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Dendritic cells (DCs) constitute a heterogeneous population of immune cells that
acting as antigen presenting cells link innate and adaptive immune responses.
Their functions are mainly dictated by microenvironmental cues, enabling them
to either maintain immune tolerance or initiate robust humoral and cellular
immune responses. While DCs are important for orchestrating immune
responses, accumulating evidence suggests that aberrant DC activation
contributes to the pathogenesis of autoimmune and chronic inflammatory
diseases, making them promising targets for therapeutic modulation.
Modulating DC functionality therefore represents a potent strategy to
attenuate excessive inflammation in such conditions. Plant-derived bioactive
compounds, or phytochemicals, are structurally diverse secondary metabolites
with established anti-inflammatory and immunomodulatory properties. This
review consolidates current in vitro, in vivo, and in silico findings on ten well-
characterized phytochemicals including curcumin, 6-gingerol, 6-shogaol,
resveratrol, epigallocatechin-3-gallate, quercetin, apigenin, capsaicin,
berberine and ginsenosides, which have the capacity to modulate DC
phenotype and function. Notably, these phytochemicals can skew DCs toward
a tolerogenic phenotype, characterized by reduced expression of antigen
presenting and co-stimulatory molecules, diminished pro-inflammatory
cytokine secretion, and enhanced regulatory T cell induction. Mechanistic
insights reveal convergence on key signaling pathways such as nuclear factor-
kappa B (NF-xB), mitogen activated protein kinase (MAPK) and mammalian target
of rapamycin (mTOR) in DCs. In silico studies further predict interactions of these
compounds with various molecular targets, providing a structural basis for their
immunoregulatory effects. Furthermore, studies using preclinical models of
autoimmune and inflammatory diseases have demonstrated that these
phytochemicals can attenuate disease severity, likely through DC modulation.
Given their multifaceted immunomodulatory capacity, phytochemicals hold
promise both as adjuvant therapies in DC-mediated autoimmune diseases and
as agents for generating tolerogenic DCs for cell-based immunotherapies.

phytochemicals, dendritic cells, bioactive compounds, inflammation, Autoimmune
disease, therapy, tolerogenic
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1 Introduction

Dendritic cells (DCs) are a specialized group of immune cells
with a pivotal role in orchestrating both innate and adaptive
immune responses. Beyond their well-known function as
professional antigen presenting cells, DCs are essential for
maintaining peripheral tolerance and immune homeostasis under
physiological conditions. As primary sentinels of the immune
system, they rapidly detect invading pathogens or endogenous
danger signals and initiate appropriate immune responses. Their
inherent plasticity enables them to dynamically respond to
environmental stimuli and to adopt either immunostimulatory or
tolerogenic phenotypes, thus contributing to both initiation of
inflammatory responses and the induction of immune tolerance.
Owing to their exceptional immunomodulatory capacity, they are
considered promising therapeutic targets for the treatment of
various inflammatory and autoimmune diseases (1).

In recent years, increasing attention has been directed toward
plant-derived bioactive compounds as potential immunomodulatory
agents (2). Plants are rich in diverse secondary metabolites, commonly
categorized into phenolics, terpenoids, and nitrogen-containing
compounds based on their chemical structures, biosynthetic origin,
and biological functions (3). These phytochemicals are not only
central to the defense mechanisms of the plants, but also exert a
wide range of pharmacological effects in humans. Many of them have
been recognized for their anti-inflammatory, antioxidant
antimicrobial, anticancer, neuroprotective, and cardioprotective
activities. Their immunomodulatory properties, in particular, have
gained attention in the context of chronic inflammation and immune
mediated disorders (4).

Several in vitro and preclinical studies have demonstrated
that specific phytochemicals can modulate DC function by
promoting a tolerogenic phenotype. These compounds are
often derived from medicinal and culinary plants such as herbs,
spices, fruits, and vegetables, which have long been used in
traditional medicine (4). By interfering with signaling
pathways, cytokine production, and costimulatory molecule
expression, these molecules may inhibit DC maturation or
promote the development of DC subsets with a tolerogenic
phenotype. Consequently, they hold therapeutic promise in
shaping immune responses toward tolerance, especially when
applied in ex vivo DC-based immunotherapies.

In this review, we aimed to compile current evidence on the
immunomodulatory effects of plant-derived bioactive compounds
on DCs, with a particular focus on their potential use in treating
autoimmune and inflammatory conditions. Specifically, we selected
10 well-characterized phytochemicals including curcumin, 6-
gingerol, 6-shogaol, resveratrol, epigallocatechin-3-gallate,
quercetin, apigenin, capsaicin, berberine and ginsenosides. These
bioactive compounds were selected based on literature data
demonstrating their immunosuppressive properties and ability to
promote tolerogenic DC differentiation. Scientific publications from
the past two decades were collected from databases such as PubMed
and Web of Science, using combinations of terms such as “dendritic
cell,” “tolerogenic,” “immunosuppressive,” and the specific
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compound names. Retrieved articles were manually screened to
ensure relevance, and reviewed to provide a comprehensive
overview of the current findings and to highlight potential
directions for future therapeutic applications. In addition, during
the manual selection process, preference was given to peer-reviewed
articles published in reputable scientific journals to ensure data
quality. Studies using purified compounds were included, while
those employing crude extracts were excluded. The chemical
classification, structural features, and biological functions of the
selected compounds are presented in Table 1.

2 DCs at a glance

In the early 1970’s a special stellate shaped cell type was
discovered in mouse spleen by Steinmann and Cohn (5, 6). These
cells were named DCs for their tree-like processes after the Greek
word, dendron, meaning tree. The large surface area enables DCs to
interact with numerous surrounding cells, and simultaneously
present antigens to multiple T cells. While DCs are known for
their high antigen presenting capacity, their role goes far beyond
antigen presentation. In addition to interacting with T cells, DCs
communicate with innate immune cells such as natural killer (NK)
cells and neutrophils, and convey information to non-immune cell
types as well. As a result, DCs are able to exhibit a multitude of tasks
from initiating, coordinating and regulating immune responses to
maintaining tissue homeostasis and self-tolerance (1).

DCs constitute a heterogeneous population of immune cells
originating from the bone marrow (7). They are widely distributed
throughout the body, circulate in the blood and are present in both
lymphoid and non-lymphoid tissues. Based on their ontogeny,
phenotype and transcriptional profile DCs can been categorized
into distinct subsets. In humans, DCs comprise approximately 1%
of peripheral blood mononuclear cells (PBMCs) and are generally
classified into two major groups: plasmacytoid DCs (pDCs) and
conventional DCs (cDCs), each endowed with distinct effector
functions (7). pDCs majorly sense viral infections and as a
response rapidly produce type I interferons (IFNs) to create an
immediate phase of antiviral state in the surrounding cells (8). The
cDC compartment consists of several subtypes that express a broad
range of pattern recognition receptors such as Toll-like receptors
(TLRs) enabling them to detect a wide variety of pathogens (9).
Importantly, under inflammatory conditions, DCs might also arise
from monocytes that are usually termed as inflammatory or
monocyte-derived DCs (moDCs) (7). In 1994, Sallusto and
Lanzavecchia described that human monocytes treated with
granulocyte-macrophage colony-stimulating factor (GM-CSF) and
interleukin-4 (IL-4) acquire DC-like properties (10). Since then,
moDC has become the most commonly used in vitro model for
studying DC biology and for DC-based immunotherapy
approaches. For a long time, Langerhans cells (LCs) in the skin
were also considered DCs due to their migratory capacity and
antigen presenting functions. However, recent findings have
revealed their distinct developmental origin and LCs have been
reclassified as macrophages (11). The major DC subsets are highly
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TABLE 1 Characteristics and main biological properties of selected phytochemicals.

Compound

curcumin

Class

polyphenol

Main plant source

Curcuma longa

2D structure

10.3389/fimmu.2025.1653803

anti-inflammatory
antioxidant
antimicrobial
anticancer

Biological properties = Ref.

(18)

6-gingerol

phenolic compound

Zingiber officinale

anti-inflammatory
antioxidant
antimicrobial
anticancer
antiemetic

(38)

6-shogaol

phenolic compound

Zingiber officinale

HO

anti-inflammatory
antioxidant
antimicrobial
anticancer
antiemetic

(38)

resveratrol

EGCG

polyphenol

flavonoid

Polygonum cuspidatum

Camellia sinensis

anti-inflammatory
antioxidant
anticancer

anti-inflammatory
antioxidant
anticancer

(45)

(58)

quercetin

flavonoid

various fruits, vegetables, medicinal

plants

anti-inflammatory
antioxidant
antimicrobial

(142)

apigenin

flavonoid

Matricaria recutita

anti-inflammatory
antioxidant
anticancer
anti-diabetic

(80)

capsaicin

alkaloid

Capsicum annuum

Hy

anti-inflammatory
antioxidant
anticancer
analgesic

(87)

berberine

ginsenosides

alkaloid

triterpenoid
saponin

Berberis species

Panax ginseng

anti-inflammatory
antioxidant

anti-inflammatory
antioxidant
antimicrobial

(99)

(108)

Ref, reference; EGCG, Epigallocatechin-3-gallate.

2D structure of ginsenoside Rgl is presented.
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conserved between mice and humans. Although, several phenotypic
differences exist between the same DC subsets across the two
species, functional equivalences can often be drawn (12).
Therefore, mouse models are the most widely used systems for
studying DC biology and evaluating the therapeutic potential of
DC-based vaccines (13). The classification, ontogeny and functional
specialization of DC subsets have been comprehensively reviewed
elsewhere (1, 7).

In general, DCs exist in two functional states: a resting state and
an activated state (1). In their resting or quiescent state, DCs act as
sentinels of the immune system, continuously surveilling tissues for
invading pathogens, damaged or cancerous cells. Resting DCs are
characterized by high endocytic capacity, low expression of
costimulatory molecules and rapid turnover of major
histocompatibility complex II (MHC II) molecules. Importantly,
resting DCs constitutively express both MHC I and MHC II
molecules, but the dynamics of these molecules on the cell surface
differ substantially. MHC II-peptide complexes exhibit rapid
turnover on the surface of resting DCs to ensure constant
sampling and presentation of extracellular antigens to CD4" T
cells (14). In contrast, MHC I-peptide complexes are more stable
and long-lived on the plasma membrane that is sufficient for
continuous surveillance of intracellular proteins and presentation
to CD8" T cells (15). Upon sensing changes in their local
environment, DCs become activated, enabling them to migrate to
draining lymph nodes and engage with other immune cell types
such as B and T cells. Activated DCs are characterized by reduced
endocytosis, upregulation of the homing receptor C-C chemokine
receptor type 7 (CCR?7), upregulation of MHC I, stabilization of
MHC II expression, and increased capacity to prime naive T cells.
According to the latest concept, DC activation is a prerequisite for
communication with other cells, and depending on the stimuli
encountered, they can initiate either tolerogenic or immunogenic
immune responses (1). Immunogenic DCs promote the
differentiation of naive T cells into effector subsets, such as T
helper (Th) 1 and Th17 cells, thereby they are highly efficient in
facilitating adaptive immunity against invading pathogens and
tumors. In contrast, tolerogenic DCs support the development of
regulatory T cells (Tregs), which exert suppressive functions, and
are essential for maintaining immune tolerance and prevention of
autoimmunity (16).

Nevertheless, altered distribution and aberrant activation of
DCs might lead to the breakdown of immune tolerance against self-
antigens and result in the induction of autoimmune disorders such
as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),
and psoriasis (17). Consequently, modulation of DC functionality
has emerged as a promising therapeutic approach to treat
autoimmune conditions.

3 Effects of plant-derived compounds
on DCs

Natural bioactive compounds are commonly found in healthy
foods such as fruits and vegetables, as well as in beverages like
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herbal and green teas, which are consumed daily by millions of
people (4). This chapter focuses on ten well-studied plant-derived
compounds that have gained attention due to their anti-
inflammatory, antimicrobial and antioxidant properties.
Numerous studies have investigated the impact of these
phytochemicals on various compartments of the immune system.
Here, we aimed to highlight the effects of these selected natural
compounds on DCs and introduce the general mechanisms
underlying their activities. Their immunomodulatory effects,
mechanisms of action on DCs, and predicted targets based on in
silico studies are summarized in Table 2.

3.1 Curcumin

Turmeric (Curcuma longa), a member of the Zingiberaceae
family, has been used as both a culinary spice and traditional herbal
medicine for thousands of years in India and Eastern Asia (18).
Curcumin, the main bioactive compound in its rhizome, has been
extensively studied for its diverse pharmacological properties over
the last few decades. Several in vitro and in vivo animal studies, as
well as clinical trials, have demonstrated its anticancer, anti-
inflammatory, and radioprotective properties, as summarized in a
recent review (19).

Curcumin is one of the most thoroughly investigated
phytochemicals, with its effect on DCs first reported in 2005 (20).
In murine bone marrow-derived DCs (BM-DCs) stimulated with
the TLR4 ligand lipopolysaccharide (LPS), curcumin significantly
decreased the expression of MHC II and the costimulatory
molecules CD80 and CD86 (20). Furthermore, it suppressed the
LPS-triggered production of various inflammatory cytokines such
as interleukin (IL)-12, IL-1p, IL-6 and tumor necrosis factor (TNF),
and reduced the capacity of DCs to elicit a Thl response.
Interestingly, curcumin-treated DCs exhibited increased endocytic
capacity, suggesting that curcumin maintains DCs in a resting state.
These effects were associated with curcumin-mediated inhibition of
central signaling pathways such as the nuclear factor-kappa B (NF-
KB) and mitogen activated protein kinase (MAPK) cascades in DCs.
In particular, pre-treatment with curcumin prevented the LPS-
triggered nuclear translocation of NF-xB and the phosphorylation
of the p38, c-Jun N-terminal Kinase (JNK) and extracellular signal-
regulated kinase (ERK) (20). Similar results were observed in
human moDCs, where pre-treatment with curcumin inhibited the
LPS and polyinosinic:polycytidylic acid (polyI:C)-induced
upregulation of different activation markers (CD83, CD86, and
HLA-DR) and the secretion of various cytokines including IL-12,
TNF and IL-10 (21). Furthermore, curcumin reduced endocytosis
and the ability of DCs to prime T cell proliferation. Additionally,
curcumin significantly reduced the production of the chemokine
CXCL10 and prevented the migration of DCs in response to CCL19
and CCL21, further suggesting its immunosuppressive potential
(21). Further studies confirmed that curcumin promotes the
development of tolerogenic DCs. Curcumin-treated murine BM-
DCs generated from B6 mice show increased IL-10 production, and
support the differentiation of Tregs from naive CD4" T cells (22).
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TABLE 2 The immunomodulatory effects, the mechanisms of action on DCs, and predicted molecular targets of selected phytochemicals.

Compound Observed effects in DCs EEITETIET Gl SE el el _ Ref.
in DCs (in vitro) (in silico) (in silico)

curcumin MHC II and costimulatory molecules]| ¢ NF-xB, MAPK, and mTOR inhibition *  EGFR, NF-xB (31)
inflammatory cytokines and chemokines| *  NRF2 activation ¢ DHFR (32)
migration| ¢ AMPK activation «  MMP3 (33)
endocytic capacity? *  mGluR4 upregulation *  NLRP3 (34)
T cell proliferation and Th1/Th17 polarization «  COX-2 (35)
ability | ¢ MD-2 (36)
Treg priming ability? ¢ TLR4, IRAKI, caspase-3 (37)

6-gingerol MHC II and costimulatory molecules| . NF-xB, MAPK, and mTOR inhibition . 5-LOX (41)
inflammatory cytokines] «  COX1 (43)
Th1/Th17 polarization ability|

6-shogaol MHC II and costimulatory molecules| ¢ NF-«B, MAPK, and mTOR inhibition =+  5-LOX (41)
inflammatory cytokines| *  NREF2 activation *  KEAPI, GSK-3B (42)
Th1 polarization ability] *  AMPK activation

resveratrol MHC I, MHCI]J, and costimulatory molecules| = ¢  NF-xB and MAPK inhibition e TLR4, IRAKI, caspase-3 (37)
inflammatory cytokines, ROS| e ILT3, ILT4 upregulation «  MMP2, MMP9 (57)
T cell proliferation ability|
IL-101

EGCG MHC II and costimulatory molecules| ¢ NF-xB and MAPK inhibition e TLR4, IRAKI, caspase-3 (37)
inflammatory cytokines| ¢ STAT1 inhibition < NF-xB (66)
T cell proliferation ability| *  Tollip upregulation through 67LR « IKKB (67)
COX-2, IDO, PGE, |
endocytic capacity?
IL-107

quercetin MHC II, CCR?7, and costimulatory molecules| ¢ NF-xB, MAPK and Akt inhibition e TLR4, IRAKI, caspase-3 (37)
inflammatory cytokines and chemokines| e Ahr activation * IKKp, SOD (77)
migration| . Dab2, ILT3, ILT4, ILT5, CD39, CD73 | « DAPK1 (78)
endocytosic capacity] upregulation
T cell proliferation and Th1/Th17 polarization |+  STAT4 inhibition
ability],
Treg priming ability?

apigenin MHC I, MHC II, CCR7, and costimulatory ¢ NF-«xB and MAPK inhibition ¢ IKK, NF-xB, p38, COX-2 (86)
molecules]
inflammatory cytokines, IFN-a.}
IL-10 and TGF-Bt
migration|, COX-2|
endocytic capacity?
T cell proliferation and Th1/Th17 polarization
ability]
Treg priming ability?

capsaicin mouse DC: MHC II, costimulatory molecules e TRPV1 activation < TRPV1 (94)
and inflammatory cytokines 1 . HSP90 (95)
human DC: CD83, CCR7 and inflammatory *  c-Abl, p38, c-Src kinase, (96)
cytokines | VEGFR 97)

¢ COX-2,1L-6, TGF-B

berberine costimulatory molecules| *  not investigated . KKo (106)
inflammatory cytokines| . AMPK (107)
DO, TGE-B1
T cell proliferation and Th1/Th17 polarization
ability]
Treg priming ability?

(Continued)
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TABLE 2 Continued

: Mechanism of action Target Ref

m n rv ffects in D . o - L
BRI OleEEEe] GiEes e in DCs (in vitro) (in silico) (in silico)

ginsenoside *  MHCII, CCR7 and costimulatory molecules] *  not investigated «  SLC7A11 (115)

*  inflammatory cytokines| e TLR4 (118)

* T cell proliferation and Th1 polarization *«  PPARy (119)

ability| *  Annexin A2 (120)

+  efferocytosis|
*  migration]
*  Treg priming ability?

5-LOX, 5-lipoxygenase; 67LR, 67 kDa laminin receptor; AMPK, AMP-activated protein kinase; CCR7, C-C chemokine receptor type 7; CD, Cluster of differentiation; COX, cyclooxygenase;
DAPKI, death-associated protein kinase 1; DC, dendritic cell; DHFR, dihydrofolate reductase; EGFR, epidermal growth factor receptor; GSK-3p, glycogen synthase kinase 3-8; HSP90, heat-
shock protein 90; IDO, indoleamine 2,3-dioxygenase; IFN, interferon; IKK, IkB kinase; IL, interleukin; ILT, immunoglobulin-like transcript; IRAK1, interleukin-1 receptor—associated kinase 1;
KEAP1, Kelch-like ECH-associated protein 1; MAPK, mitogen-activated protein kinase; MD-2, myeloid differentiation protein 2; mGluR4, metabotropic glutamate receptor-4; MHC, major
histocompatibility complex; MMP, matrix metalloproteinase; mTOR, mechanistic target of rapamycin, NF-xB, nuclear factor-kappa B; NLRP3, NOD-, LRR-, and pyrin domain-containing
protein 3; NRF2, nuclear factor erythroid 2-related factor 2; PGE,, prostaglandin E2; PPARY, peroxisome proliferator-activated receptor gamma; Ref, reference; ROS, reactive oxygen species;
SLC7AL11, Solute carrier family 7 member 11; SOD, superoxide dismutase; TGF-P, transforming growth factor-beta; Th, T helper cell; TLR4, Toll-like receptor 4; Tollip, Toll interacting protein;

TRPV]1, transient receptor potential vanilloid type 1; Treg, regulatory T cell; VEGFR, vascular endothelial growth factor receptor.

Additionally, transforming growth factor-B (TGF-B) and retinoic
acid produced by curcumin-treated DCs were also required to
induce Treg differentiation.

Mechanistically, curcumin induces an anti-inflammatory
phenotype in DCs by activating nuclear factor-erythroid 2-related
factor 2 (NRF2) and promoting the expression of heme oxygenase 1
(HO-1) (23, 24). Briick et al. showed that curcumin induced HO-1
expression and signal transducer and activator of transcription 3
(STAT3) phosphorylation in LPS-activated mouse BM-DCs thereby
inhibiting their ability to promote Thl and Thl7 polarization
through repression of IL-12b and IL-23a transcription. Similarly,
curcumin was also able to inhibit the functionality of LPS-
stimulated human moDCs through upregulating the
immunomodulatory enzyme, HO-1 (24). In a subsequent study
the authors also demonstrated that upregulation of HO-1 is
dependent on the activation of AMP-activated protein kinase
(AMPK). Generally, AMPK negatively regulates the mammalian
target of rapamycin (mTOR) signaling cascade, thus inhibiting the
glycolytic reprogramming required for full DC activation (25).
Furthermore, curcumin inhibited Th17 differentiation by
suppressing the production of IL-6 and IL-23 in mouse BM-DCs
(26). This effect might be associated with the upregulation of
metabotropic glutamate receptor-4 (mGluR4), a molecule known
to favor Treg development, and thus inhibit autoimmunity (26).

It was also demonstrated that curcumin-treated human moDCs
and murine CD11lc+ DCs promote Treg differentiation and
expansion both in vitro and in vivo (27). These findings were
corroborated by in vivo experiments demonstrating that Tregs
generated in the presence of curcumin-treated DCs mitigated
Thl-mediated colitis in mice (22). In a mouse model of
inflammatory bowel disease (IBD), curcumin alleviated disease
symptoms as evidenced by reduced colonic damage and decreased
inflammatory cell infiltration to the colonic mucosa (28). Moreover,
curcumin not only decreased the number of CD11¢"/MHC IT* DCs
in the Peyer patches, but also reduced the level of different
costimulatory molecules on their surface (28). Additionally,
tetramethylcurcumin, an analog of curcumin, was shown to
stimulate the release of immunosuppressive extracellular vesicles
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(EVs) from BM-DCs cultured with ovalbumin (29). Intranasal
administration of these EVs induced Treg differentiation in a
mouse model of allergic rhinitis thereby alleviating disease
symptoms and inflammation (29). In patients with psoriasis,
curcumin reduced the expression of IL-17, GM-CSF and IFN-y in
PBMC:s further supporting its therapeutic relevance (30).

In silico studies have elucidated potential molecular targets that
may underlie the anti-inflammatory and antioxidant effects of
curcumin. Strong binding to both epidermal growth factor
receptor (EGFR) and NF-xB suggests a synergistic blockade of
upstream receptor-mediated and downstream transcriptional
inflammatory signaling (31). Inhibition of EGFR signaling can
attenuate pro-inflammatory cellular responses by reducing
activation of MAPK and STAT pathways, while suppression of
NEF-xB activity decreases transcription of inflammatory cytokines.
Molecular docking results indicate that curcumin binds to
dihydrofolate reductase (DHFR) with an affinity comparable to
methotrexate, a clinically established immunosuppressive agent for
RA (32). Curcumin also shows binding potential to matrix
metalloproteinase 3 (MMP-3), a protease whose expression and
activity are elevated in chronic inflammatory diseases, including RA
(33). MMP3 inhibition may prevent extracellular matrix
degradation and inflammatory tissue damage. Docking studies
have revealed that curcumin can inhibit the NOD-, LRR- and
pyrin domain-containing protein 3 (NLRP3) inflammasome,
potentially reducing caspase-1 activation and subsequent IL-1J3
maturation (34). In silico analyses of 15 curcumin analogues show
binding to multiple subdomains of cyclooxygenase-2 (COX-2), a
pivotal enzyme in prostaglandin synthesis during inflammation
(35). Molecular docking and dynamics simulations suggest that
curcumin can embed into the hydrophobic pocket of myeloid
differentiation protein 2 (MD-2), a co-receptor for TLR4 that
mediates lipopolysaccharide (LPS)-induced signaling, thereby
dampening TLR4-mediated activation (36). Further, in silico
investigations suggest that curcumin along with quercetin, EGCG,
and, resveratrol can inhibit TLR4-mediated signaling through
directly interacting with TLR4 and IL-1 receptor-associated
kinase 1 (IRAK1), a kinase downstream of TLR-4 (37). These
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compounds were further predicted to interact with caspase-3, which
is primarily known for its role in apoptosis but also plays a
significant role in regulating inflammation (37).

3.2 Gingerols and shogaols

Ginger (Zingiber officinale), like turmeric, belongs to the
Zingiberaceae family and has a long history of use as both a spice
and medicinal plant. Its rhizome is rich in biologically active
compounds, such as gingerols and shogaols, which are primarily
responsible for its therapeutic effects. 6-gingerol is the principal active
compound in fresh ginger, whereas 6-shogaol predominates in dried
preparations (38). While numerous studies have shown that gingerols
and shogaols influence the function of various immune cell types,
only two reports have explored their effects on DCs.

Our group has recently demonstrated that both 6-gingerol and
6-shogaol modulate the functionality of human moDCs (39). Both
phenolic compounds decreased the expression of CD40, CD83,
CD86 and HLA-DQ, as well as reduced the secretion of TNF, IL-6
and IL-10 cytokines by TLR-stimulated moDCs. Furthermore,
both compounds could significantly reduce the inflammatory
cytokine production in moDCs triggered by Escherichia coli,
and thus their capacity to promote Thl differentiation from naive
CD4" T cells. Our mechanistic studies revealed that 6-gingerol and
6-shogaol interfered with the TLR-mediated activation of NF-xB,
MAPK and mTOR signaling cascades in moDCs. Further, we
demonstrated that 6-shogaol, but not 6-gingerol, enhanced
AMPK phosphorylation, and activated the NRF2/HO-1 axis
suggesting its superior anti-inflammatory potential compared to
6-gingerol (39).

Another study demonstrated that 6-gingerol induced a
tolerogenic phenotype in LPS-stimulated mouse BM-DCs as
indicated by low expression of MHC II and costimulatory
molecules, reduced cytokine secretion, and impaired ability to
prime Thl7 cells. In agreement with our results, it was also
demonstrated that 6-gingerol suppressed DC functionality by
modulating the NF-xB and MAPK signaling pathways in LPS-
stimulated mouse BM-DCs. In vivo, 6-gingerol significantly
ameliorated the severity of experimental autoimmune
encephalomyelitis (EAE), a murine model of multiple sclerosis
(MS), by inhibiting DC activation and Thl7 polarization.
Furthermore, 6-gingerol significantly inhibited inflammatory cell
infiltration and demyelination in the central nervous system, and
lowered the frequencies of CD11c¢"CD80" activated DCs and Th17
cells in the spleen (40).

In silico studies have identified several molecular targets
that may contribute to the anti-inflammatory and antioxidant
properties of 6-gingerol and 6-shogaol. Both compounds can
interact with 5-lipoxygenase (5-LOX) (41), an enzyme responsible
for leukotriene biosynthesis, suggesting a role in suppressing lipid
mediator—driven inflammation. Thiophene derivatives of 6-shogaol
have been predicted to activate the NRF2 antioxidant pathway by
binding to key regulators, including Kelch-like ECH-associated

Frontiers in Immunology

10.3389/fimmu.2025.1653803

protein 1 (KEAP1) and glycogen synthase kinase 3-f (GSK-3f)
that might lead to the upregulation of cytoprotective and anti-
inflammatory genes (42). Additionally, 6-gingerol derivatives
showed binding ability to cyclooxygenase-1 (COX-1) (43),
indicating potential to reduce prostaglandin-mediated
inflammatory responses.

3.3 Resveratrol

Resveratrol is a polyphenol that has various sources such as
berries, grapes, red wine and peanuts. When sold as a food
supplement, resveratrol is predominantly extracted from Japanese
knotweed (Polygonum cuspidatum), a plant traditionally used in
East Asian medicine (44). Accumulating evidence suggests its anti-
inflammatory and immunomodulatory effects, including its
protective role in respiratory system diseases such as asthma and
chronic obstructive pulmonary disease (COPD), partly through its
action on DCs (45).

In 2004, Kim et al. demonstrated that resveratrol inhibited LPS-
mediated activation of BM-DCs in vitro. Resveratrol significantly
reduced the production of IL-12 and the surface expression of
CD80, CD86, MHC I and MHC II molecules, while preserving the
endocytic capacity of DCs. Consequently, these DCs also exhibited
decreased T cell stimulatory capacity (46). Similar results were
obtained when resveratrol was added to human moDCs (47, 48).
Specifically, resveratrol decreased the nuclear translocation of NF-
KB p65, the production of IL-12 as well as the expression of CD40,
CD80 and CD86 costimulatory molecules in LPS-stimulated human
moDCs (47). In contrast, resveratrol markedly upregulated
immunoglobulin-like transcript (ILT) 3 and ILT4, which deliver
inhibitory signals and promote a tolerogenic phenotype in DCs
(47). Therefore, resveratrol-treated moDCs were poor stimulators
of CD4" T cell proliferation and migration. Interestingly,
resveratrol-treated moDCs promoted the proliferation of IL-10
secreting T cells but failed to induce forkhead box P3 (FOXP3)
expression. Comparable findings were reported in TNF-stimulated
moDCs (48), where resveratrol reduced NF-kB p65 nuclear
translocation, CD83 and CD86 expression, and IL-12 and IL-23
production, while increasing IL-10 levels. Furthermore, resveratrol
also suppressed the capacity of TNF-stimulated DCs to initiate
CD3" T cell proliferation. Resveratrol also blocked moDC
activation in response to advanced glycation end products (AGEs)
(49), known to contribute to the pathogenesis of autoimmune
diseases via DC activation (50). In particular, resveratrol inhibited
the expression of various activation markers, costimulatory
molecules, and the receptor for AGE (RAGE) and suppressed the
production of inflammatory cytokines in moDCs stimulated with
glycated albumin. It also reduced the activation of the MAPK and
NF-kB pathways, and impaired the allostimulatory potential of
moDCs (49).

A recent study demonstrated that the immunomodulatory effect
of resveratrol depends highly on its structural features and mode of
delivery. Hydroxylated and methylated derivatives are characterized
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by different biological activities compared to the parent compound
(51). Resveratrol and its hydroxylated derivative, piceatannol,
potently inhibited the LPS-induced production of reactive oxygen
species (ROS), whereas the methylated monomers of resveratrol
showed a reduced antioxidant capacity in mouse BM-DCs (51).
These compounds also differ in their potential to elicit cytokine
production by BM-DCs in response to LPS and bacteria implying
the importance of structure with regards to the immunomodulatory
potential of resveratrol. Another study demonstrated that
resveratrol encapsulated in nanostructured lipid carriers (NLC)
more effectively suppressed TNF-induced CD83 expression, IL-12
and IL-23 production, and NF-xB p65 phosphorylation than free
resveratrol in moDCs (52).

Subsequent studies further demonstrated that resveratrol can
alleviate lung inflammation by modulating DC functions. In vivo,
resveratrol ameliorated acute lung injury (ALI) in mice challenged
intratracheally with LPS (53). Resveratrol pre-treatment greatly
reduced the levels of pro-inflammatory cytokines, including, TNF,
IL-6, IL-12, whereas increased the levels of anti-inflammatory
cytokines, including TGF-B, IL-10, IL-13 and IL-33 in the
bronchoalveolar lavage fluid (BALF) of ALI mice. Resveratrol
dramatically decreased the expression of CD80, CD86 and MHC
11, the production of IL-12, while increased ILT3 expression and IL-
10 secretion in pulmonary and splenic cDCs of ALI mice. In vitro,
resveratrol pretreatment of BM-DCs inhibited LPS-induced
activation, cytokine production, and T cell stimulatory capacity of
DCs as well (53).

Human moDCs differentiated from monocytes of chronic
obstructive pulmonary disease (COPD) patients expressed
increased levels of CD80, CD86 and IFN-o as compared with
those of healthy individuals (54). Resveratrol pre-treatment
reduced the level of these molecules, possibly via downregulation
microRNA-34, an important regulator of inflammatory
responses (55).

A subsequent study investigated how the stability,
bioavailability and thus the bioactivity of resveratrol could be
enhanced by irradiation. Intriguingly, y-irradiated resveratrol has
a lower toxicity compared to its intact form, and has strong
immunosuppressive properties as it can significantly inhibit
inflammatory cytokine production, costimulatory molecule
expression, and antigen-presentation by LPS-activated mouse
BM-DCs (56). It also promoted IL-10 production and Treg
production when added to differentiating BM-DCs.

Oral administration of y-irradiated resveratrol attenuated the
clinical signs of colitis in DSS-treated mice, suggesting the
therapeutic potential of y-irradiated resveratrol in IBD (56).
However, the lack of direct functional comparison of y-irradiated
resveratrol to its unmodified form limits conclusions regarding its
superior ability to induce tolerogenic DCs.

In silico studies have revealed that TLR4, IRAKI, and caspase-3
are molecular targets of resveratrol (37). In addition, MMP-2 and
MMP-9 have been reported as targets, whose inhibition may reduce
extracellular matrix degradation and attenuate inflammation (57).
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3.4 Epigallocatechin-3-gallate

Green tea (Camellia sinensis) is a popular beverage that is
consumed worldwide for its health benefits. EGCG is a flavonoid
that represents the major bioactive compound in green tea and is
known for its strong antioxidant capacity (58). Moreover, it has
gained a great attention for its anti-inflammatory and
immunomodulatory potential.

The immunomodulatory effect of EGCG has been first
investigated on mouse BM-DCs (59). This study showed
that EGCG effectively inhibits DC functions, as it was able to
inhibit IL-12 production and downregulate the expression of
CD80, CD86, MHC I and MHC II molecules in LPS-stimulated
murine BM-DCs. EGCG-treated DCs were poor inducers of T cell
proliferation and activation. The authors suggested that EGCG
antagonized the LPS-mediated functionality of DCs by suppressing
MAPK and NF-xB activation. Another study demonstrated that
EGCG can inhibit IL-12 production while increasing TNF secretion
in BM-derived DCs stimulated with LPS, muramyl-dipeptide or
Legionella pneumophila (60). However, the divergent effects of
EGCG on IL-12 and TNF production have not been elucidated yet.
In the same year, it was also shown that EGCG pretreatment
suppressed COX-2 expression, prostaglandin E2 (PGE,) and
indoleamine 2,3-dioxygenase (IDO) production in BM-DCs in
response to IFN-v, likely through STAT1 inhibition (61). In human
moDCs, EGCG exhibited similar anti-inflammatory effects by
attenuating TLR4-mediated signaling. In LPS-stimulated moDCs,
EGCG reduced the expression of HLA-DR, CD80 and CD83, and
impaired their ability to promote T cell proliferation (62). Conversely,
EGCG increased IL-10 production and the endocytic ability of LPS-
stimulated DCs suggesting that EGCG maintains DCs in their resting
state (62). Experiments performed with murine BM-DCs further
demonstrated that the 67 kDa laminin receptor (67LR) is essential for
mediating the anti-inflammatory actions of EGCG in DCs (63).
EGCG reduced the LPS-induced production of IL-1f3, IL-6 and TNF,
the expression of CD80, CD86, MHC I and MHC II molecules, and
NF-kB and MAPK activation in murine BM-DCs. Interestingly, the
inhibitory effect of EGCG was abrogated upon pre-treatment with anti-
67LR antibodies, suggesting that the inhibitory actions of EGCG are
mediated through 67LR. In addition, EGCG elevated the expression of
Toll-interacting protein (Tollip), a negative regulator of TLR signaling
through 67LR suggesting that the anti-inflammatory actions of EGCG
might be partially mediated by Tollip upregulation in DCs.

Previously it was reported that EGCG”Me, a 3-O-methylated
derivative of EGCG, significantly reduced TLR4 expression
and thereby exerted anti-inflammatory effects in mouse peritoneal
macrophages (64). On the contrary, EGCG3”Me supplementation
increased TLR5 expression on lamina propria DCs and macrophages,
and enhanced vaccine-induced immune response in mice immunized
with a split influenza vaccine (65). Although, EGCG treatment
showed overall beneficial effects, the contradiction between its
immunosuppressive and immunostimulatory effects warrants
further investigation.
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Molecular docking and modeling revealed that EGCG can
directly bind to TLR4, IRAKI and caspase-3 (37). In silico studies
further predicted NF-xB as a principal target of EGCG, suggesting
that its anti-inflammatory effects may be mediated through
suppression of NF-xB activation and downstream cytokine
production (66). Furthermore, EGCG was found to interact with
IxB kinase B (IKKp), a key regulator of NF-«B signaling, indicating
that EGCG may inhibit the phosphorylation and degradation of
IkB, thereby preventing NF-kB nuclear translocation and
inflammatory gene transcription (67).

3.5 Quercetin

Querecetin is a flavonoid found in various fruits, vegetables, and
medicinal plants. It exhibits a broad range of bioactivities, including
antioxidant and anti-inflammatory effects, and has been suggested
to alleviate allergy symptoms (68). Several studies indicate that
quercetin decreases inflammation primarily by inhibiting DC
activation. It also acts as a natural, albeit indirect, ligand for the
aryl hydrocarbon receptor (Ahr), which plays a key role in
regulating immune responses and promoting tolerogenic
properties in DCs (69).

In vitro studies demonstrated that quercetin significantly
reduced the expression of MHC II and different costimulatory
molecules (CD40, CD80, CD86) as well as the production of
various cytokines (IL-1 o/f, IL-6, IL-10, IL-12) and chemokines
(MCP-1, MIP-10/B, RANTES) in LPS-stimulated mouse BM-DCs
(70). Quercetin also blocked endocytosis by resting DCs and
suppressed LPS-stimulated migration of DCs both in vitro and in
vivo. Furthermore, quercetin abrogated T cell activation and
proliferation induced by LPS-stimulated BM-DCs. The study also
demonstrated that quercetin blocked the LPS-triggered activation of
ERK, JNK, Akt and the degradation of IxB indicating that quercetin
suppresses DC activation via interfering with the MAPK, Akt and
NF-kB signaling pathways (70).

In human moDCs, quercetin impaired the LPS-mediated
production of IL-12 and the upregulation of CD83, CD86, HLA-
DR and CCRY7 (71). It was revealed that quercetin downregulated
CD83 through facilitating direct binding of Ahr to the CD83
promoter region. In addition, quercetin decreased the ability of
DCs to activate T cells, whereas increased their potential to initiate
Treg differentiation in coculture with naive T cells. The data showed
that quercetin induced a tolerogenic phenotype in DCs via
upregulating various immunomodulatory molecules, including
Disabled-2 (Dab2), ILT3, ILT4 and ILT5 inhibitory receptors, and
the ATP-degrading ectoenzymes CD39 and CD73 (71). Blockade of
Dab2, a negative regulator of intracellular signaling reversed the
inhibitory effects of quercetin on BMDC activation suggesting that
the regulatory effects of quercetin might be mediated via Dab2
upregulation (72).

Co-administration with piperine, a known bioenhancer, was
shown to augment the anti-inflammatory potential of quercetin
(73). Genome-wide transcriptome analysis revealed that quercetin
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and piperine delivered via reconstituted oil bodies (ROBs-QP)
significantly downregulated various inflammatory mediators, and
decreased the expression of molecules associated with antigen
presentation and activation in mouse BM-DCs (74). DCs exposed
to ROBs-QP failed to upregulated CCR7, migrate to lymph nodes
and efficiently present antigens to naive T cells (74). Intraperitoneal
delivery of ROBs-QP also ameliorated DSS-induced colitis
symptoms in mice highlighting its potential for treating
inflammatory diseases (73). Another report showed that quercetin
administration reduced atherosclerosis progression in
apolipoprotein E knock out mice by suppressing DC activation
(72). Immunohistochemical analysis revealed that quercetin
reduced DC and macrophage accumulation in atherosclerotic
lesions, and decreased serum IL-6 and IL-12, while increased IL-10
levels. In vivo, quercetin also alleviated contact hypersensitivity
response elicited via injection of 2,4-dinitrofluorobenzene (DNFB)-
pulsed DCs to mice, indicating that quercetin could be used to
prevent delayed-type hypersensitivity (70). Furthermore, a recent
study demonstrated that quercetin is also able to suppress
neuroinflammation in EAE mice by inhibiting DC activation and
Th1/Th17 cell differentiation (75). The experimental results suggest
that this effect was mediated through inhibition of STAT4 (75), a
transcription factor central to DC activation and implicated in
autoimmune disease pathogenesis (76).

These findings demonstrate that quercetin efficiently inhibits LPS-
induced DC activation, and attenuates different types of inflammatory
reactions in vivo, suggesting its potential as a therapeutic agent to treat
various DC-mediated inflammatory conditions.

Molecular docking analysis revealed that quercetin has
considerable binding affinity to IKKf, a core component of the
NF-xB signaling pathway, as well as to the antioxidant enzyme
superoxide dismutase (SOD) (77), suggesting that its anti-
inflammatory effects are mediated largely through suppression of
NEF-xB signaling and modulation of oxidative stress. Furthermore,
in silico studies have indicated Death-Associated Protein Kinase 1
(DAPK1) as a potential molecular target for quercetin and its
analogs, implicating possible neuroprotective and anti-
inflammatory roles through modulation of DAPKI1 activity (78).

3.6 Apigenin

Apigenin is a ubiquitous flavonoid synthetized by many
different types of plants. One of the richest natural sources of
apigenin is chamomile (Matricaria recutita), which has been
traditionally consumed as an herbal tea to reduce anxiety and
treat gastrointestinal complaints (79). Like many flavonoids,
apigenin has also been reported to reduce inflammation and
oxidative stress (80). Apigenin also has an impact on the immune
system by modulating the biological activities of various immune
cells, including DCs.

In mouse BM-DCs, apigenin significantly suppressed the LPS-
induced production of IL-12 and the expression of CD80, CD86,
MHC I, and MHC II molecules (81). In addition, apigenin-treated
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DCs showed reduced ability to initiate allogeneic T cell proliferation
and Th1 differentiation, while displayed high endocytic capacity
suggesting that apigenin maintained DCs in their resting state.
Apigenin also blocked the NF-kB and MAPK signaling pathways in
mouse BM-DCs (81). It also suppressed TLR7- and TLR9-mediated
IL-6 and IFN-a production by spleen DCs of lupus mice (82). In
human blood derived DCs, apigenin reduced the LPS-triggered
expression of CD40, CD83, CD86, CCR7, and MHC I and MHC II
molecules, as well as production of IL-1B, IL-6, IL-12 and IL-23
while inducing secretion of IL-10 and TGF-f (83). Consequently,
apigenin decreased the ability of LPS-triggered DCs to induce Thl
and Th17 polarization while increased the number of Tregs. In LPS-
stimulated DCs, apigenin prevented the nuclear translocation of
RelB, a transcription factor, which is involved in the non-canonical
activation of the NF-kB pathway and thus in the control of DC
activation (83).

In vivo, apigenin suppressed splenic DC activation and IFN-y
production of splenic CD4" T cells in LPS-challenged mice and
decreased the ability of trinitrobenzene sulfonic acid (TNBS)-pulsed
murine BM-DCs to induce contact hypersensitivity (81). In SNF1
mice, a spontaneous lupus mouse model, apigenin reduced COX-2
expression in immune cells including DCs (82). Apigenin also
reduced nucleosome-induced IFN-y and IL-17 response by
splenic T cells and autoantibody production of splenic B cells of
SNF1 mice. Intraperitoneal injection of apigenin also decreased
serum autoantibody levels and delayed the development of
glomerulonephritis. In collagen induced arthritis (CIA) mice, an
animal model of RA, apigenin reduced joint inflammation, swelling
and destruction, most likely via inhibition of DC functions (84). In
CIA mice, apigenin reduced levels of TNF, IL-1f3 and IL-6 in the
serum and supernatants from the lymph nodes, and blocked DC
activation as shown by reduced expression of costimulatory
molecules and MHC II in CD11c" cells. Apigenin also reduced
DC migration to the draining lymph nodes of CIA mice (84). These
data indicate that apigenin exerts its immunosuppressive effect in
arthritis by inhibiting DC activation and migration. Apigenin also
reduced the severity of EAE in vivo both in progressive (C57BL/6)
and relapse-remitting (SJL/]) mouse models of MS. Apigenin
decreased immune cell infiltration and reduced demyelination in
the CNS of EAE mice while retaining immune cells in the periphery
including the blood, spleen and lymph nodes. Apigenin increased
the number of CD11c¢" DCs in all 3 peripheral compartments, and
downmodulated the levels of MHC II and CD86 on splenocyte-
derived DCs (83). It also reduced the surface expression of 04
integrin on the surface of splenic DCs and CD4" T cell from EAE
mice, thereby decreasing their ability to cross the blood-brain
barrier (85).

A recent in silico study have further identified the molecular
targets of apigenin involved in inflammatory pathways, including
IKK, the NF-kB p50-p65 heterodimer, p38 MAPK, and COX-2
(86). By modulating these key signaling molecules, apigenin might
exert broad anti-inflammatory effects through inhibition of NF-kB
activation, MAPK signaling, and prostaglandin synthesis, thereby
contributing to the regulation of DC functions.
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3.7 Capsaicin

Chili pepper (Capsicum annuum) is a commonly used spice that
has also various health-promoting attributes such as anti-
inflammatory, antioxidant, and antimicrobial properties (87).
Capsaicin is a naturally occurring alkaloid in chili pepper
responsible for its pungent taste, as well as many of its health
benefits. Although, several studies have reported beneficial effects of
capsaicin in various autoimmune diseases (reviewed in (88)), its
effects on DCs remained controversial and its immunomodulatory
mechanisms are not completely elucidated.

Initial studies demonstrated that mouse BM-DCs express the
capsaicin receptor transient receptor potential channel vanilloid
type 1 (TRPV1), and engagement of this receptor by capsaicin
promotes DC activation (89). Capsaicin increased surface
expression of MHC II and CD86 that could be inhibited by the
TRPV1 antagonist capsazepine. Intradermal injection of capsaicin
led to the migration of DCs to the draining lymph nodes in TRPV1
expressing mice, but not in TRPV1 deficient animals (89). Studies in
human DCs also confirmed TRPV1 expression; however, unlike in
mouse BM-DCs, capsaicin exerted anti-inflammatory effects in
them (90). In particular, capsaicin dose-dependently decreased
the expression of CD83 and CCR?7, endocytosis of Escherichia
coli, and the production of IL-6 and IL-12 by moDCs stimulated
with pro-inflammatory cytokines. The divergent response between
species might arise from dosage differences. The dose of capsaicin
was 150 uM in the mouse study, while it was only 1 uM in the study
performed with human DCs. A subsequent study showed that
TRPV1 functions as a calcium channel and induces the release of
calcitonin-gene related peptide (CGRP) upon capsaicin exposure in
mouse splenic DCs (91). CGRP attenuated LPS-stimulated CD11c"
splenic DC responses, as it was shown by their reduced expression
of CD80/CD86, decreased production of TNF and increased release
of IL-10. Capsaicin also significantly reduced IFN-y secretion in
whole spleen cell cultures under Thl polarizing conditions. These
data suggest that capsaicin might contribute to immune regulation
via CGRP-mediated suppression of DC activation (91).

Recent preclinical studies indicate that capsaicin treatment is
able to ameliorate autoimmune disease symptoms. In an
experimental model of autoimmune neuropathy, orally
administered capsaicin reduced sciatic nerve demyelination and
inflammatory cell infiltration when given prophylactically (92).
Similarly, 0.075% capsaicin skin cream alleviated DSS-induced
colitis symptoms including colon shortening, diarrhea and weight
loss in mice while improved their epithelial barrier integrity and gut
microbiota composition (93).

It has been known for many years that capsaicin binds to
TRPV1, specifically within a ligand-binding pocket formed by
transmembrane segments (94). Experimental evidence also
indicates that capsaicin might interact with the ATP binding site
of molecular chaperone heat-shock protein 90 (Hsp90), a key
protein that stabilizes and activates signaling molecules involved
in inflammation, such as NF-xkB and MAPK pathways. By
inhibiting Hsp90, capsaicin may disrupt these pro-inflammatory
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signaling cascades, thereby reducing inflammatory responses (95).
Molecular docking studies suggest that capsaicin may also interact
with other signaling proteins, including Abelson tyrosine-protein
kinase (c-Abl), c-Src kinase, p38 MAP kinase, and VEGF receptor,
that all play key roles in propagating inflammatory signals (96). In
silico studies further predict that capsaicin can bind to and
potentially modulate the activity of key inflammatory mediators
such as COX-2, IL-6, and TGF-B (97), supporting its
immunomodulatory properties. These interactions ranging from
well-established TRPV1 binding to computationally predicted
protein targets underpin the complex role of capsaicin in immune
regulation and inflammation.

3.8 Berberine

Berberine is an isoquinoline alkaloid found in some plants like
goldenseal, goldthread and Oregon grape. Its most abundant natural
source is barberry (Berberis species), traditionally used in Asian
medicine to treat fever, infections, digestive disorders, and other
pathologies (98). Both in vitro and in vivo studies show that berberine
possesses strong anti-inflammatory and immunomodulatory
activities, and thus propose the use of berberine as a therapeutic
agent for the treatment of inflammatory disorders (99).

In LPS-treated human moDCs, berberine reduced CD40, CD80 and
CD86 expression, and lowered IL-1f, IL-6 and TNF production,
impairing their capacity to prime Th17 responses (100) In LPS-
stimulated mouse BM-DCs, berberine inhibited the secretion of TNF
and IL-12, as well as the production of IL-6 and TGF-f3 that supposedly
contributed to the inhibition of Th1 and Th17 polarization, respectively.
The authors further suggest that berberine exerts its effect through
inhibiting dopamine receptor-mediated signaling pathways (100). In
DC2.4 cells, berberine greatly increased the secretion of IDO and TGF-f3
that might contribute to the ability of DCs to induce Treg differentiation,
while decreasing Th17 proliferation (101). Additional data indicate that
berberine is able to inhibit Th17 responses both directly and indirectly
through repressing DC functions (102).

Berberine-mediated suppression of Thl and Th17 responses
has been further substantiated in animal models of type I diabetes
(103) and MS (104). In addition, berberine was also shown to
ameliorate DSS-induced colitis symptoms as well as Th1 and Th17
responses in mice (100). In the context of DSS-induced murine
ulcerative colitis (UC), berberine inhibited colon damage and
restored mucosal barrier homeostasis by inhibiting the infiltration
and activation of immune cells (105). Berberine treatment
decreased the percentage of inflammatory cells including DCs,
Thl and Th17 cells in the mesenteric lymph nodes and lamina
propria of DSS-treated mice. In addition, berberine reduced serum
levels of inflammatory cytokines including TNF, IL-1f, IL-6 and
IFN-vy, and increased enteric glial cell functions (105). In
streptozotocin-induced diabetic retinopathy (DR) berberine
lowered serum levels of glucose, TNF, IL-1f, IL-6 and IL-17
(101). In the spleen and lymph nodes of DR mice, berberine
reduced the frequency and activation of DCs. In addition,
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berberine lowered the ratio of Th17/Tregs indicating that
berberine can suppress DC activation and influence T cell
differentiation as well. These results are in line with a previous
report (102), showing that berberine might affect T cell responses
both directly and indirectly through DCs.

Recent in silico studies have indicated IKKo, as a primary
molecular target of berberine (106). Additionally, berberine
demonstrated strong binding affinity to the allosteric sites of
AMP-activated protein kinase (AMPK) o- and [-subunits, which
could contribute to the modulation of inflammatory responses as
well (107). Together, these molecular interactions highlight the
potential of berberine to suppress pro-inflammatory signaling and
regulate DC functions.

3.9 Ginsenoside

Ginsenosides are a class of steroid glycosides, and triterpene
saponins found exclusively in the roots of Panax species such as
ginseng (Panax ginseng), traditional used in East Asian to enhance
physical and mental performances (108). In the last few decades, the
major bioactive compounds of ginseng have been shown to
modulate various immune cells including DCs (109).

More than 200 structurally diverse ginsenosides exist, and most
of them are categorized in the groups of protopanaxadiol (e.g. Rb1,
Rc, Rd, Re, Rg3, Rg5) and protopanaxatriol (e.g. Rgl, F4, Rg6) types
of glycosides (110). An early study evaluated 21 different
ginsenosides for their ability to modulate LPS-triggered IL-12
production of BM-DCs, finding ginsenosides Rg6 and F4 the
most effective (111). Another study demonstrated that
ginsenoside Rgl more effectively reduced LPS-triggered IL-6 and
TNF production by murine DC2.4 cells than ginsenoside Rb1 (112).
Interestingly, the inhibitory effects of ginsenosides Rgl and Rbl
were diminished when the two compounds were combined (112). A
fraction of ginsenosides containing predominantly Rc, Rg3, Rd and
Rbl, decreased CD40, CD80, CD86, and MHC II expression by
human LPS-stimulated moDCs (113). These ginsenosides also
suppressed the ability of Staphylococcus aureus-primed moDCs to
induce naive CD4" T cell proliferation and IFN-y production.
Ginsenoside metabolite compound K (CK), the main
deglycosylated metabolite of ginsenosides, decreased CD80, CD86
and MHC II expression on mouse BM-DCs as well as their capacity
to prime T cell proliferation in vitro (114). Ginsenoside Rg5 could
greatly increase the efferocytotic capacity, the clearance of apoptotic
cells by BM-DCs from db/db mice, via inhibiting Solute Carrier
Family 7 Member 11 (SLC7A1l1), a negative regulator of
efferocytosis (115). The authors further found that ginsenoside
Rg5 inhibited SLC7A11 activity via direct binding.

In vivo, ginsenoside Rg5 promoted wound healing in the skin of
diabetic (db/db) mice by increasing efferocytosis by DCs (115).
Furthermore, CK decreased the proportion of DCs in the lymph
nodes of collagen induced arthritis mice by lowering CCL21 levels
in the lymph nodes and CCR7 expression on the surface of DCs
(114). However, various ginsenosides can alleviate disease
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symptoms in mouse (116) and rat models (117) of MS; their impact
on DCs has remained unexplored.

Molecular docking analyses demonstrated that ginsenoside Rb1l
can bind to TLR4 (118), while ginsenoside Rf was identified as a
potential ligand for peroxisome proliferator-activated receptor
gamma (PPARY), a nuclear receptor that plays an important role
in regulating inflammation by controlling the expression of COX-2
(119). Additionally, molecular docking and thermal shift assays
confirmed the interaction between CK and Annexin A2. This
interaction prevented Annexin A2 from binding to the NF-kB
p50 subunit and their nuclear co-localization, thereby attenuating
NF-B activation and downstream gene transcription (120).

4 Discussion

Since time immemorial, plants have been extensively used to
alleviate pain and treat different type of illnesses around the world
(121). Traditionally, different parts of plants including roots, leaves,
seeds and fruits have been used in herbal remedy preparation. In the

10.3389/fimmu.2025.1653803

last few decades, it has been revealed that the bioactive compounds
found in plants, also called phytochemicals, are responsible for their
pharmacological actions. Research has also shown that a multitude of
plant-derived bioactive compounds have significant promise in
preventing and curing chronic illnesses. In addition, many
phytochemicals have been recognized for their immunomodulatory
activity and significant contribution to the maintenance of the body’s
homeostasis (122).

Despite the fact that phytochemicals are widely distributed in
fruits, vegetables and herbs, diet is insufficient to reach therapeutic
levels, mainly due to their fast metabolism in the gut and liver.
Moreover, phytochemicals have limited bioavailability due to their
poor solubility and stability. Besides, the dietary intake form may
also affect the bioavailability of phytochemicals (123). Therefore,
new delivery systems and formulation techniques are under
development to increase the stability, the bioavailability, and thus
the therapeutic efficacy of plant-derived bioactive compounds
(124). Nevertheless, the application of plant-derived compounds
for therapeutic purposes is still in its infancy and faces many
different challenges. In particular, in vitro studies show that
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Immunomodulatory effect of phytochemicals on DCs. Various phytochemicals can inhibit the immunostimulatory function of DCs through multiple
mechanisms. On the one hand, phytochemicals may impair the ability of DCs to respond to inflammatory stimuli. In particular, they can suppress the
production of inflammatory mediators, and downregulate the expression of costimulatory and antigen-presenting molecules by interfering with key
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characterized by upregulated expression of tolerogenic cell surface markers and increased production of anti-inflammatory mediators. Several
phytochemicals suppress the capacity of DCs to induce inflammatory T helper cell subsets, such as Thl and Th17, while increasing their ability to
drive the differentiation of regulatory T cells. AMPK, AMP-activated protein kinase; CD, cluster of differentiation; DC, dendritic cell; HO-1, heme
oxygenase 1; IDO, indoleamine 2,3-dioxygenase, IL, interleukin; ILT, immunoglobulin-like transcript; MAPK, mitogen activated protein kinase; MHC,
major histocompatibility complex; mTOR, mammalian target of rapamycin; NF-«xB, nuclear factor-kappa B; NRF2, nuclear factor-erythroid 2-related
factor 2; TGF, transforming growth factor; Th, T helper cell; TNF, tumor necrosis factor; Treg, regulatory T cell.
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TABLE 3 Phytochemicals for autoimmune diseases in clinical trials.

10.3389/fimmu.2025.1653803

Phytochemical Disease Dose/Administration route Phase Status References
curcumin MS 500 mg curcumin orally twice a day for 24 2 Completed NCT01514370 (143)
months
curcumin (Bioglan) SLE a tablet containing curcumin (632 mg) - piperine 2 Completed NCT05430087
(15,800 mg) once a day for 3 months
curcumin (Norflo Oro) Autoimmune Uveitis | 2 single foil pouches Norflo Oro (curcumin- 1 Completed NCT03584724 (144)
phospholipid 600 mg) orally per day for 12
months
curcumin (LongvidaTM) RA 4 capsules twice a day (4 g per day) for 4 months 1 Completed NCT00752154
curcumin lupus nephritis 1000 mg Curcumin Oral Capsule 2 Completed NCT05714670
curcumin Hashimoto’s 500 mg curcumin capsules 3 times per day for 3 Not Applicable Active NCT05975866
thyroiditis months
EGCG (Sunphenon®) MS 200-800 mg (1-4 capsules) orally for 30 months 2,3 Completed NCT00799890 (145, 146)
EGCG (Polyphenon E) MS 2 capsules of Polyphenon E (200 mg EGCG) twice = 2 Terminated* NCT01451723 (147)
a day for 12 months
EGCG MS 600 mg of EGCG and 60 ml of coconut oil per 2 Completed NCT03740295
day for 4 months
EGCG (Sunphenon®) MS 200 mg of EGCG twice daily, after 3 months 400 1,2 Completed NCT00525668
mg twice daily for 18 months
resveratrol type I diabetes 1500 mg trans-resveratrol Not Applicable Completed NCT03436992
resveratrol type I diabetes 500 mg of oral trans-resveratrol twice daily for 12 1 Active NCT04449198
weeks
resveratrol RA 1 tablet (1000 mg) once a day for 3 months Not Applicable Active NCT07089381
apigenin RA 1 capsule containing 10 mg apigenin) and 1 Not Applicable Active NCT05788705
capsule containing 50 mg glycyrrhizin twice daily
for 6 months
berberine Latent autoimmune 0.6 g (6 pills) of Berberine tablets and 0.6 g (6 4 Active NCT04698330

diabetes in adults
months

pills) of Inulin tablets twice a day orally for 3

Trade name is given in parentheses where available.

EGCG, Epigallocatechin-3-gallate; MS, multiple sclerosis; RA, Rheumatoid arthritis; SLE, systemic lupus erythematosus.

*Terminated due to unusual high frequency of elevated liver function tests.

mostly large doses (in the uM range) are required to elicit the
beneficial effects of some phytochemicals that is hard to achieve in
vivo. Moreover, high concentrations of certain phytochemicals
might already have adverse and cytotoxic effects (125). For
instance, in murine models, relatively high concentrations of
capsaicin promoted DC activation (89), in contrast to the anti-
inflammatory effects in human moDCs at markedly lower doses
(90). These divergent outcomes likely arise from species-specific
differences in DC subset sensitivity and the dose-dependent
immune-modulatory properties of capsaicin. Moreover, berberine
was shown to induce apoptosis in murine BM-DCs and splenic DCs
in a dose-dependent manner (from 2 to 50 uM) while not affecting
other immune cell types such as macrophages, B and T cells (126).
Actually, this feature of berberine could be exploited for therapeutic
purposes. Intraperitoneal injection of berberine to CIA mice
alleviated disease symptoms, most probably due to its ability to
selectively induce apoptosis of DCs, and thus significantly reduce
their proportion in the spleen and lymph nodes of CIA mice (126).
These studies underscore the current lack of consensus on the
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optimal dose of phytochemicals for therapeutic application;
therefore, further studies are needed to assess their clinically
relevant levels.

The administration route is another factor that needs to be
optimized to ensure the effectiveness and safety of plant bioactive
compounds. In general, orally delivered phytochemicals are poorly
absorbed, since many plant-derived compounds are conjugated
with glucuronide, sulfate or glutathione moieties in the gut
epithelium or liver, and then excreted in urine and bile (123).
Therefore, intraperitoneal administration is preferred over the oral
route to avoid the potential degradation of biological agents in in
vivo animal experiments (127). In relation to plant-derived
compounds, a study showed that intraperitoneal injection of
berberin led to a better anti-arthritic effect than its oral
administration (126). Nevertheless, intraperitoneal injection is
rarely used in the clinics, thus the efficacy of other forms of
administration routes such as intravenous or subcutaneous needs
to be explored for plant-derived compounds. It is more likely,
though, that improving the delivery efficiency into the target tissue
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Future strategies for the generation of tolerogenic DCs using plant-derived compounds. (A) For the ex vivo generation of tolerogenic DCs, CD14*
monocytes are isolated from peripheral blood of patients with autoimmune diseases and then differentiated into DCs in the presence of GM-CSF and
IL-4. A tolerogenic state in DCs can be achieved by the addition of plant-derived bioactive compounds. To ensure the stability of tolerogenic DCs
under inflammatory conditions, activation stimuli may also be applied. Alternatively, DCs can be pulsed with disease-relevant antigens as well. Finally,
the tolerogenic DCs are reintroduced into the patient. (B) A promising future strategy involves the in vivo targeting of DCs using nanoparticles loaded
with phytochemicals alone, or in combination with autoantigen-associated peptides. Alternatively, nanoparticles might be loaded with antibodies
against specific surface antigens expressed on DCs to enhance their targeting specificity. Finally, nanoparticles loaded with immunomodulatory
agents such as phytochemicals can be administered intravenously, subcutaneously, or via non-invasive routes such as oral delivery. DC, dendritic
cell; GM-CSF, granulocyte-macrophage colony-stimulating factor; IL-4, interleukin-4.

by nanoformulation might be the key to overcome these limitations
(128). For instance, a recent study shows that gingerol
encapsulation within lipid nanoparticles enhanced its stability and
thus promoted its osteogenic, chemopreventive, and antibacterial
properties in 3D-printed bone scaffolds (129). Another study
demonstrated that B-cyclodextrin inclusion technology could
enhance the stability and bioavailability of 6-shogaol (130) and
curcumin (131) as well. Furthermore, encapsulation of resveratrol
in nanostructured lipid carriers not only increased its stability and
maintained its activity, but also decreased the necessary dose for
inhibiting DC functions (52). The potency of nanocarries in DC-
based immunotherapy has been extensively reviewed elsewhere
(132, 133).

Another promising strategy to improve the bioavailability and
thereby enhance the efficacy of phytochemicals is their combined
use. Piperine acts as a broad-spectrum bioenhancer by increasing
the intestinal absorption of several phytochemicals, which
consequently amplifies their anti-inflammatory effects. For
instance, co-administration with piperine has been shown to
augment the anti-inflammatory potential of quercetin (73).
Specifically, the combined administration of quercetin and
piperine in the form of reconstituted oil bodies significantly
improved the suppression of inflammatory cytokine production
by DCs, even at low doses. Piperin is also documented to increase
the bioavailability of curcumin (134). It must also be noted that
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enhancing the intestinal absorption of phytochemicals such as
curcumin is particularly important from the perspective of DCs,
as they are abundant in the gut mucosa and actively sample antigens
from the intestinal lumen. Consequently, increased local
bioavailability of phytochemicals in the gut allows them to
directly modulate the function and phenotype of intestinal DCs,
potentially shaping mucosal immune responses more effectively.
Further studies in murine RAW264.7 cells suggest that ginsenoside
Rgl can synergize with glucocorticoids to enhance their anti-
inflammatory effect (135). Additionally, immunomodulatory
synergy has been reported between curcumin and capsaicin (97),
curcumin and resveratrol (136), as well as EGCG and quercetin
(137). Furthermore, curcumin showed synergistic anti-cancer
effects when combined with apigenin (138). However, to date, no
specific in vitro studies have directly evaluated the effects of these
combinations on DCs.

Another challenge associated with phytochemicals is that plant-
derived compounds might affect several cell types at the same time
when administrated systemically. The phytochemicals introduced
in this review exert significant inhibitory effects on DC functions;
however, several studies showed that various phytochemicals are
able to directly affect other immune cell types such as T cells and
macrophages. These data suggest that plant-derived compounds
probably target ubiquitous cellular signaling pathways that might
lead to unexpected or undesired pharmacological effects. Although,
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in vivo animal studies showed that several phytochemicals might be
effective in the treatment of autoimmune diseases associated with
aberrant DC activation, the precise molecular mechanism
underlying their activity needs to be explored.

In silico analyses have already predicted multiple molecular
targets for these phytochemicals through approaches such as
molecular docking and direct binding simulations. Notably,
molecular targets include several components of the NF-xB
signaling cascade, as well as key pro-inflammatory enzymes such
as LOX and COX, whose activity can be attenuated through direct
ligand binding. In addition, several of these phytochemicals play a
crucial role in activating the antioxidant system through direct
binding to NRF2, SOD and inhibiting the Keap1. Such interactions
offer a plausible mechanistic basis for the anti-inflammatory and
anti-oxidant phenotypes documented in vitro and in vivo.
Furthermore, these observations underscore the complex
interplay between phytochemicals and multiple signaling
pathways, highlighting the necessity of further studies to precisely
define their molecular targets and mechanisms of action.
Understanding these multifaceted interactions will be crucial for
harnessing phytochemicals as targeted therapeutics for immune-
mediated diseases while minimizing their off-target effects.

Accumulating evidence indicates that multiple plant-derived
compounds can modulate DC activity, including cytokine secretion
and their T cell-priming capacity (Figure 1). Therefore, phytochemicals
could be utilized to the generation of tolerogenic DCs for DC-based
therapies that holds significant potential for the treatment of
autoimmune diseases. Although, numerous protocols have been
developed to manipulate the functionality of DCs prior to re-
introduction into patients, to date, clinical outcomes have not been
satisfactory. There are still many challenges in DC therapy that needs to
be resolved such as the delivery root, optimal cell number and type of
DC to be used. Additionally, a prerequisite for tolerogenic DCs is to
maintain their suppressive phenotype in inflammatory environments.
Therefore, the protocols for generating tolerogenic DCs also include an
activation step using LPS or a cocktail of inflammatory cytokines. This
also contributes to the upregulation of CCR7, which is necessary to the
migration of DCs to the lymph nodes and thus to the modulation of T
cell responses. Nevertheless, tolerogenic DCs generated with the
immunosuppressive agents such as vitamin D3, dexamethasone or
rapamycin have reduced CCR?7 levels and thus impaired capacity to
migrate to lymph nodes (16). Although, migration is a significant
attribute of DC functionality, relatively low number of studies
examined the effects of plant-derived compounds on DC migration.
Given the variability and abundance of biologically active compounds
in plants, it is also conceivable, that some phytochemicals are able to
induce tolerogenic characteristics in DC without inhibiting their
migratory potential. It is also important to mention that similar to
most DC clinical trials, studies examining the effect of phytochemicals
on human DCs have been carried out with moDCs, which have an
inherent low migratory ability and thus rather orchestrate local
immune responses (9, 16, 139). In comparison to moDCs, ¢cDCs
have a superior capacity to migrate to lymph nodes and present
antigens to naive T cells (140). Thus, in future experimental studies
it would be desirable to investigate the effects of plant-derived

Frontiers in Immunology

15

10.3389/fimmu.2025.1653803

compounds on circulating DC types, especially on conventional DCs,
which might serve as a more potent alternative to moDCs for DC
vaccination (140).

In conclusion, plant-derived bioactive compounds might open
up new avenues in the treatment of autoimmune diseases. Several
clinical trials of phytochemicals including curcumin, EGCG,
resveratrol, apigenin and berberine for the treatment of various
autoimmune diseases have been recently completed or are still
ongoing that indicates the potential clinical benefits of these
compounds (Table 3.). Alternatively, several plant-derived
bioactive compounds might serve as potential tools for the
generation of DC-based vaccines (Figure 2). In addition to the
phytochemicals introduced in this review, many others might have
the ability to modulate DC responses that could be exploited for
therapeutic purposes. For instance, a recent study demonstrated
that even a rose flavor compound, namely -damascone, was also
able to suppress DC-mediated immune responses, and thus to
ameliorate contact hypersensitivity in mice (141). All these data
imply that the plant kingdom is one of the richest sources of
bioactive compounds with pharmaceutical activity, and holds a
great potential for the discovery of new therapeutic agents.
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