significant activation of cell cycle- and proliferation-related

pathways; notably, C3 had a higher proportion of patients with

advanced stage (Figure 3J). activation; notably, C3 showed

significant enrichment of oncogenic-related pathways (e.g.,

KRAS, WNT, and Notch) and immune-related pathways (e.g.,

interferon-gamma response, IL6 JAK STAT3) (Figure 3M). In

addition, the heatmap of KEGG metabolism-related pathways

also revealed significant metabolic differences between subtypes,

especially fatty acid metabolism and tryptophan metabolism

(Supplementary Figure S1K). To further elucidate the biological

significance between the M2 macrophage subtypes of BC, we

analyzed the proteomics data corresponding to the subtypes. We

observed that protein expression of AR, ER, PR, and HER2 was

significantly downregulated in C3, and HER2 was significantly

overexpressed in C2 relative to C1 and C3; we also found that

phosphorylation levels of PI3K/AKT/mTOR pathway proteins

were significantly upregulated in C3 (e.g., AKT ps473 and

downstream of S6 and 4EBP1, etc.), and that cell-cycle proteins

B1, E1, and the kinases CDK1 were all significantly upregulated in

C3 (Supplementary Figure S1L), and these results suggest that C3

may be associated with aggressiveness, drug resistance and poor

prognosis of BC. We then performed univariate and multivariate

Cox regression analyses of clinicopathologic factors and subtypes

of OS. Multivariate analysis showed that both C2 and C3 were

independent prognostic factors for OS in the TCGA cohort

(P<0.001, HR=3.007, 95% CI=1.895-4.772; P<0.001, HR=2.879,

95% CI=1.719-4.820) (Supplementary Figure S1M). The ssgsea

results of specific biological functions indicated that C3 appeared

to have better immune infiltration (CD8T cell effect, immune

profile) and immunotherapy efficacy (CYT, GEP) (Figure 3N). In

addition, immunosuppressive cells such as MDSC and Treg were

also significantly elevated in C3.
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Clinical features and genomic alterations

First, we verify the consistency of transcriptome classification

and consensus clustering by CNN model. The performance metrics

of the model: accuracy, precision, recall, and F1 score reached the
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90% threshold in the TCGA cohort, while the GSE20685 cohort also

had an excellent performance, which further validated the validity

and reliability of transcriptome typing (Figures 4A, B). Bar-filled

plots indicated that C1 and C2 had higher proportions of ER+,

HER2+ and PR+ patients (Figure 4C). Sankey diagrams further
FIGURE 3

Identification of M2 macrophage-associated molecular subtypes. (A) Stacked histogram of the proportions of 22 immune cell types in the TCGA
cohort. (B) Kaplan-Meier analysis shows the correlation between M2 macrophage infiltration and overall survival (OS) in the TCGA BRCA cohort.
(C) WGCNA identifies M2 macrophage and CD8 T cell infiltration-associated modules. (D) Venn diagram of tumor versus normal tissue DEGs with
gray modules taking the intersection. (E, F) Consensus clustering heatmaps and CDF curves show the 3 clusters most stable. (G) Kaplan-Meier
survival analysis was performed to analyze the differences in OS of the three M2 macrophage-associated subtypes (H) Heatmap showing good
separation of the three subtypes identified by the KM algorithm by features. (I) Sample clustering of the TCGA dataset using PCA. (J) Circos plots of
different clinical features among the three subtypes. (K, L) Differences in the infiltration fraction of CD8 T cells and M2 macrophages between the
three subtypes. (M) Heatmap showing the enriched biological pathways between the three subtypes calculated by the GSVA algorithm. (N) Fractional
changes in specific gene sets are assessed by the GSVA algorithm. **p<0.05.***p<0.01.****p<0.001.
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showed that C3 had more patients with TNBC type, while C1 was

predominantly patients with Luma A type (Figure 4D). In a

previous study (27) immune infiltration of human tumors was

classified as C1 (wound healing), C2 (INF-G dominant), C3

(inflammation), C4 (lymphocyte depletion), C5 (immune

silencing), and C6 (TGF-B dominant). the C3 subtype had a

higher proportion of patients with C1 and C3 types (Figure 4E).
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Next, we first analyzed the differences in TMB and MATH scores

between subtypes, and patients with C2 and C3 subtypes had

significant genomic instability and heterogeneity. Furthermore,

the stemness index was able to describe the self-renewal capacity

and differentiation potential of cancer stem cells (CSCs) in

malignant tumors (39), and the results showed the same trend for

the stemness index mDNAsi and mRNAsi (Figure 4F). To further
FIGURE 4

Clinical features and genomic alterations between subtypes. (A, B) Confusion matrix of the CNN algorithm. (C) Differences in the distribution of ER,
HER2, and PR features among the three subtypes. (D, E) Sankey diagrams show the correspondence of M2 macrophage-associated subtypes with PAM
subtypes and immune subtypes. (F) Differences in TMB, MATH, mDNAsi, and mRNAsi scores among the three subtypes. (G–I) Waterfall plots showing
the top 15 genes in terms of mutation frequency for the three subtypes. (J–L) GISTIC 2.0 analysis identifies statistically significant amplifications and
deletions in the three subtypes. (M, N) Volcano plots show changes in DNA methylation. ns: p>0.05. *p<0.05.**p<0.01.***p<0.001.****p<0.0001.
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analyze the genomic alterations among subtypes, we visualized the

somatic mutation landscape among subtypes (Figures 4G–I).

Among them, C3 had the highest overall mutation rate, C1 had

frequent PIK3CA mutations, and C3 had up to 76% TP53

mutations. In addition, we utilized GISTIC2 to detect aberrant

CNV regions in M2 macrophage-associated subtypes. In contrast,

we observed more regions undergoing significant amplification and

deletion in C2 and C3 subtypes (Figures 4J–L). Interestingly, the

differentially methylated probe (DMP) for both C1 vs. C3 and C2

vs. C3 contained cg07810039 (TGFB2) (Figures 4M, N), whose

down-regulation of methylation levels may affect the expression and

function of the TGFB2 gene, and consequently the growth and

metastasis of breast cancer cells.
Pathway enrichment and TME landscape
between subtypes

We explored the altered pathway enrichment and TME

differences among the three subtypes to further explore the

potential mechanisms underlying the prognostic differences

between subtypes. C1 showed the lowest diversity of BCR

enrichment (all P < 0.001), while C3 showed the highest diversity

of TCR enrichment, with the C1 and C2 subtypes showing no

significant difference (Figure 5A). Meanwhile, C3 had significantly

higher levels of tumor-infiltrating lymphocytes (TILs) and IFN-g
than C1 and C2 subtypes (Figure 5B), and previous studies have

shown that high levels of TILs correlate with a favorable prognosis

in TNBC and HER2 overexpressing breast cancers (40). Thus, we

next analyzed the relative expression levels of antigen presentation,

immunosuppressants/activators, chemokines and receptors,

interferons and receptors, interleukins and receptors, and other

cytokines among subtypes (Figure 5C). Overall, most of the genes in

C2 were under-expressed, C1 appeared to be in an intermediate

state, and the immune checkpoint molecules in C3 were

significantly higher than those in both the C1 and C2 subtypes.

In addition, we noted that the hepatitis A virus cell receptor

(HAVCR1) was only highly expressed in C2, however in our

previous studies we noted that HAVCR1 was also strongly

associated with immune escape (41, 42), and may serve as a new

target for cancer immune escape. In a previous study, Joel Saltz et al.

predicted the mapping intensity of swollen TILs within the sliced

area based on CNN modeling of the image blocks, and from this

data we downloaded the intensity maps of TILs distribution in

different subtypes of patients (Figures 5D–F). GSEA showed that

the M2 macrophage pathway was significantly enriched in C3

(Figure 5G). GSVA results showed that C3 was significantly

enriched in immune-related pathways (cytokine interactions, cell

adhesion molecules), while C2 was closely associated with pathways

such as amino acid metabolism, sphingolipid metabolism, and GPI-

anchored biosynthesis (Figure 5H). We further explored possible

alterations in the cancer-immune cycle, and we found that the

activity of C3 was significantly up-regulated in the second, third,

and fourth steps, but significantly down-regulated in the fifth step

(immune cell infiltration into the tumor) (Figure 5I), which may
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explain the underlying mechanism of better immune infiltration

and worse prognosis of the C3 subtype. Next, we quantified the level

of immune cell infiltration in the BRCA cohort by means of

multiple immune infiltration algorithms. First, the Estimate

algorithm results showed that C1 had the highest stromal score,

C3 had a significantly higher immune score than C1 and C2, and

C2 had a higher tumor purity score (Supplementary Figure S2A).

TIDE analysis showed that C1 and C3 had high TIDE scores, while

C3 had a very high Merck18 gene signature (Merck18) score

(Supplementary Figure S2B). In addition, C1 had a high MSI

score and a certain level of infiltration of antitumor cells such as

CD8T cells, NKT cells, and dendritic cells, and its IPS score was also

at a high level, so we hypothesized that C1 tended to be an immune

rejection subtype; in the heatmap, we could directly observe that C2

had a lower infiltration of all kinds of immune cells, especially

reactive CD8T cells, and therefore, C2 was more consistent with the

immune indifference subtype; C3 showed activation of various anti-

tumor immune cells and low infiltration of M2 macrophages but

also had high infiltration of suppressive Treg cells and Th2 cells, and

overall C3 was closer to the immune activation subtype

(Supplementary Figures S2C, D).
Construction and validation of M2
macrophage-associated prognostic
signatures

We first identified M2 macrophage-associated subtype features

by lasso and RF, and the Venn diagram showed that 65 genes were

considered key genes for identifying subtypes (Figure 6A). We

further screened and constructed an M2 macrophage-associated

prognostic signature consisting of 13 genes with robust predictive

efficacy by lasso and stepwise multivariate Cox regression

(Figures 6B–D). BC patients were categorized into high-risk and

low-risk groups based on the median risk score. Survival analysis

showed that patients in the high-risk group had shorter overall

survival (OS) and time-dependent ROC curves were plotted, with

area under the curve (AUC) values of 0.75, 0.8, 0.78, 0.8, and 0.77 at

1, 2, 3, 4, and 5 years, respectively (Figures 6E, F). Excellent

predictive performance was also demonstrated in the GEO

cohort, with 1- and 5-year AUCs greater than 0.7 for the

GSE20685 cohort (Figures 6G, H) and 1- to 5-year AUC values

greater than 0.7 for both the GSE42568 and GSE162228 cohorts

(Figures 6I-L). To make M2GRS more suitable for clinical

applications, we developed a nomogram by combining M2GRS

with clinical features (Figure 6M). The line plot showed that the 1-

10 years predictive C-index of the nomogram and risk score was

significantly higher than that of the other clinical features

(Figure 6N). The calibration curve showed strong agreement

between nomogram predictions and actual observations

(Figure 6O). Decision curve analysis (DCA) further showed that

the nomogram exhibited robust clinical benefit relative to other

clinical features (Figure 6P). In addition, univariate and

multivariate Cox regression indicated that risk score was an

independent prognostic factor (p < 0.001) (Figure 6Q, R).
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Model comparison and clinical
characterization of M2GRS associations

To comprehensively compare the predictive performance of

M2GRS with other prognostic features, we searched the literature

on breast cancer prognostic modeling published in the last few years

and included 25 different features that demonstrated that M2GRS

has significantly higher C-index performance than other predictive

models (Figures 7A–D). Next, we explored the association of

M2GRS with multiple clinical features (Figures 7E, F). Boxplot
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results showed that the C2 subtype had the highest risk score in the

TCGA-BRCA cohort, C3 was in the middle, and C1 had the lowest

risk score; whereas the risk score increased with Stage, T.Stage,

N.Stage, and M.Stage, as well as the risk score was higher in patients

with Age>60 We also observed that the PAM-defined clinical

subtypes Her2 type had the highest risk score, followed by LumB,

and Normal type had the lowest. Invasive ductal carcinoma (IDC)

and invasive lobular carcinoma (ILC) are two common histologic

types, and IDC is diagnosed in approximately 75% of BC patients

(43). In addition, patients with IDC had significantly higher risk
FIGURE 5

Pathway enrichment and immune landscape between subtypes. (A) BCR and TCR enrichment across subtypes. (B) Differences in TILs and IFN-g
between subtypes. (C) Relative expression levels of antigen presentation, immunosuppressants, immunostimulants, chemokines, interleukins, other
cytokines, and their receptors in the three subtypes. (D–F) Mapping images of the three subtypes of TIL. (G) GSEA analysis shows the correlation of
clusters with the M2 macrophage gene set. (H) The top 10 enriched KEGG pathways of C2 and C3 were explored by GSVA analysis. (I) Box plots
showing differences in cancer immunocycle scores between the three subtypes. ns: p>0.05. *p<0.05.**p<0.01.***p<0.001.****p<0.0001.
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FIGURE 6

Construction and validation of M2GRS. (A) Venn diagram of machine learning screening of M2 macrophage-related genes. (B) Trajectories of each
independent variable with lambda. (C) Coefficient distribution plots of the log(lambda) levels used for parameter selection (lambda). (D) Multivariate
Cox coefficients for each gene in the risk model. (E-M) curves and ROC curves of the risk model were constructed for 13 genes in the TCGA cohort
and the GEO cohort. (M) Column line plot combining age, staging, and risk score. (N) Line plots of C-index values of risk scores and clinical
characteristics over time in the TCGA cohort. (O) Calibration curves for constructed 1-, 3-, and 5-year survival line plots. (P) DCA decision curve
analysis. (Q, R) Forest plots for univariate and multivariate Cox regression analysis.
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scores than those with ILC and also had mixed cancers (Mixed)

than those with ILC. Finally, the Clinical Characteristics circle plot

showed a higher proportion of patients with Her2+ and PR+ in the

high-risk group (Figure 8A). Finally, the Sankey diagram also

showed that the high-risk group had the highest proportion of

patients with the C2 subtype and that patients in the low-risk group

were more likely to have the LumA type and had a better survival

prognosis (Figure 8B).
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Somatic mutations and functional
enrichment of M2GRS

First, the tumor mutation load (TMB) was significantly higher

in the high-risk scoring group than in the low-risk scoring group,

and correlation analysis revealed a significant positive correlation

between M2GRS and TMB (Figure 8C). In the TCGA-BRCA

cohort, changes in the distribution of somatic mutations between
FIGURE 7

Model comparison and clinical characteristics of M2GRS. (A–D) Performance comparison of M2GRS with 25 published prognostic models in TCGA and three
GEO cohorts. (E, F) Box line plots demonstrating the association between M2GRS and BC clinical features. ns: p>0.05. *p<0.05.**p<0.01.***p<0.001.
****p<0.0001.
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the low-risk and high-risk groups were investigated (Figures 8D, E).

Patients in the low-risk group had a significantly higher frequency

of somatic mutations compared to patients with high-risk scores

(88.81% vs. 86.55%), especially PIK3CA (39% vs. 29%), TP53 (27%

vs. 45%), GATA3 (15% vs. 10%), TTN (14% vs. 20%), and CDH1

(14% vs. 9%). GSVA of KEGG pathways showed that metabolism-

related pathways (e.g., aminoglycan and nucleotide glucose

metabolism, glycolytic gluconeogenesis) and tumor growth

pathways (e.g., cell cycle and DNA replication) were enriched in
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high-risk patients, whereas immunity-related pathways (JAK STAT

signaling, cytokine-receptor interactions, and primary immune

deficiencies, etc.) were enriched in patients with low-risk groups

(Figure 8F). In addition, the oncogenic-related pathways Notch and

Hedgehog signaling pathways were also enriched in the low-risk

group. similar results were obtained by GSEA: the high-risk group

was significantly enriched in metabolic and cell cycle-related

pathways, and the low-risk group was mainly enriched in

immune-related pathways (Figures 8G, H). In addition, we
FIGURE 8

Somatic mutation and functional enrichment of M2GRS. (A) Correlations between M2GRS and various clinical features. (B) Sankey diagram
demonstrating the distribution between subtypes and risk groups. (C) Correlation analysis between M2GRS and TMB. (D, E) Waterfall plots
demonstrate the mutational landscapes between high- and low-risk groups. (F) KEGG pathway enrichment scores between high and low M2GRS
groups were analyzed using GSVA and the top 20 differential pathways are shown. (G, H) GSEA demonstrates the enriched pathways in the high and
low-risk groups. (I) Box line plot showing differences in 14 cancer-related pathways between high- and low-risk groups. (J) Correlation between
M2GRS scores and steps in the cancer-immune cycle (left) and correlation between M2GRS scores and published pathway-specific feature
enrichment scores (right). ns: p>0.05. *p<0.05.**p<0.01.***p<0.001.
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calculated scores for 14 cancer-related pathways and showed that

the PI3K pathway was enriched in the high-risk group, whereas the

low-risk group had concurrent activation of oncogenic (WNT and

MAPK) and immune pathways (TNFa and JAK-STAT) (Figure 8I).

Finally, correlation analysis of risk scores (M2GRS) revealed that

risk scores were positively correlated with multiple signals such as

mismatch repair, cell cycle, P53 signaling pathway, base excision

repair, and viral oncogenesis, and negatively correlated with scores

of IFN-g, APM signaling, and multiple steps of the cancer immune

cycle (Figure 8J).
Analysis of intercellular communication
between high and low M2GRS groups

The cellchat algorithm was applied to explore and estimate

intercellular signaling communication based on single-cell

transcriptomic data from the GSE176078 cohort. The results

showed that the number and interaction strength of intercellular

communication increased in the high M2GRS group (Figure 9A).

We noted that Mesenchymal cells seem to play an important role in

cellular communication in BC and that the number and strength of

interactions between epithelial cells (senders) and myeloid cells

were increased in the high-risk group. In addition, to investigate the

specific role of M2GRS in TME at the single-cell transcriptome

level, we further quantified M2GRS scores at the scRNAseq level

using AddModuleScore, singsore, Ucell, and AUcell algorithms. All

algorithms showed higher CRS scores for epithelial and Cycling

cells and lower M2GRS scores for T-cells, B-cells, and Plasmablasts

(Figures 9B, C). The information flow of each signaling pathway

was then calculated to determine the probability of communication

for all cell type pairs and further quantified between Mesenchymal

cells and other cells (Figures 9D, E). In the low M2GRS group,

CD99 and FN1 pathways were reduced, MHC-I, CD45 signaling

pathways were turned off, and some pathways, such as SPP1, CLEC,

and PDGF signaling pathways were turned on (Supplementary

Figure S4A). We selected two classical signaling pathways for

further analysis. The communication interactions of MK and APP

signaling pathways were analyzed in all cell types in the high and

low M2GRS groups, in which myeloid cells both played a more

important role in the high-risk group (Figures 9F–I).
TME landscape and immunotherapy
evaluation

Next, we further explored the TME profiles between the high and

low-risk groups. First, the Estimate algorithm showed that both

stromal and immune scores were higher in the low M2GRS group

(Supplementary Figure S3A), and that either activated B cells or

activated CD8T cells were significantly higher in the low M2GRS

group compared to the high M2GRS group (Supplementary Figure

S3B). The expression of antigen-presenting and immune checkpoint-

associated genes was significantly down-regulated in the high
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M2GRS group (Supplementary Figures S3C–E). The infiltration

fraction of M2 macrophages was significantly upregulated in the

high M2GRS group, while CD8T cells were significantly

downregulated (Supplementary Figure S3F). The heatmap also

demonstrated a related trend, with lower cellular infiltration in the

high M2GRS group, particularly of anti-tumor immune cells (B cells,

NK cells, and CD8T cells, among others) (Supplementary Figure

S3G). Finally, we analyzed the correlation of modeled genes with

immune cells and showed that DLG3 was simultaneously

significantly positively correlated with M2 macrophages and

significantly negatively correlated with CD8T cells, suggesting its

important role in the BC tumor microenvironment (Supplementary

Figure S3H). The correlation scores of M2GRS with immune cells

also showed that our constructed M2GRS analysis score was

significantly positively correlated with M2 macrophages and

negatively correlated with CD8T cells, and dendritic cells

(Supplementary Figure S3I). To assess the impact of M2GRS on

BC immunotherapy efficacy, we selected three independently

published immunotherapy cohorts for assessing the accuracy of

M2GRS in predicting immunotherapy response. First, we analyzed

a cohort of uroepithelial cancers treated with anti-PD-L1 therapy

(IMvigor210). The low-risk group showed better prognostic

outcomes compared to the high-risk group. Also, patients in the

low-risk group had a higher response rate to immunotherapy

(Figure 10A). In addition, SubMap analysis was used to assess the

response to anti-PD-L1 immunotherapy in BC patients in the high-

risk and low-risk groups. The results showed that the low-risk score

effectively predicted partial response (PR) to anti-PD-L1

immunotherapy, while the high-risk score predicted stable disease

(SD) to anti-PD-L1 immunotherapy (Figure 10B). In the GSE78220

cohort, we found a higher proportion of PD/SD patients in the high-

risk group (Figure 10C). In the GSE100797 cohort, patients in the

low-risk group showed good prognosis and benefited significantly

from immunotherapy (Figure 10D). Finally, the Immunophenotype

Score (IPS) was used to predict the immunotherapeutic efficacy of

anti-CTLA4 and PD-1 in patients, and the violin plots showed that

the scores in the low-risk group were all significantly higher than

those in the high-risk group (Figure 10E). Overall, a prognostic

signature based on M2 macrophage-related gene constructs was

effective in predicting the prognosis and immunotherapy response of

BC patients.
Comprehensive analysis of the key gene
DLG3

In the above study, we found that the mRNA expression ofDLG3

was significantly positively correlated with M2 macrophages and

negatively correlated with M1 macrophages and CD8 T cells, so we

hypothesized that DLG3 plays an important role in the prognostic

features andmay promote the formation of immunosuppressed TME

in BC patients. Firstly, we analyzed the differential expression of

DLG3 in the tumor tissues and normal tissues, and the results showed

that DLG3 mRNA expression in the TCGA cohort was significantly
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1650726
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1650726
higher than that in normal tissues (Figure 11A).DLG3 expression was

upregulated in patients with advanced BC, with the highest DLG3

expression level in patients with HER2 type and the lowest in Basal

type (Supplementary Figures S4B, C). Survival analysis further

showed that patients with high DLG3 expression had a significantly
Frontiers in Immunology 17
lower probability of survival (Figure 11B). The same results were

shown in the GSE20685 cohort (Supplementary Figure S4D). We

then explored DLG3 expression at the single-cell level, with the

BRCA_EMTAB8107 cohort showing high expression of DLG3

predominantly in malignant cells, fibroblasts, and CD8Tex
FIGURE 9

Analysis of intercellular communication between high and low M2GRS groups. (A) Circle plots of the number and intensity of communications
between immune cells and tumor cells. (B, C) Bubble and violin plots showing enrichment scores for the M2GRS gene set using AUCell, UCell,
singscore, and AddModulescore for each cell type. (D) Bubble plots of altered intercellular communication are mediated by individual signaling axes,
with the horizontal axis showing the cell class that initiates and receives the signal and the vertical axis showing the receptor-ligand pairs of the
signaling pathway. (E) Ranked bar graphs showing signaling axes of interacting networks in the high and low M2GRS groups. (F–I) MK and APP
signaling pathways in the low and high M2GRS groups.
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(Figures 11C, D), and multiple BC single-cell cohorts of TISCH2

further showing that DLG3 was expressed predominantly with

subpopulations of malignant cells and cells such as Tprolif

(Supplementary Figure S4E). To explore the inhibitory role of

DLG3 in immunomodulation, we used different algorithms to

assess DLG3 gene expression with CD8T cell infiltration in the

Pan-cancer cohort. The results showed that DLG3 expression was

negatively correlated with CD8T cell infiltration in a variety of

cancers (Figure 11E). GSEA demonstrated that many immune-

related pathways, such as T-cell receptor signaling and Nod-like

receptor signaling, were enriched in patients with high DLG3

expression in most cancer types (Figure 11F). In addition, GSVA

showed that DLG3 high expression was significantly enriched for

metabolic processes such as GPI-anchored biosynthesis, biotin

synthesis, and others (Supplementary Figure S4F). Previous studies

have shown that tumors with high inflammatory T-cell scores

typically have more T-cell infiltration, which may correlate with

better immunotherapy outcomes (44). In addition, the MeTIL score

is a score calculated based on DNA methylation and is used to assess
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tumor-infiltrating lymphocytes (TILs), especially CD8+ TILs (45),

high levels of TILs contribute to increased responsiveness to

neoadjuvant chemotherapy and survival in BC patients, especially

in HER2-positive and TNBC breast cancer patients (40). Figure 11G

shows that patients with low DLG3 expression have higher T cell

inflamed scores and MeTIL scores, which may represent a better

immunotherapy efficacy and survival prognosis with low DLG3.

In addition, analysis of multiple immunotherapy cohorts also

showed the predictive potential of DLG3 for immunotherapy

(Supplementary Figure S4G). Correlation analysis demonstrated

that DLG3 was negatively associated with multiple steps of the

cancer immune cycle, potentially influencing anti-tumor immune

processes and promoting the formation of an immunosuppressive

microenvironment (Figure 11H). To capture gene expression at

single-cell resolution and its correlation with the functional status

of cancer in BC, the dataset used RNA-seq data from circulating

tumor cells (CTC) in the blood of metastatic ER-positive BC, as

shown in Figure, DLG3 expression was positively correlated with the

cell cycle and invasive functional status, and negatively correlated
FIGURE 10

M2GRS predicts immunotherapy response. (A) Prognostic differences between risk-scoring groups in the IMvigor210 cohort; differences in risk
scores for immunotherapy response in the IMvigor210 cohort; distribution of immunotherapy response in risk-scoring groups in the IMvigor210
cohort; (B) Submap analysis showing that M2GRS predicts response to anti-PD-L1 therapy. The obtained p-values were adjusted by the Bonferroni
method. (C) Prognostic differences between risk score groups and differences in immunotherapy response scores and distribution (GSE782220).
(D) Prognostic differences between risk score groups and differences in immunotherapy response scores and distribution (GSE100797).
(E) Differences in IPS scores between risk groups. ns: p>0.05. *p<0.05.****p<0.0001.
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with inflammatory status in BC (Figure 11I). Finally, to explore

clinical therapeutic options with DLG3 as a potential target,

we predicted the differences in drug sensitivity between high

and low DLG3 groups using CTRP and PRISM databases, and

the results showed that three groups of drugs were significantly

negatively correlated with DLG3 expression, including: panobinostat

(HDAC inhibitor, targeted drug), sirolimus (mTOR inhibitor,

immunosuppressant) and deforolimus (mTOR inhibitor, targeted
Frontiers in Immunology 19
drug) (Figures 11J, K). The 2D and 3D structures of panobinostat

were obtained from the PubChem database, and panobinostat was

molecularly docked to DLG3. The binding energy of the docking is

usually considered to be <-5 kcal/mol, and there is a good binding

capacity between the two. Using AutoDock Tools software,

the docking results showed good binding between panobinostat

and DLG3, and DLG3 may be a potential binding target for

panobinostat (Figure 11L).
FIGURE 11

Comprehensive analysis of the key gene DLG3. (A) Differences in DLG3 expression in BC tumors and normal tissues. (B) KM survival curves grouped
according to median DLG3 expression. (C, D) DLG3 expression in different cell types. (E) Correlation between DLG3 expression and CD8 T cell
infiltration in the Pan-cancer cohort. (F) Pan-cancer GSEA analysis of immune response-related pathways between high DLG3 and low DLG3 tumor
tissues. (G) Differences in scores between high and low DLG3 groups. (H) Correlation analysis between DLG3 and cancer immune circulation score.
(I) Correlation between gene expression and different functional states in BC. (J, K) Results of pharmacovigilance screening based on DLG3
expression in CTRP and PRISM data. (L) Molecular docking of panobinostat with DLG3. *p<0.05.**p<0.01.***p<0.001.
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DLG3 shapes the immunosuppressive
microenvironment of BC

In the above analysis, we noted that DLG3 may affect

immunotherapy efficacy in BC patients and is mainly highly

expressed in malignant or suppressive cell subpopulations, so we

explored the potential role of DLG3 in the immunosuppressive

microenvironment of BC in a pan-cancer cohort and multiple

cohorts of breast cancer. First, correlation heatmaps showed that

DLG3 expression was significantly negatively correlated with the

vast majority of MHC molecules, cytokines and their receptors, and

immunosuppressor/activator genes in BRCA, in addition to a

similar trend in cancers such as BLCA, KIRC, etc. (Figure 12A).

GSEA of the TCGA cohort and the 20 GEO public cohorts

demonstrated that DLG3 was associated with interferon a/g
response, inflammatory response, TNFa signaling, IL6 JAK

STAT3 signaling, and IL2 STAT5 signaling, etc., and was

significantly positively correlated with the estrogen response

pathway (Figure 12B). The above results suggest that DLG3 may

be involved in the development of BC and the formation of the

immunosuppressive microenvironment. Spatial transcriptome

results of multiple BRCA samples all showed that DLG3 was

mainly localized in tumor cells, while partially expressed in

epithelial cells, macrophages, and fibroblasts (Supplementary

Figure S4H). Figure 12C is a spatial transcriptome deconvolution

that was utilized to show cellular composition and maxima at each

point to provide a spatial map of the cellular distribution within the

tumor. map, the results showed that DLG3 was highly expressed

mainly in the tumor cell region. Spearman correlation analysis

showed that DLG3 was negatively correlated with all kinds of

immune cells and positively correlated with tumor cells

(Figure 12D). In addition, the histogram showed that DLG3 was

mainly expressed in malignant areas (Supplementary Figure S4I).
Role of DLG3 in BC progression and
macrophage polarization

We first assessed the efficiency of specific siRNA silencing of

DLG3 expression in two cell lines, MDA-MB-231 and SK-BR-3, and

the interferences with higher knockdown efficiencies were selected

for subsequent experiments (Figures 13A, B). CCK8 assay showed

that knockdown of DLG3 significantly inhibited the proliferative

ability of BC cells (Figures 13C, D. Clonogenic speckle formation

assay showed the same trend (Figure 13E). The results of Transwell

assay showed that knockdown of DLG3 significantly inhibited the

migration and invasion ability of BC cells (Figure 13F). In addition,

wound healing assay also showed that knockdown of DLG3

significantly inhibited the migration ability of BC cells

(Figure 13G). We then co-cultured control and DLG3 knockdown

BC cells with PMA-induced THP-1 macrophages in a Transwell

system (Figure 1 Step 6). RT-qPCR results showed that DLG3

knockdown BC cells enhanced the expression levels of M1

biomarkers (TNF-a and CD86) and down-regulated the M2

biomarker expression (CD206 and CD163) (Figures 13H, I). Flow
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cytometry analysis further showed that the proportion of M2

macrophages (CD206 as a marker) was significantly reduced after

co-culture with DLG3 knockdown BC cells (Figure 13J). This

suggests that DLG3 plays an important role in promoting

macrophage polarization to the M2 phenotype.
Discussion

Due to the heterogeneity and prognostic differences of BC,

powerful classifiers are of great research value for precision

medicine and improvement of prognosis, and the study of its

molecular subtyping has been the focus of bioinformatics. The

research results by Perou et al. are epoch-making for molecular

typing of BC, which classified BC into four major molecular

subtypes, LuminalA, Luminal B, HER-2 overexpression, and

Basal-like type, through clustering analysis of gene expression

profiles (46). Different gene expression patterns reflect

fundamental differences in tumor cell biology and, more

importantly, correlate significantly with clinical outcomes, and BC

intrinsic typing has been widely recognized and applied (47). A

study by Jiang et al. provided an in-depth analysis of 465 cases of

triple-negative breast cancer (TNBC) by genomic and

transcriptomic sequencing, and classified TNBC into four

subtypes: luminal androgen receptor (LAR), immunomodulatory

(IM), basal-like immune- suppressed (BLIS) and mesenchymal-like

(MES). This typology not only reveals the complexity of TNBC at

the molecular level, but also shows significant differences in

prognosis and response to therapy between the different subtypes

(48). The above studies suggest that molecular subtyping studies of

BC are important for understanding the heterogeneity of BC,

guiding individualized treatment, and improving patient prognosis.

High infiltrating abundance of TAM is associated with poor

prognosis in a variety of tumors, and most TAM are expressed in the

M2 phenotype (12). M2 macrophage infiltration has been previously

documented for melanoma (49) and gastric cancer (50) squamous cell

carcinoma of the head and neck (51) and other cancers with

predictive value for prognosis and immunotherapy, but there is no

study in breast cancer to synthesize the clinical value of M2-like

macrophage pairing with breast cancer patients by bioinformatics, in

this study, we first explored the difference in immune cell composition

of the three levels of M2 macrophage infiltration of Low/Median/

High in the single-cell transcriptome, in which we noted that in the

High M2 macrophage group had the highest percentage of LYVE1+

macrophages, and survival curves by back-convolution to the TCGA

cohort also indicated that their high expression had poorer OS and

significantly activated the Wnt/b catenin signaling pathway. Previous

studies have confirmed that activated Wnt/b-catenin signaling

promotes M2 macrophage polarization (52), and that LYVE1+

macrophages express typical M2 macrophage markers (CD163,

CD206) and exert a wide range of homeostatic and tissue repair

functions (53). LYVE-1+ macrophages in the BC tumor

microenvironment may affect tumor progression and immune

responses through multiple mechanisms, such as forming

multicellular nesting structures, inducing immunosuppression, and
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influencing tumor angiogenesis and metastasis (21). Next, we

identified three different subtypes based on M2 macrophages using

TCGA-BRCA as a training set, which were validated in the GEO

cohort. By comprehensive multi-omics analysis among subtypes, we

concluded that C1 had the best prognosis, moderate M2 macrophage

infiltration, metabolically active, high stromal and immune
Frontiers in Immunology 21
infiltration, and predominantly Luminal A subtype; C2 had the

worst prognosis, had the highest M2 macrophage infiltration and

M2GRS, had a moderate level of genomic mutations, and low

expression of immune-related genes, and was biased toward and

immune-deserted type. In contrast, C3 has an intermediate prognosis,

high levels of genomic mutations, abundant immune infiltration,
FIGURE 12

DLG3 shapes the immunosuppressive microenvironment of BC. (A) Heatmap of the correlation between DLG3 and immune-related genes in a pan-
cancer cohort. (B) Bubble map of GSEA enrichment in TCGA and 20 BC cohorts. (C) Cellular localization and expression of the spatial transcriptome.
(D) Spearman correlation analysis of cell-to-cell, and DLG3 expression to cell.
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predominantly TNBC pathologic subtype, and immunotherapy

sensitivity. Combined with proteomic data of the subtypes,

targeting these specific biological features may require the

development of novel therapeutic strategies, such as inhibitors

against the PI3K/AKT/mTOR pathway, and targeted therapies

against HER2, to enhance therapeutic efficacy and improve patient

prognosis. In addition, immunotherapy is playing an increasingly

important role in the treatment of TNBC, which is considered a

potential candidate for immunotherapy due to its high PD-L1
Frontiers in Immunology 22
expression, high TMB, and more TILs (6, 54, 55), in metastatic

TNBC (mTNBC), immunotherapy in combination with

chemotherapy (e.g., nab-paclitaxel) has shown progression-free

survival (PFS) and OS benefits in selected populations (PD-L1-

positive subgroups) (56). New immunotherapy strategies are being

explored, including the combination of CXCR2 inhibitors with ICIs

(57), and the use of nanotechnology to develop PmTriTNE@CDA, a

CD44×PD-L1/CD3 tri-specific T-cell nanoadapter for enhancing

TNBC immunogenicity (58).
FIGURE 13

Role of DLG3 in BC progression and macrophage polarization. (A, B) RT-qPCR to verify the interference efficiency of DLG3. (C, D) CCK8 assay for
knockdown of DLG3. (E) Knockdown of DLG3 in clonal speckle formation assay. (F, G) Transwell and wound healing assays of knockdown DLG3.
(H, I) Relative mRNA expression of TNF-a, CD86, CD206, and CD163 in THP-1-derived macrophages was detected by RT-qPCR after co-culture
with control or DLG3 knockdown BC cells. (J) Co-culture treatment of THP-1 cells followed by analysis of THP-1 polarization by flow cytometry.
*p<0.05.**p<0.01.***p<0.001.
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In order to facilitate clinical application and quantify the M2

macrophage score, we further identified the core genes for subtype

identification by machine learning algorithms (RF and Lasso) based

on the above key transcriptomic features for typing, and

constructed a robust and reliable M2 macrophage-associated

prognostic model with strong predictive ability by multivariate

Cox. Not only its AUC is greater than 0.7 in both TCGA training

set and GEO validation set, but also compared with the breast

cancer-related prognostic models published in recent years, our

M2GRS exhibits a significant performance advantage, and we

preliminarily demonstrated that M2GRS can be used to predict

the response to immunotherapy through the immunotherapy

cohort. In addition, in the pathway enrichment between high and

low risk groups, we noticed that the high-risk group was

significantly enriched in metabolic pathways such as amino acid

and nucleotide metabolism, glycolysis, and the citric acid cycle,

while the relatively low risk group activated both oncogenic and

immune response pathways. Moreover, M2GRS was significantly

negatively correlated with multiple steps of the cancer immune

cycle and significantly positively correlated with M2 macrophage

infiltration, suggesting that our construct M2GRS correlates with a

variety of biological features of BC with strong predictive power. In

addition, previous studies suggested that our MK and APP

pathways could promote BC angiogenesis and immune escape

(59), we noticed that myeloid cells with high M2GRS played a

more important cellular communication role in the MK and APP

pathways, which might represent a stronger angiogenic and

immune escape potential in the high M2GRS group. Then, we

identified a specific role of DLG3 by correlation analysis, whose role

in TME has not been revealed. Based on the comprehensive analysis

of bulk transcriptome, single-cell transcriptome and spatial

transcriptome, we noticed that DLG3 was not only negatively

correlated with CD8T cells and positively correlated with M2

macrophages, but also associated with several indicators of

immunotherapy (inflammatory T cells, cancer immune cycle,

etc.), and the subsequent multi-cohort analysis confirmed that

DLG3 had some predictive potential for immunotherapy. And the

correlation analysis with immunosuppressants, immune activators,

MHC molecules and cytokines and other immune-related genes,

and the GSEA enrichment analysis of 21 transcriptomics cohorts of

breast cancer further confirmed that DLG3 might be involved in

shaping the immunosuppressive microenvironment of BC.

Macrophages are highly plastic and can be induced into the M2

phenotype by tumor cells. We speculated whether high expression

of DLG3 in BC cells would induce M2 polarization of macrophages

in BC TME, and our subsequent in vitro experiments confirmed

this conjecture.

However, our study still has some limitations. First, this study

primarily analyzed public databases, so inherent case selection bias

may have influenced the results, and further validation in larger

prospective trials is needed to assess the value of clinical

applicability of M2 macrophage-associated molecular subtypes

and prognostic models. Second, we investigated differences in

response to M2GRS-predictive immunotherapy using cohorts

such as IMvigor210 and the applicability to BC patients remains
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to be further validated in clinical trials. Third, more combined

histological information is needed for comprehensive analysis to

fully resolve macrophage dynamics in BC and for precise

quantification. Finally, the key gene DLG3 requires further in vivo

experiments to validate its functional role in BC and uncover

potential molecular mechanisms.

Overall, our study identified a novel and reliable M2-like TAM-

associatedmolecular subtype and constructed a prognostic model, which

can be used to predict OS and immunotherapeutic response in BC, and

also explored the potential role of DLG3 in the immunosuppressive

microenvironment of BC. Our study was able to broaden the

understanding of the role of M2-like TAMs in BC biology and

prognostic prediction, and DLG3 is expected to be a novel predictive

biomarker of BC prognosis and immunotherapeutic response.
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