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cycle and EMT signals: a
comprehensive research based
on multi-omics analysis and
experimental validation
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1Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian,
Liaoning, China, 2Department of Neurosurgery, Panjin Central Hospital, Panjin, Liaoning, China,
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Liaoning, China
Background:Glioblastoma (GBM) is a common high-grade glioma characterized

by a significantly immuno-suppressed immune microenvironment. Prolif-like T

cells are a subset of T cells whose expression of relatedmarkers can influence the

tumor microenvironment.

Methods: This study used scRNA-seq and stRNA-seq to identify markers

associated with Prolif-like T cells in the GBM tumor microenvironment. Survival

analysis and consistency clustering were then employed to identify GBM

subtypes associated with Prolif-like T cells, followed by an analysis of

differences between subtypes. This study constructed survival models and

scRNA-seq to screen for important genes associated with Prolif-like T cells in

GBM and further investigated the role of TK1 in the cell cycle and EMT processes

of GBM.

Results: Using scRNA-seq from 149002 GBM cells, our study identified 593

Prolif-like T cell-related markers. The results of stRNA-seq revealed the close

association of Prolif-like T cell with cell cycle and EMT signals. In addition, 82

genes were found to influence GBM prognosis. Based on the expression of the

82 genes, two Prolif-like T cell-related GBM subtypes (C1 and C2) were

constructed, with C1 exhibiting stronger proliferative activity. Survival models

and scRNA-seq identified TK1 as a key gene associated with Prolif-like T cells in

GBM. Further studies revealed that TK1 promotes GBM progression by

influencing cell cycle and EMT processes, and targeting TK1 inhibition

suppresses GBM proliferation and migration.

Conclusions: TK1, as a Prolif-like T cell-associated marker, promotes GBM

progression and can serve as a potential therapeutic target for GBM.
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Introduction

Glioblastoma (GBM) is the most common and most aggressive

primary malignant brain tumor in adults, classified as Grade IV in

the glioma classification system. It accounts for over 54% of all

glioma cases annually (1). This tumor originates from astrocytes

and is characterized by high heterogeneity, rapid proliferation, and

diffuse infiltrative growth, often involving the deep white matter of

the cerebral hemispheres, particularly the frontal and temporal

lobes. Molecular pathologically, over 90% of glioblastomas are

IDH wild-type, with characteristic molecular alterations including

chromosome 7 amplification/10 deletion, TERT promoter

mutations, EGFR amplification, and PTEN mutations (2). Clinical

symptoms are primarily caused by tumor mass effect and increased

intracranial pressure, including progressively worsening headaches,

seizures, focal neurological deficits, and cognitive decline, with a

typical disease course of less than 3 months. Treatment follows a

surgery-based comprehensive strategy: maximal safe resection is the

primary goal, followed by standard postoperative treatment with

concurrent chemoradiotherapy, followed by six cycles of adjuvant

temozolomide. Despite this, tumor recurrence is nearly inevitable,

with a median progression-free survival of 6.9–7.5 months and a

median overall survival of approximately 15–18 months (3).

Immune checkpoint inhibitors (such as nivolumab) have limited

efficacy in GBM, potentially due to the tumor-associated immuno-

suppressive microenvironment (4). Exploring the cellular and

molecular changes in the immune microenvironment of GBM

remains a critical research direction for GBM treatment.

In recent years, immune therapy strategies targeting T cells

have shown promise, but the unique immuno-suppressive

microenvironment of GBM severely limits T cell antitumor

activity. The GBM tumor microenvironment (TME) is

characterized by significant immune suppression, manifested as

insufficient T cell infiltration and severely impaired function. TGF-

b is highly expressed in the GBM TME, not only inhibiting T cell

proliferation and effector functions but also promoting the

expansion of regulatory T cells (Tregs), further suppressing

antitumor immunity (5). Additionally, elevated activity of the key

tryptophan metabolism enzyme IDO1 in GBM leads to local

tryptophan depletion and accumulation of toxic metabolites,

which suppress T cell activity and promote Treg differentiation

(6). Myeloid-derived suppressor cells (MDSCs) are highly

infiltrated in GBM and suppress T cell function by producing

arginase, reactive oxygen species, and nitric oxide (7). Notably,

even when T cells are infiltrated in the GBM TME, their functional

state is often in an “exhausted” state, characterized by sustained

high expression of multiple inhibitory receptors (PD-1, TIM-3, and

LAG-3) and reduced ability to produce effector cytokines (IFN-g
and TNF-a) (8). Prolif-like T cells are a unique subset of exhausted

precursor T cells capable of both generating new effector T cells and

terminating into terminally exhausted T cells. The emergence of this

cell population may mark the onset of T cell exhaustion and has

recently been identified as a key regulatory node in antitumor

immune responses and a decisive factor in immune checkpoint
Frontiers in Immunology 02
blockade therapy response (9). However, the role of this T cell

subset in the TME of GBM remains unclear. Therefore, this study

aims to identify Prolif-like T cell-associated markers in GBM using

single-cell transcriptomics and further investigate the effects of key

markers on cellular functions and immune microenvironment

changes in GBM, with the goal of determining whether Prolif-like

T cell-associated markers can serve as potential therapeutic targets

for GBM.
Materials and methods

Single-cell RNA sequencing data sources
and standardization

In this study, we collected six scRNA-seq data cohorts of GBM

from the GEO database. These cohorts are GSE103224 (10),

GSE138794 (11), GSE141383 (12), GSE162631 (13), GSE223063

(14, 15), and GSE235676 (16), comprising a total of 43 GBM

samples. These datasets were read using the Seurat package

(min.cells = 3, min.features = 200) and underwent quality control

(nCount_RNA ≥ 1000, nFeature_RNA: 200–8000, percent.mt ≤

20), followed by merging into a scRNA-seq dataset (17). The dataset

contains a total of 149,002 cells, with each cell undergoing mRNA

detection for 45,131 genes.
Cell clustering and annotation

The merged scRNA-seq dataset was normalized using the

LogNormalize method, and 2,000 highly variable genes were

identified and normalized (18). PCA dimensionality reduction

analysis was performed on the dataset based on the highly

variable genes, and batch effects were removed (19). The datasets

were clustered using the FindClusters method, resulting in 52 cell

types (numbered 0-51). The 52 cell types were manually annotated

based on known cell marker genes, resulting in 12 major cell

clusters and an unknown cell cluster. Using the findmarker

function, identify cell subtype-specific markers (only.pos=T,

min.pct=0.25, logfc.threshold=0.25), and further obtain

proliferation-related markers associated with Prolif-like T cells

(log2fc > 0.585), yielding a total of 593 genes.
Cell communication analysis and pseudo-
time analysis

This study applied the CellChat method (20) and CellPhoneDB

data to analyze cell communication pathways associated with Prolif-

like T cells in scRNA-seq data, identifying cell communication

pathways related to Prolif-like T cells. Additionally, the Monocle

method was used for pseudo-time series analysis to examine the

expression changes of proliferativemarkers associated with Prolif-like

T cells during the development of tumor cells and Prolif-like T cells.
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stRNA-seq analysis

The CreateSeuratObject and Read10X_Image functions were

used to load spatial transcriptomics data (GSE253080) (21), while

the SCTransform function was applied for data normalization. To

evaluate various cellular features such as proliferative T cell

signatures, cell cycle activity, EMT characteristics, and tumor cell

traits, we employed five scoring algorithms: Add, AUCell, UCell,

ssGSEA, and singscore (22). To minimize potential biases from

individual methods, we aggregated the results from all five

algorithms to generate a composite score, referred to as the

Scoring, which we considered the true feature score.
RNA-seq data sources and standardization

This study obtained five GBM transcriptomic cohorts with

clinical data from the TCGA, CGGA, and GEO databases. The

data from TCGA included 160 patients, while the data from CGGA

included 216 patients(CGGA325, CGGA133), and the GEO dataset

includes 120 patients (GSE7695, GSE83300). The five datasets were

merged and batches were removed via “sva” package (23), resulting

in a transcriptomic matrix containing 496 GBM samples for

subsequent gene screening and functional analysis.
Survival analysis and gene screening

In this study, we performed gene screening of 593 Prolif-like T

cell-related markers obtained from single-cell data using

transcriptomic data and univariate Cox analysis. We further

screened out 82 key genes with high-risk characteristics and

significant association with prognosis in GBM. Based on the

expression levels of the 82 key genes and ssGSEA analysis, we

further obtained the pathway enrichment scores related to Prolif-

like T cells in GBM patients to evaluate the enrichment level of

Prolif-like T cells in GBM patients. KM analysis was used to detect

the effect of pathway enrichment scores on the prognosis of

GBM patients.
GBM subtypes and differential features

In this study, based on the ConsensusClusterPlus package (24,

25) and 82 key genes, we performed consensus clustering to explore

GBM subtypes associated with Prolif-like T cells, identifying two

subtypes, C1 and C2. We then conducted differential analysis and

pathway enrichment analysis on the two subtypes. Pathway

enrichment analysis was performed using the ssGSEA analysis

method and the Hallmark pathway set (from the MSigDB

database) to analyze the differences in pathway activity between

the two subtypes. Based on the oncoPredict package (26), drug

sensitivity prediction was performed for the two subtypes to

distinguish their sensitivity to common chemotherapy drugs.
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Immune infiltration analysis

This study first used the ESTIMATE algorithm to calculate the

tumor purity, stroma score, and immune score of the two subtypes

to analyze the differences in the immune microenvironment of the

two subtypes as a whole. Then, the TIMER database was used to

analyze the immune cell infiltration levels and immune checkpoint

changes of the two subtypes to further analyze the differences in the

immune microenvironment of the two subtypes.
Survival model construction and validation

In order to further screen out important genes with survival

prediction ability from 82 key genes, a survival prediction model was

constructed using the survival data of 496 patients. Among them, the

data from TCGA and GEO were used as the internal dataset, while

the data from CGGA were used as the external dataset. The training

dataset (train) was generated by randomly splitting the internal

dataset into 50%, while the test dataset 1 (test1) was the remaining

part of the internal dataset, and the test dataset 2 (test2) was the entire

internal dataset. The test dataset 3 (test3) was the entire external

dataset. Lasso analysis was performed on the 82 key gene data in the

training dataset, and a Cox regression model was further constructed.

Three important genes with survival prediction capabilities were

ultimately screened and validated using the three test sets.
Gene function analysis of TK1

This study first analyzed the function of the TK1 gene in GBM

based on the BEST (Biomarker Exploration of Solid Tumors) online

tool (27). The main analysis focused on the expression changes of

the TK1 gene in GBM and its impact on the prognosis of GBM

patients. Further analysis was conducted on the association between

the TK1 gene and common proliferation markers and related

enriched pathways. Finally, the SNV mutations and mRNA

expression of TK1 in the TCGA pan-cancer dataset were analyzed.
Cell culture

This study also used two cell lines, U251 and U87. U251 cell was

cultured by a combination of DMEM and FBS; however, U87 cell

was cultured by a combination of MEM and FBS.
Cell transfection

In order to explore the role of TK1 on the proliferation of GBM

cells, we applied knock-down experiments via siRNA technologies.

The detailed processing of knock-down experiments was carried

out strictly according to the siRNA-Mate Plus Transfection Kit

protocol provided by GenePharma. The siRNA-TK1, siRNA-NC,
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and other related products were provided by Huzhou Hippo

Biotechnology Co., Ltd. The specific interference sequences are as

follows: siRNA1 (sense: UGUCGGCUCUGCUACUUCAAGTT;

antisense: CUUGAAGUAGCAGAGCCGACATT), siRNA2

(sense: CCAAAGACACUCGCUACAGCATT; antisense:

UGCUGUAGCGAGUGUCUUUGGTT), siRNA3 (sense:

CGUGGCUGUCAUAGGCAUCGATT; antisense: UCGAUG

CCUAUGACAGCCACGTT). Finally, the knockdown efficiency

was assessed 48 h after transfection. The primer sequences for

TK1 are as follows: F-GGGCGTGGCTGTCATAGGC, R-

GCGGCACCAGGTTCAGGATG.
CCK8 experiment

The CCK-8 kit was provided by Meilunbio. The successfully

transfected cells were trypsinized and seeded into 96-well plates,

with approximately 100 mL of cell suspension per well. At 24 h, 48 h,

and 72 h after seeding, CCK-8 solution was added to each well at a

final concentration of 10% for detection, and absorbance was

quantified at 450 nm using a microplate reader.
Migration and invasion assays

In order to explore the role of TK1 on the migration and

invasion of GBM cells, we applied scratch experiments and

transwell invasion experiments. Cells transfected with siRNA

were seeded into 6-well plates at an appropriate density. Once

they reached confluence, a scratch was made using a 200 mL pipette

tip to assess cell migration. Similarly, cells at an appropriate density

were seeded into transwell chambers, where invasion was induced

by culture medium containing a high concentration of serum. The

effect of TK1 knockdown on this process was then evaluated. Cells

were observed and photographed under a microscope after 24 h.
Western blot

Cellular proteins were extracted using lysis buffer supplemented

with PMSF, protease inhibitors, and phosphatase inhibitors. After

adding an appropriate amount of loading buffer, the samples were

boiled. Proteins were separated using Precast Protein Plus Gel

(YEASEN, 36266ES10) and Precast Running Buffer (Tris-Mops)

(YEASEN, 36271ES05) at 120V for 50 minutes. Subsequently,

membrane transfer was performed using fast transfer buffer

(Servicebio, G2028-1L). The membrane was then blocked with

5% skim milk at room temperature for 1 hour, followed by

overnight incubation with primary antibodies: TK1 (Proteintech,

15691-1-AP, 1:5000), E-cadherin (Proteintech, 20874-1-AP,

1:20000), N-cadherin (Proteintech, 22018-1-AP, 1:4000),

Vimentin (Proteintech, 10366-1-AP, 1:20000), Cyclin A1

(Proteintech, 13295-1-AP, 1:500), Cyclin B1 (Proteintech, 55004-

1-AP, 1:1000), and b-Actin (ABclonal, AC043, 1:5000). On the next

day, the membrane was incubated with secondary antibodies at

room temperature for 1 hour before chemiluminescent detection.
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Results

Screening of Prolif-like T cell-related
markers using RNA-seq and scRNA-seq

This study integrated RNA-seq data and scRNA-seq data from a

large-scale analysis of 496 patients and 149002 cells with GBM

multiforme (Figure 1A). This study assumes that the tumor tissue

extracted from RNA-seq data is a mixture of multiple cell types, and

the gene expression represents the overall expression level of that

gene across multiple cell types in the scRNA-seq data, reflecting the

overall genetic changes in the tumor tissue. We performed single-

cell clustering and annotation on 149002 cells, identifying 52 cell

types (Figure 1B) and 12 cell subpopulations (Figure 1C). The 12

cell subpopulations are TAN, endothelial, pericyte, monocyte,

oligodendrocyte, tumor, macrophage, prolif-like tumor, prolif-like

macrophage, prolif-like T cell, T/NK cell, and B cell. This study

found that prolif-like T cells not only express T cell surface markers

(CD3D and CD3E) but also highly express proliferation-related

markers such as TOP2A and MKI67 (Figure 1D). Additionally,

these proliferation markers are also up-regulated in prolif-like

tumor and prolif-like macrophage (Figure 1E). This suggests that

these proliferative markers associated with prolif-like T cells may be

important characteristics of GBM tumor tissues.

This study further identified markers associated with prolif-like

T cells, totaling 2,261 genes. Using the criteria of Log2FC > 0.585

(fold > 1.5), 2,261 genes were screened, resulting in 593 significantly

differentially expressed genes. Based on transcriptomic survival

data, single-factor Cox regression analysis identified 82 key genes

significantly associated with GBM survival prognosis (Figure 2A).

Most of these genes are high-risk genes (HR > 1) associated with

GBM survival. This study suggests that the overall status of these 82

genes can reflect the enrichment level of prolif-like T cells in GBM

patients and have certain research values. Therefore, this study used

the ssGSEA method in the GSVA package to perform pathway

enrichment scoring of the expression of 82 genes in the GBM

transcriptome. This score reflects the degree of prolif-like T cell

enrichment in GBM patients. Based on KM survival analysis, the

optimal cutoff value was automatically determined. This study

found that patients in the high-score group (325 cases) had

significantly poorer survival prognosis than those in the low-score

group (171 cases), suggesting that increased prolif-like T cell

enrichment is an indicator of poor prognosis in GBM

patients (Figure 2B).
Differences in GBM subtypes and immune
microenvironments associated with Prolif-
like T cells

This study found that the expression of 82 markers associated

with prolif-like T cells, obtained from scRNA-seq data, had a certain

influence on the clinical prognosis of GBM. This suggests that these

marker genes may effectively distinguish the status of GBM patients.

Therefore, this study performed consistency clustering based on the
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expression of 82 key genes, dividing 496 GBM patients into two

categories, C1 and C2 (Figure 2C). Using ssGSEA analysis and the

Hallmark pathway dataset, we analyzed the enrichment levels of

common pathways in the two categories. The results showed that

C1 exhibited increased enrichment of proliferative pathways (such

as the KRAS pathway, AKT pathway, and Hedgehog pathway)

compared to C2 (Figure 2D). KM survival analysis revealed that C1

had shorter survival times and poorer prognosis compared to C2

(Figure 2E). Drug sensitivity analysis showed that C1 was more

sensitive to 5-fluorouracil than C2, while C2 was more sensitive to

gefitinib than C1 (Figure 2F). In summary, C1 exhibited more active

proliferative activity than C2 and represents a more malignant

GBM subtype.

This study evaluated the immune microenvironment of the two

subtypes using multiple immune infiltration analyses. ESTIMATE
Frontiers in Immunology 05
analysis showed that C1 had higher matrix scores, immune scores,

and ESTIMATE scores compared to C2, while having lower tumor

purity, suggesting that C1 has a richer immune microenvironment

(Figure 3A). However, C1 exhibited significantly higher expression

of immune inhibitory molecules (such as PD-L1 and LAG3)

compared to C2, indicating that C1 has a more pronounced

immune inhibitory immune microenvironment (Figure 3B).

Based on online analysis using the TIMER database, we applied

multiple immune infiltration methods, such as TIMER,

CIBERSORT, EPIC, QUANTISEQ, MCPCOUNTER, and XCELL,

to analyze the immune cell infiltration in the two subtypes. The

results showed that C1 had more immune cell infiltration than C2,

especially in multiple T cell subpopulations (Figure 3C). Since this

study classified tumors based on 82 markers associated with prolif-

like T cells, the C1 subtype can be considered a subtype with higher
FIGURE 1

Screening of markers associated with Prolif-like T cells. (A) Analysis workflow. (B) 52 cell clusters identified by scRNA-seq. (C) 12 cell types identified
by scRNA-seq. (D) Heat map of cell-specific marker expression in 12 cell types. (E) Bar chart of cell-specific marker expression in 12 cell types. (The
workflow diagram in (A) of this study was created using Figdraw and has been approved, with the authorization code as follows: TYUSWc04c0).
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immune cell infiltration. However, this does not necessarily

indicate that the C1 subtype has active antitumor immune

responses. On the contrary, based on existing results, the C1

subtype exhibits more pronounced immune suppression, which

may be due to the increased number of immune cells in the immune

microenvironment that promote tumor growth.
Frontiers in Immunology 06
Screening of important key genes for
survival prognosis models of GBM

This study further screened representative key genes from the

82 markers related to prolif-like T cells and constructed a survival

prediction model using the clinical survival data of GBM patients.
FIGURE 2

Prolif-like T cell-associated GBM subtypes. (A) Prognostic analysis of Prolif-like T cell markers. (B) Prolif-like T scores assessed by GSVA.
(C) Unsupervised clustering analysis based on Prolif-like T cell markers. (D) Differential activity of canonical signaling pathways in C1 versus C2 tumor
subtypes. (E) Differential clinical outcomes in C1 versus C2 subtypes. (F) Drug Sensitivity Analysis. (*p < 0.05; ***p<0.001).
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First, the genes were preliminarily screened through Lasso analysis

and training set data (Figure 4A). Further, through multi-factor Cox

regression analysis, three genes (TK1, SP100, and RPSA) were

identified as having survival predictive value, and a survival

model and risk scores were constructed. Among these, TK1

exhibited a highly significant high-risk feature (HR = 1.37, p <

0.001) (Figure 4B). The survival curves of the training set showed

that patients with high-risk scores had poorer outcomes (p =

1.209946e-05). ROC analysis revealed an AUC value of 0.842,

confirming the good predictive performance of the survival model

(Figure 4C). Validation of the survival model using three test sets
Frontiers in Immunology 07
(test1-3) showed that the survival curve for test1 indicated poorer

prognosis in patients with high-risk scores (p=3.594277e-02), and

ROC analysis revealed an AUC value of 0.654. The survival curve

for test2 showed that patients with high-risk scores had poorer

outcomes (p=6.120802e-06), and ROC analysis revealed an AUC

value of 0.74. Test 3 survival curves showed that patients with high-

risk scores had poorer outcomes (p = 2.480428e-02), and ROC

analysis revealed an AUC value of 0.636. In summary, all test sets

demonstrated that the survival model has good predictive

performance (p < 0.05, AUC > 0.6). This study further analyzed

the expression of the three genes in 12 subclusters using scRNA-seq
FIGURE 3

Differences in the immune microenvironment between the two GBM subtypes. (A) ESTIMATE analysis of the two subtypes. (B) Immune checkpoint
expression in the two subtypes. (C) Immune cell infiltration analysis of the two subtypes. (*p < 0.05; **p<0.01; ***p<0.001).
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data, and the results showed that only TK1 exhibited significantly

elevated expression in prolif-like tumor, prolif-like macrophage,

and prolif-like T cell (Supplementary Figure S1). Therefore, this

study suggests that TK1 is an important proliferative marker in the

tumor microenvironment of GBM and has certain research value.
Functional role of TK1 in the immune
microenvironment of GBM

Using the BEST (Biomarker Exploration of Solid Tumors)

online tool, this study further analyzed the expression of TK1 in

GBM tumors and its impact on prognosis. In a large number of

GBM cohorts, TK1 exhibited higher expression in tumor tissues

compared to normal tissues (Figure 5A).
Frontiers in Immunology 08
Additionally, in multiple GBM survival cohorts, patients with

higher TK1 expression tended to have poorer outcomes (Figure 5B).

Furthermore, based on TCGA pan-cancer cohort analysis, we found

that TK1 exhibited increased SNV mutations (Supplementary

Figure S2A) and mRNA expression (Supplementary Figure S2B)

in various tumors.

However, it is worth noting that in scRNA-seq data, TK1

expression is not particularly high in prolif-like tumor and tumor,

but is predominantly expressed in prolif-like macrophage and

prolif-like T cell. We further performed cell communication

analysis on scRNA-seq data and found that prolif-like tumor and

prolif-like macrophage exhibit increased cell communication with

prolif-like T cell (Figure 6A). Prolif-like T cells primarily

communicate with other cell populations through SPF1, MIF, and

chemokine-related signaling pathways (Figure 6B). Prolif-like
FIGURE 4

Construction and validation of the GBM survival prognosis model. (A) LASSO algorithm. (B) COX Regression. (C) Prognostic Performances of Prolif-
like T cells’ Predictive Model.
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tumor and prolif-like macrophage can communicate with

prolif-like T cells through multiple pathways (Figure 6C). This

suggests that the three subpopulations of prolif-like tumor,

prolif-like macrophage, and prolif-like T cells exhibit extensive

communication. Furthermore, prolif-like tumor and prolif-like

macrophage can suppress T cell activation through cell

communication and further promote the pro-inflammatory role

of T cells. This study also performed a pseudotime analysis of prolif-

like T cells and tumor cells based on scRNA-seq data, analyzing the

expression of 82 marker genes during the developmental process of

the two cell populations. The results showed that the expression of

most genes in prolif-like T cells increased in the early stage and

decreased in the late stage (Figure 7A). In contrast, the expression of
Frontiers in Immunology 09
genes in tumor cells decreased in the early stage and increased in the

late stage (Figure 7B). TK1 also exhibited similar changes in both

subpopulations. However, TK1 expression in prolif-like T cells

showed a more gradual change, while tumor cells exhibited a

sudden increase in TK1 expression in the late stage. Based on

these findings, we have reason to believe that tumor cells, and

possibly prolif-like tumor cells, may have potential communication

via TK1 with prolif-like T cells. More specifically, TK1 in prolif-like

T cells enters tumors through some pathway, promoting the

transformation of tumors into prolif-like tumors and accelerating

tumor growth. Therefore, we believe that inhibiting TK1 expression

in tumors and the tumor microenvironment is a potential

therapeutic strategy for treating GBM.
FIGURE 5

Expression and prognostic impact of TK1 in GBM. (A) Differential Expression of TK1 Gene in GBM tissues and normal brain tissues. (B) Prognostic
Analysis of TK1 Gene in GBM patients. (*p < 0.05; **p<0.01; ***p<0.001).
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Effects of targeting TK1 on GBM cells

Using the BEST (Biomarker Exploration of Solid Tumors)

online tool, we found that TK1 expression in GBM is associated

with multiple proliferation marker genes (Figure 8A).

The results showed that PCNA expression was significantly

correlated with TK1 expression (R = 0.46, p = 7.1e-10). MKI67

expression was significantly correlated with TK1 expression (R =

0.55, p = 3.5e-14). MCM2 expression was significantly correlated

with TK1 expression (R = 0.5, p = 9.3e-12). Pathway analysis based

on Hallmark pathway revealed that TK1 influences the enrichment

levels of the cell cycle pathway and the epithelial-mesenchymal

transition (EMT) pathway (Figure 8B). Further GSEA analysis

confirmed that these two pathways are important downstream

pathways of TK1 (Figures 9A, E).

Meanwhile, there are no effective inhibitors targeting TK1 in

clinical practice. Therefore, this study used siRNA to interfere with

TK1 expression in GBM cell lines to simulate the therapeutic

process. This study primarily utilized two GBM cell lines, U251

and U87, and constructed si-TK1 cell models using the siRNA

method (Figures 8C, G). CCK8 assay results showed that at 24 h, 48

h, and 72 h, inhibiting TK1 expression reduced the proliferation of

both GBM cell lines (Figures 8D, H). Cell scratch assay results

showed that inhibiting TK1 expression shortened the migration

distance of both GBM cell lines (Figures 8E, I). Transwell invasion
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assay results demonstrated that inhibiting TK1 expression

suppressed the invasion capacity of both GBM cell lines

(Figures 8F, J). To further investigate the effects of TK1 inhibition

on the cell cycle and EMT, we analyzed the expression of relevant

proteins in the si-TK1-treated U251 cell line. The results showed

that inhibiting TK1 expression significantly suppressed the

expression of CCNA1 (cyclin A1) and CCNB1 (cyclin B1)

(Figure 9D), and high expression of CCNA1 and CCNB1 in the

GBM survival cohort was associated with poorer prognosis

(Figures 9B, C). Additionally, inhibiting TK1 expression

significantly suppressed the expression of CDH2 (N-Cadherin)

and VIM (Vimentin) (Figure 9H), and high expression of CDH2

and VIM in the GBM survival cohort was associated with poorer

prognosis (Figures 9F, G). In summary, targeting TK1 inhibition

suppresses the cell cycle and EMT process in GBM, suggesting that

TK1 is a potential antitumor target in GBM.
Spatial transcriptomic analysis highlighted
the close interconnection among
proliferative T cells, tumor cells, EMT
signaling, and cell cycle signaling

Spatial transcriptomic analysis (Figure 10), from an additional

dimension, further emphasized the presence of proliferative T cells,
FIGURE 6

Cell communication of Prolif-like T cells. (A) Cell-chat analysis (Left: Source = Prolif-like T; Right: Target = Prolif-like T). (B) Bar graph of Ligand-
Receptor pairs for Prolif-like T cell interactions. (C) Heatmap of Ligand-Receptor pairs for Prolif-like T cell interactions.
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tumor cells, and proliferative tumor cells, as well as the connections

among them. Interestingly, we observed that proliferative T cells

often appeared in the vicinity of tumor cells, particularly

proliferative tumor cells. In these spatial regions, we also detected

abnormally active cell cycle and EMT signaling. Notably, the spatial

expression pattern of TK1 closely mirrored the distribution of both

proliferative T cells and tumor cells. More importantly, the spatial

characteristics of TK1 share a similar spatial distribution with EMT

signaling and cell cycle signaling. In conclusion, spatial

transcriptomics further confirmed the important role of

proliferative T cells in GBM, as well as the regulatory capacity of

TK1 over cell cycle signaling and EMT signaling.
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Discussion

High-grade gliomas is a collective term for malignant gliomas,

referring to gliomas classified as grade III and IV in the World

Health Organization (WHO) classification of central nervous

system tumors. GBM is the most common and most aggressive

subtype of HGG, belonging to grade IV gliomas. GBM is the

subgroup with the poorest prognosis among HGG, characterized

by high recurrence rates and high drug resistance. Immunotherapy

is a potential treatment approach for GBM, and overcoming the

inhibitory effects of the GBM tumor microenvironment is a

potential therapeutic direction for future GBM treatment.
FIGURE 7

Pseudotime analysis of proliferative T cells and tumors. (A) Pseudotime analysis of Prolif-like T cell markers in Prolif-like T cells. (B) Pseudotime
analysis of Prolif-like T cell markers in tumor cells.
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This study found that the immune microenvironment of GBM

contained a significant number of Prolif-like T cells, which were

highly associated with GBM tumor cells. Some markers associated

with Prolif-like T cells are potential factors influencing poor

prognosis in GBM. This study identified TK1 as an important

marker associated with Prolif-like T cells through multiple

bioinformatics methods, which can influence the cell cycle and

EMT process of GBM cells and is a potential therapeutic target

for GBM.

TK1 is an essential cytoplasmic enzyme involved in DNA

synthesis and repair, primarily catalyzing the phosphorylation of
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thymidine to thymidine monophosphate (dTMP), a key rate-limiting

step in the synthesis of DNA precursor molecules. Its activity and

expression levels peak during the S phase and G2 phase of the cell

cycle, closely correlating with cellular proliferation status. This

characteristic makes it an important molecular marker for assessing

cellular proliferation activity. Under physiological conditions, TK1

activity is primarily present in tissues with active proliferation, such

as bone marrow, lymphoid tissues, intestinal mucosa, and germ cells.

However, in pathological conditions, particularly in malignant

tumors, due to uncontrolled proliferation of tumor cells, TK1 is

synthesized and released into the blood in large quantities, leading to
FIGURE 8

Effects of TK1 on GBM cell function. (A) Expression relationship between TK1 and proliferative markers. (B) TK1-related pathways based on GSEA-
Hallmark analysis. (C) Construction of si-TK1 U251 cell lines. (D) CCK8 assay of si-TK1 U251 cell lines. (E) Cell scratch assay of si-TK1 U251 cell lines.
(F) Transwell invasion assay of si-TK1 U251 cell lines. (G) Establishment of si-TK1 U87 cell lines. (H) CCK-8 assay of si-TK1 U87 cell lines. (I) Cell
scratch assay of si-TK1 U87 cell lines. (J) Transwell invasion assay of si-TK1 U87 cell lines. *: p <0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.
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a significant increase in serum TK1 activity or concentration. This

phenomenon has been widely confirmed in various solid tumors and

hematological malignancies (28–32). Therefore, serum TK1

detection, as a non-invasive liquid biopsy method, demonstrates

significant value in the early screening, auxiliary diagnosis, efficacy

monitoring, prognosis assessment, and recurrence risk prediction of

tumors. This study found that high expression of TK1 in GBM tumor

tissues was also an important indicator of poor tumor prognosis.
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TK1 is a key enzyme in the DNA nucleotide salvage synthesis

pathway and is closely associated with the cell cycle. In normal cells,

TK1 activity exhibits strict cell cycle dependence, primarily

expressed during the S phase and rapidly degraded after cell

division, with extremely low levels in serum. However, in

malignant tumors, this precise regulation is significantly

disrupted. The abnormal proliferative characteristics of tumor

cells lead to a large number of cells entering the S phase and
FIGURE 9

TK1 influences the cell cycle and EMT process in GBM. (A) The impact of TK1 on GBM cell cycle based on GSEA analysis. (B) Prognostic analysis of
CCNA1. (C) Prognostic analysis of CCNB1. (D) The impact of TK1 on Cyclin A1 and Cyclin B1. (E) The impact of TK1 on GBM EMT processing based
on GSEA analysis. (F) Prognostic analysis of CDH2. (G) Prognostic analysis of VIM. (H) The impact of TK1 on E-Cadherin, N-Cadherin, and Vimentin.
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maintaining high expression of TK1; simultaneously, increased

apoptosis, necrosis, and tumor vascular permeability in tumor

tissues collectively promote the massive release of TK1 protein or

its fragments into the bloodstream, making it an important serum

marker reflecting abnormal proliferative activity of tumor cells (33).

Its overexpression is not only associated with dysregulation of cell

cycle regulatory factors but also involves abnormal activation of

multiple tumor-related signaling pathways and changes in

epigenetic modifications (34).

Recent studies have increasingly revealed that TK1 is not only a

marker of tumor cell proliferation but also a key factor actively involved

in shaping the immuno-suppressive tumor microenvironment (TME),

influencing the composition and functional state of the TME through

multiple mechanisms. High expression of TK1 in tumor cells

accelerates dTTP synthesis, directly meeting the DNA synthesis

requirements for rapid proliferation, thereby promoting tumor

growth and invasion. Notably, tumor cells can release TK1 protein

or its active forms into the TME via the exosome pathway. These

exosomal TK1 (exTK1) molecules are taken up by immune cells such
Frontiers in Immunology 14
as tumor-associated macrophages (TAMs), MDSCs, and dendritic cells

(DCs), significantly disrupting their normal immune functions. For

example, exTK1 can suppress T cell activation and proliferation, induce

T cell apoptosis or exhaustion, promote TAMs to polarize toward the

immuno-suppressive M2 phenotype, and enhance the immuno-

suppressive activity of MDSCs, collectively leading to impaired

effector T cell function and creating an immuno-suppressive

environment conducive to tumor escape (35). TK1 may activate pro-

inflammatory and pro-survival pathways such as NF-kB and STAT3

by influencing key metabolite levels or through direct signal

transduction. These pathways not only further promote tumor cell

proliferation, survival, and invasion but also continuously stimulate the

production of immuno-suppressive cytokines and the recruitment and

activation of inhibitory immune cells in the TME, forming a positive

feedback loop that maintains immunosuppression and pro-tumor

inflammation (36). Furthermore, TK1 expression is associated with

tumor-infiltrating lymphocytes, immune subtypes, and immune

regulatory factors in most cancers (37, 38). In summary, the role of

TK1 in tumors extends beyond that of a simple cell proliferation
FIGURE 10

Spatial transcriptomic features revealing the association among proliferative T cells, tumor cells, EMT signaling, and cell cycle signaling.
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marker. It profoundly and extensively participates in shaping the

immune-suppressive and tumor-promoting TME by promoting

tumor cell self-proliferation, mediating exosome-dependent immune

suppression, and driving pro-tumor inflammatory signaling pathways.

Therefore, targeting TK1 or its mediated signaling pathways (such as

developing TK1 inhibitors or targeting exosomes carrying TK1) not

only aims to inhibit tumor cell proliferation itself but also holds

potential for reshaping the TME, reversing immune suppression, and

enhancing antitumor immune responses. This study found that TK1

also plays an important role in the tumor microenvironment of GBM,

serving as an important marker associated with prolif-like T cells, with

elevated expression not only in prolif-like T cells but also in prolif-like

Tumors. Furthermore, the high expression of TK1 in GBM tumor

tissues is an indicator of poor tumor prognosis and a potential feature

of tumor progression. Our study also found that tumor cell clusters in

single-cell data did not exhibit high expression of TK1. Therefore,

based on multiple analysis results and previous studies, we speculate

that there is TK1 communication between tumor cells and Prolif-like T

cells, which facilitates further proliferation and progression of tumor

cells. Therefore, this study identified targeting TK1 (both intracellular

and extracellular are potential targets) as a potential therapeutic

strategy for treating GBM. However, there are currently no available

TK1 inhibitors. Developing TK1 inhibitors and specific treatment

pathways remains an important research direction. While our study

provides a foundation for TK1 research in GBM, further mechanistic

studies are needed to elucidate the TK1 communication between

Tumor and Prolif-like T cells in GBM.
Conclusions

In summary, the high infiltration of prolif-like T cells is closely

associated with poor prognosis in GBM. TK1, as one of their major

markers, can promote GBM proliferation, migration, and invasion.

Targeting TK1 may represent a new avenue of hope for patients

with GBM.
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