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Background: Traumatic brain injury (TBI) is increasingly recognized as a systemic

inflammatory disorder, with neutrophils playing a critical role in secondary injury.

However, the phenotypic heterogeneity and clinical significance of neutrophil

subsets in the early TBI immune landscape remain unclear, limiting their utility in

nursing prognostic assessment and individualized care planning.

Methods: We performed an integrated multi-omics analysis—combining single-

cell RNA sequencing (scRNA-seq), bulk transcriptomics, and proteomics—to

dissect neutrophil diversity post-TBI. A distinct SLFN4+ neutrophil population

was identified and further validated through in vitro functional assays and serum

profiling in a TBI patient cohort. Clinical correlations and nursing stratification

models were constructed to evaluate prognostic relevance.

Results: At 24 hours post-injury, scRNA-seq revealed four neutrophil clusters in

mouse brains. Among these, the SLFN4+ subset exhibited N1-like polarization, pro-

inflammatory activation, and metabolic rewiring favoring glycolysis and oxidative

phosphorylation. Regulon and pseudotime analyses highlighted its transitional

regulatory potential. SLFN4+ neutrophils actively engaged in TNF and CCL-

mediated communication with monocytes/macrophages. Functionally, silencing

SLFN4 or STAT2 enhanced neutrophil proliferation and reduced inflammatory

cytokine secretion. Clinically, elevated serum SLFN4 levels in TBI patients were

associated with poor neurological outcomes and, when incorporated into a

composite nursing risk model, significantly improved early prognostic accuracy.
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Conclusions: SLFN4+ neutrophils represent a key inflammatory effector population

contributing to early immune dysregulation after TBI. Beyond mechanistic insights,

SLFN4 serves as a promising serum biomarker to enhance clinical decision-making

and nursing risk stratification. These findings support the integration of

immunological biomarkers into precision nursing frameworks to guide early

interventions and improve neurorehabilitation outcomes.
KEYWORDS

traumatic brain injury, nursing follow-up prognostic model, SLFN4-positive neutrophils,
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1 Introduction

Traumatic brain injury (TBI) is a critical public health concern

and a leading cause of disability and mortality, particularly among

young and middle-aged adults worldwide. While initial mechanical

trauma causes direct neurological damage, the ensuing secondary

injury cascade—driven largely by immune-inflammatory responses

—plays a decisive role in neurological deterioration, delayed

recovery, and long-term functional outcomes (1, 2). These

secondary responses often complicate clinical care and represent

important therapeutic and prognostic targets in both acute

management and long-term rehabilitation settings (3).

Among the earliest responders to TBI-induced inflammation are

neutrophils, which infiltrate the damaged brain parenchyma within

hours post-injury. Although neutrophils are essential for host defense

and tissue decontamination, their overactivation can lead to the

excessive release of reactive oxygen species, proteases, and pro-

inflammatory cytokines, thereby exacerbating blood-brain barrier

disruption, neuronal injury, and cerebral edema (4–10). From a

clinical perspective, persistent neutrophilic inflammation has been

linked to poor neurological outcomes and prolonged intensive care

needs. Understanding the heterogeneity of neutrophil phenotypes in

TBI and their molecular regulators is therefore crucial for guiding

individualized treatment strategies and early risk stratification in

neurosurgical and neurocritical care settings.

Accurate prognostic evaluation is central to nursing care planning

and post-trauma rehabilitation in patients with traumatic brain injury

(TBI). Conventional nursing risk stratification models often rely on

clinical indicators such as Glasgow Coma Scale (GCS) score, imaging

findings, and vital signs. While these parameters offer rapid bedside

assessments, they may not fully capture the underlying molecular

heterogeneity and immune-inflammatory dynamics that drive patient

deterioration or recovery. This disconnect limits the predictive

accuracy of current models and hampers early personalized

interventions. Recent advances in transcriptomics, especially single-

cell RNA sequencing (scRNA-seq), have enabled unprecedented

resolution in characterizing immune cell subpopulations and their

functional trajectories following TBI. These technologies provide
02
valuable insights into systemic inflammatory patterns that can

complement conventional nursing assessment tools. By integrating

such multi-omics findings into nursing prognostic models, we can

bridge the gap between bench and bedside, enabling stratified care

strategies, enhanced early-warning systems, and more precise

rehabilitation planning. Importantly, this approach empowers

nursing professionals to engage with precision health data and

translate complex molecular signatures into actionable care decisions.

The Schlafen (SLFN) family comprises interferon-regulated

proteins with diverse roles in immune cell differentiation,

proliferation, and activation. Among them, Schlafen family

member 4 (SLFN4) has emerged as a modulator of myeloid cell

function and inflammatory polarization (11, 12). However, the

relevance of SLFN4 in the context of neuroinflammation (13) and

its specific involvement in neutrophil-mediated responses after TBI

remains largely unexplored (14, 15). Identifying SLFN4-expressing

neutrophils may offer a new immunological biomarker for early risk

evaluation and personalized nursing interventions.

Advances in high-throughput sequencing and proteomic

technologies have enabled the dissection of immune cell states at

single-cell resolution (16). Integration of single-cell RNA sequencing

(scRNA-seq), bulk transcriptomic profiling, and proteomic validation

offers a powerful framework to uncover novel immune signatures and

link them to functional and clinical outcomes (12, 17). This multi-

omics strategy is especially valuable in dissecting the complexity of the

post-TBI immune landscape (18).

In this study, we utilized an integrative multi-omics strategy to

characterize neutrophil heterogeneity in early-stage TBI. We

identified a distinct SLFN4+ neutrophil subset exhibiting N1-like

pro-inflammatory signatures and metabolic remodeling.

Importantly, SLFN4+ neutrophil abundance was significantly

associated with Glasgow Outcome Scale–Extended (GOSE) scores

and Barthel Index scores during longitudinal nursing follow-up,

underscoring its prognostic value in patient recovery trajectories.

Our findings not only reveal mechanistic insights into TBI-

associated neuroinflammation but also propose SLFN4 as a

clinically actionable biomarker to guide risk stratification, patient

monitoring, and targeted nursing interventions (19).
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2 Methods

2.1 Single-cell sequencing data acquisition

Single-cell transcriptomic data relevant to TBI were obtained

from the Gene Expression Omnibus (GEO) under accession

number GSE269748 (https://www.ncbi.nlm.nih.gov/geo/). This

dataset contains single-cell RNA sequencing profiles of both

immune and non-immune cell populations isolated from the

brains of mice subjected to controlled cortical impact (CCI) and

sham-operated controls, all collected at 24 hours post-injury (18,

20). The dataset includes samples from four TBI mice and four

sham-treated mice. As the data are publicly accessible, no additional

ethical approvals were required for their use. To ensure

reproducibility and analytical rigor, information regarding

sequencing protocols, library construction, and metadata were

retrieved from the GEO database entry and its corresponding

published reference (21).
2.2 Single-cell data processing and
visualization

Raw single-cell RNA sequencing data were analyzed in R

(version 4.3.3) using the Seurat package (version 4.4.0). Doublet

artifacts were identified and excluded using the DoubletFinder

algorithm (v2.0.3). Quality control thresholds were applied to

retain high-confidence cells, specifically those with 300–6,000

detected genes, 500–100,000 unique molecular identifiers (UMIs),

mitochondrial gene content below 25%, and erythroid/hemoglobin

gene expression under 5%. Normalization was conducted via the

NormalizeData function, and the top 2,000 most variable genes

were selected using FindVariableFeatures. The dataset was

subsequently scaled using ScaleData, followed by principal

component analysis (PCA) for dimensionality reduction. Batch

effects across samples were mitigated using the Harmony

integration algorithm (v0.2.1), and the first 30 principal

components were employed for clustering and Uniform Manifold

Approximation and Projection (UMAP) visualization.

Cell type classification was performed using canonical marker

genes in reference to the CellMarker database. Neutrophils were

computationally subsetted from the broader dataset, re-clustered

independently, and further subdivided into distinct subpopulations

based on established subtype-specific markers (22–24).
2.3 Cell preference assessment and
functional enrichment analysis

To evaluate cell-type-specific enrichment between TBI and

control conditions, odds ratio (OR) analysis was employed to

compare the relative abundance of each cellular population. Log-

transformed frequencies were utilized to infer enrichment patterns

and tissue distribution trends (25, 26).
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Cluster-specific and subcluster-specific differentially expressed

genes (DEGs) were identified using the FindAllMarkers function in

Seurat, based on the Wilcoxon rank-sum test. DEGs were filtered

using thresholds of |log2 fold change| > 0.25 and adjusted p-value <

0.05 (27). Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses were

performed using the clusterProfiler package (v4.8.2) and the

Single-Cell Portal (SCP). Gene Set Enrichment Analysis (GSEA)

was further applied to elucidate functional pathways associated with

DEGs (28–31).

To evaluate gene set activity at the single-cell level, the AUCell

framework was utilized. Cell-wise enrichment scores were calculated

via AUCell_buildRankings and AUCell_calcAUC functions. Gene sets

relevant to stemness, inflammation, and immune regulation were

curated from the Molecular Signatures Database (MSigDB) and prior

peer-reviewed publications (27, 32, 33).
2.4 Cell lineage trajectory analysis

To explore neutrophil developmental trajectories following TBI,

we employed multiple complementary pseudotime and lineage

reconstruction algorithms. Transcriptional plasticity and

differentiation potential were initially assessed using CytoTRACE

(v0.3.3), which estimates cellular stemness based on gene expression

entropy and transcriptomic diversity.

Monocle 2 (v2.24.0) was subsequently utilized to perform

pseudotemporal ordering of cells. Highly variable genes were

selected to construct differentiation trajectories through the

reduceDimension and orderCells functions. This approach

allowed inference of temporal progression along a continuous

developmental path.

To further delineate lineage relationships, Slingshot (v2.6.0) was

applied using principal component data derived from either Seurat

or Harmony integration as input. Lineage topologies and branching

structures were reconstructed using the getLineages and getCurves

functions. These trajectories were visualized in the UMAP

embedding to highlight bifurcation points and dynamic gene

expression changes.
2.5 Gene set scoring

To quantify the activation of predefined gene sets at the single-

cell level, we implemented the AUCell algorithm through the

irGSEA R package. For each cell, gene expression profiles were

ranked, and the enrichment of target gene sets was evaluated by

calculating the area under the curve (AUC) scores.

The curated gene sets encompassed biological pathways associated

with stemness, inflammatory signaling, immune activation, and

neutrophil-specific functions. These were sourced from established

databases including MSigDB and Reactome.

Enrichment scores were computed using the AUCell_buildRankings

and AUCell_calcAUC functions. Visualization of score distributions was

performed using UMAP projection and violin plots. Thresholds for
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positive enrichment were defined based on internal negative controls or

bimodal distribution patterns.
2.6 Intercellular communication network
construction

To elucidate patterns of intercellular communication within the

TBI-affected brain microenvironment, we employed the CellChat R

package (version 1.6.1), which infers signaling interactions based on

curated ligand–receptor pairings.

Preprocessed single-cell RNA-seq expression matrices and cell

identity labels derived from Seurat clustering were input into

CellChat using the createCellChat function. Interaction databases

were referenced from CellChatDB (https://github.com/sqjin/

CellChat) for ligand–receptor annotations.

Signaling probability scores were computed using the

computeCommunProb function, applying a permutation-based

significance cutoff of P < 0.05. Global intercellular communication

patterns were summarized using computeCommunProbPathway

and aggregateNet.

Comparative analyses between cell types or experimental conditions

(e.g., sham vs. TBI) were performed using netVisual_diffInteraction and

netAnalysis_signalingRole. Communication roles were further dissected

into incoming and outgoing signals based on computed

centrality scores.

Key signaling pathways—such as TNF, CXCL, interferons, and

PDGF—were visualized through circle plots and hierarchical

clustering of pathway-specific interactions. This network analysis

delineated the directional and context-specific features of immune-

mediated communication in the injured brain (34).
2.7 Gene regulatory network construction
based on SCENIC

Gene regulatory networks at single-cell resolution were

constructed using the SCENIC pipeline, executed via pySCENIC

(v0.10.0) in a Python 3.7 environment. The analysis proceeded in

three key steps: First, gene co-expression modules were inferred

using the GRNBoost2 algorithm, which calculates gene–gene

correlations based on log-normalized expression matrices to

predict preliminary transcription factor (TF)–target interactions.

Next, these interactions were refined through cis-regulatory motif

enrichment analysis utilizing the cisTarget database; only those TF–

target pairs with enriched binding motifs within ±10 kb of

transcription start sites were retained to define high-confidence

regulons. Finally, the AUCell algorithm was applied to quantify

regulon activity at the single-cell level by calculating area under the

curve (AUC) scores, producing a regulon activity matrix across all

cells. Visualization via UMAP and heatmaps enabled comparison of

regulon dynamics among neutrophil subpopulations and other
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immune cell types in the TBI brain. Key transcriptional regulators

implicated in inflammation and cell state transitions, including Irf7,

Stat1, Batf, and Cebpb, were identified as central drivers of

neutrophil functional heterogeneity (35).
2.8 Clinical cohort follow-up and
prognostic stratification

To investigate the prognostic value of SLFN4 in TBI, we

conducted a prospective observational study involving adult

patients (≥18 years) diagnosed with moderate-to-severe traumatic

brain injury who were hospitalized at the First Affiliated Hospital of

Anhui Medical University between January 2023 and December

2024. The studies involving human participants were reviewed and

approved by the Ethics Committee of The First Affiliated Hospital

of Anhui Medical University (Reference Number: Quick–PJ 2023-

14-88, and all procedures were conducted in accordance with the

Declaration of Helsinki and relevant national guidelines. The study

adhered to the principles outlined in the Declaration of Helsinki,

with informed consent obtained from all participants. During

hospitalization, structured face-to-face nursing assessments were

conducted on admission day 1, day 3, and day 7 to evaluate

neurological function, systemic inflammation, and early recovery

status. After discharge, standardized telephone follow-ups were

performed at 1, 3, and 6 months to continuously monitor

patients’ functional outcomes, inflammatory status, and

complication burden. Follow-up assessments were conducted by

trained neurosurgical nurses using validated clinical instruments:

Glasgow Coma Scale (GCS) and Extended Glasgow Outcome Scale

(GOSE) for neurological function; neutrophil-to-lymphocyte ratio

(NLR), C-reactive protein (CRP), and serum SLFN4 levels for

inflammatory status; Barthel Index and EQ-5D for functional

recovery; and complication tracking for fever, seizures, and

infections. Clinical data were recorded in an encrypted electronic

case report form (CRF) and verified independently by two

researchers. For SLFN4 quantification, peripheral venous blood (5

mL) was collected on post-admission day 1, and at 1 and 3 months.

After centrifugation (3,000 × g, 10 minutes), serum was stored at

−80 °C and analyzed in duplicate using a commercially available

ELISA kit (Cat# SLFN4-HU-ELISA; Cloud-Clone Corp., Wuhan,

China). The assay exhibited intra- and inter-assay coefficients of

variation below 10%. To stratify patient risk, a composite prognostic

score was developed by integrating standardized values (z-scores) of

SLFN4, NLR, GCS, GOSE, Barthel Index, and complication burden.

Weighting coefficients (bi) were derived from multivariate Cox

regression, and the cumulative risk score was calculated as Risk Sc

ore =o(bi �  Zi). Patients were classified into low-, intermediate-,

and high-risk groups based on tertile thresholds. Prognostic

differences were evaluated using Kaplan–Meier survival curves

and log-rank testing, while model discriminative performance was

assessed via receiver operating characteristic (ROC) analysis and

area under the curve (AUC) metrics.
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2.9 Cell culture, induced differentiation,
and shRNA transduction

Human promyelocytic leukemia cell lines HL-60 and NB4 were

obtained from the Cell Bank of the Chinese Academy of Sciences

(Shanghai, China) and maintained in RPMI-1640 medium (Gibco,

Cat#11875-093) supplemented with 10% fetal bovine serum (FBS;

Gibco, Cat#10099-141) and 1% penicillin–streptomycin (Gibco,

Cat#15140-122). Cells were cultured under standard conditions at

37 °C in a humidified incubator with 5% CO2.

To induce neutrophil-like differentiation, cells were treated with

1.3% dimethyl sulfoxide (DMSO; Sigma, Cat#D2650) for a duration

of 5 days. Successful differentiation was validated through the

upregulation of CD11b surface expression as assessed by flow

cytometry, and by the observation of morphological changes

characteristic of neutrophils using Wright–Giemsa staining.

Following differentiation, cells were transduced with lentiviral

vectors encoding short hairpin RNAs (shRNAs) (detailed in

Supplementary Table 1) targeting either Slfn4 or STAT2

(GenePharma, Suzhou, China) in the presence of 8 mg/mL

polybrene (Sigma, Cat#H9268) to enhance transduction efficiency.

Two independent shRNA sequences per gene target were used to

ensure knockdown specificity. Stable integration was achieved by

selection with 2 mg/mL puromycin (Sigma, Cat#P9620) for 5

consecutive days prior to downstream functional assays.
2.10 qRT-PCR analysis

Total RNA was extracted from DMSO-differentiated HL-60 and

NB4 cells using TRIzol™ reagent (Invitrogen, Cat#15596026). RNA

purity and concentration were assessed using a NanoDrop 2000

spectrophotometer (Thermo Fisher Scientific). One microgram of

RNA was reverse-transcribed into complementary DNA (cDNA)

using the PrimeScript™ RT reagent kit with gDNA Eraser (Takara,

Cat#RR037A) to eliminate genomic DNA contamination.

Quantitative PCR was conducted on a StepOnePlus™ Real-

Time PCR System (Applied Biosystems) using TB Green® Premix

Ex Taq™ II (Takara, Cat#RR820A). Each 20 mL reaction contained

10 mL of PCR master mix, 0.4 mL of each primer (10 mM)) (primer

detailed in Supplementary Table 1), 2 mL of cDNA, and nuclease-

free water. The thermal cycling conditions consisted of an initial

denaturation at 95°C for 30 seconds, followed by 40 amplification

cycles at 95°C for 5 seconds and 60°C for 30 seconds. Specificity of

amplification was confirmed via melt curve analysis.

Gene expression was normalized to GAPDH using the 2−DDCt
method, and all reactions were performed in technical triplicates.
2.11 Cell proliferation and colony
formation assays

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK-8; Dojindo, Cat# CK04-500) following the manufacturer’s

instructions. Briefly, 5 × 10³ cells per well were seeded into 96-well
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plates, and cell viability was evaluated at 0, 24, 48, 72, and 96 hours

post-seeding. At each time point, 10 μL of CCK-8 reagent was

added to each well and incubated for 2 hours at 37°C. Absorbance

was recorded at 450 nm using a BioTek microplate reader. All

experimental conditions were analyzed in triplicate.

For clonogenic assays, 500 cells per well were plated into 6-well

plates and maintained under standard culture conditions for 10–14

days to allow colony formation. Colonies were then fixed with 100%

methanol for 20 minutes, stained with 0.5% crystal violet solution

(Beyotime, Cat# C0121) for 15 minutes, and rinsed with water.

Colonies containing more than 50 cells were counted manually

under an inverted microscope. All experiments were independently

repeated in triplicate.
2.12 Wound healing and transwell
migration assays

Cell migratory capacity was evaluated through wound healing

and Transwell migration assays. For the scratch assay, cells were

seeded into 6-well plates and cultured until reaching approximately

90% confluence. A linear wound was generated across the

monolayer using a sterile 200-mL pipette tip, followed by gentle

rinsing with phosphate-buffered saline (PBS) to remove cellular

debris. Cells were then incubated in serum-free medium, and

wound closure was documented at 0 and 72 hours using an

inverted phase-contrast microscope (Olympus IX73). The wound

area was quantified using ImageJ software.

For Transwell migration assays, 1 × 105 cells suspended in

serum-free medium were placed into the upper chamber of a

Transwell insert with an 8-mm pore membrane (Corning, Cat#

3422). The lower chamber was filled with medium containing 10%

fetal bovine serum (FBS) to serve as a chemoattractant. After 12

hours of incubation at 37°C, non-migratory cells were gently

removed from the upper surface of the membrane. The inserts

were then fixed with 4% paraformaldehyde (Abcam, Cat#

ab185002) and stained using 0.5% crystal violet (Cell Signaling

Technology, Cat# 14631). Migrated cells adherent to the underside

of the membrane were imaged and counted in five randomly

selected microscopic fields.
2.13 ELISA for cytokine secretion

To evaluate cytokine secretion, cells were exposed to 1 μg/mL

lipopolysaccharide (LPS; Abcam, Cat# ab203508) for 24 hours.

Following stimulation, cell culture supernatants were collected

and clarified by centrifugation to remove residual debris. The

concentrations of tumor necrosis factor-alpha (TNF-a) and

interleukin-6 (IL-6) were measured using commercially available

ELISA kits (TNF-a: Abcam, Cat# ab100747; IL-6: Abcam, Cat#

ab178013), in accordance with the manufacturer’s protocols.

Optical density was measured at 450 nm using a microplate

spectrophotometer. All experimental conditions were assessed in

triplicate to ensure data reproducibility.
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2.14 Statistical analysis

All statistical analyses were conducted using R software (version

4.1.3) for omics-related datasets and GraphPad Prism (version 8.0) for

experimental data analysis and graphical visualization. Data are

expressed as mean ± standard deviation (SD), with each experiment

independently repeated at least three times to ensure reproducibility.

Comparisons between two groups were performed using unpaired

two-tailed Student’s t-tests, while multiple group comparisons were

evaluated via one-way ANOVA followed by Tukey’s post hoc test.

Statistical significance was defined as P < 0.05, with the following

annotations: *P < 0.05; **P < 0.01; ***P < 0.001.
3 Results

3.1 Single-cell transcriptomic landscape of
traumatic brain injury in mice

To delineate the cellular architecture of TBI, we analyzed single-

cell RNA sequencing data (GSE269748) derived from eight murine

brain samples—comprising four sham-operated and four controlled

cortical impact (CCI) models harvested 24 hours post-injury.

Following rigorous quality control and unsupervised clustering, a

total of 67,993 high-quality cells were retained for downstream

characterization (Figure 1A).

Using established marker genes, we annotated 14 transcriptionally

distinct cell populations, broadly categorized into: (1) central nervous

system (CNS)–resident cells (including microglia, choroid plexus

epithelial cells (CPECs), neurons, oligodendrocytes, and ependymal

cells); (2) vascular-associated components (endothelial cells, pericytes,

and fibroblasts); and (3) immune infiltrates (comprising monocytes/

macrophages, neutrophils, T/NK cells, B/plasma cells, myeloid

dendritic cells [MDCs], and proliferating cells). Notably, the

frequency of neutrophils and monocytes was markedly increased in

the TBI group, indicating robust early immune mobilization.

Cell cycle analysis revealed that neutrophils predominantly

occupied the G2/M phase, whereas microglia were enriched in the

S phase. Differential gene expression profiling demonstrated

marked upregulation of neutrophil-related transcripts, such as

S100a8, S100a9, G0s2, Retnlg and Acod1, in TBI-affected brains

(Figure 1B), consistent with their activation and expansion.

Increased transcriptional activity was also evident in microglia,

CPECs, monocytes/macrophages, and proliferative clusters, reflected

by elevated nCount-RNA and nFeature-RNA values. Neutrophils

displayed strong transcriptional signatures, reinforcing their early

functional involvement (Figure 1C). Quantitative evaluation

confirmed a significant rise in neutrophil abundance in TBI

samples (Figure 1D).

Furthermore, observed-to-expected ratio (Ro/e) analysis

demonstrated selective neutrophil enrichment and preferential

G2/M phase accumulation post-injury (Figure 1E), highlighting

their pivotal role in shaping the acute neuroinflammatory

microenvironment following traumatic insult.
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3.2 Stemness signatures and functional
enrichment of cell populations following
TBI revealed by single-cell transcriptomics

To evaluate stem-like properties among diverse brain cell

populations post-trauma, we profiled the expression of genes

associated with cellular stemness across annotated clusters using

bubble plot visualization. Neutrophils demonstrated elevated

expression of canonical stemness regulators, including Kdm5b,

Hif1a, and CD44, suggesting the potential acquisition of

progenitor-like traits within this population (Figure 1F).

A global transcriptomic comparison using volcano plots

highlighted the top five significantly upregulated and

downregulated genes in each of the 14 identified cell types

(Figure 1G). In neutrophils, genes such as Gm42418, H3f3b,

Pfn1, Tgfbi, and Lgals3 were among the most upregulated and

likely implicated in cellular activation and tissue remodeling. In

contrast, decreased expression of Dnajb6, Rer1, Tomm22, Ube2k,

and Atp6v1c1 may reflect context-dependent suppression or

metabolic reprogramming in response to the post-injury milieu.

To elucidate the biological roles of neutrophil-enriched

differentially expressed genes (DEGs), we performed Gene

Ontology (GO) analysis, which revealed significant enrichment in

inflammation-associated processes such as leukocyte chemotaxis

and myeloid cell migration (Figure 1H), underscoring their

mobilization and recruitment to sites of injury.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis indicated activation of key proinflammatory cascades,

particularly the NF-kB and TNF signaling pathways (Figure 1I),

both of which are critical for acute innate immune responses.

In addition, gene set enrichment analysis (GSEA) revealed that

neutrophils were significantly enriched in immune-related

pathways (Figure 1J), including defense against bacterial

challenge, generalized inflammatory signaling, and mast cell–

mediated processes.
3.3 Heterogeneity of neutrophil subsets
following TBI and molecular
characterization

To dissect the heterogeneity of neutrophils involved in the acute

phase of TBI, we focused on 9,553 neutrophils isolated at 24 hours

post-injury. Unsupervised clustering delineated four transcriptionally

distinct neutrophil subsets (Figure 2A): C0 (Fpr1 high), C1 (Slfn4

high), C2 (Sqstm1 high), and C3 (Wfdc17 high). Spatial visualization

using UMAP facet plots revealed that each subset exhibited unique

localization patterns within the embedding space (Figure 2B),

suggesting divergent functional identities. Representative expression

profiles of signature genes are shown in Figures 2C, D.

A bubble plot summarizing the top five marker genes for each

cluster confirmed distinctive transcriptional signatures: C0 (Fpr1+):

Wfdc21, Fpr1, F630028O10Rik, Retnlg, and Gm5483; C1 (Slfn4+):

Isg15, Slfn4, Oasl2, Isg20, and Ifitm3; C2 (Sqstm1+): Cstb, Ftl1,
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FIGURE 1

Single-cell transcriptomic panorama analysis of the heterogeneity in the TBI microenvironment. (A) UMAP visualization of the distribution
characteristics of all cell samples based on specific marker genes for cell type identification and annotation. The three-panel figure on the right
shows the proportions of the sample group, tissue origin group (24 hours native and 24 hours CCI), and cell cycle (G1, G2/M, S phase) in each cell
type. (B) Bubble plot analyzed the average expression levels of the top five marker genes in each cell type and tissue origin, with bubble size
proportional to gene expression percentage, and the color gradient indicating data normalization. (C) Distribution characteristics of nCount RNA,
nFeature RNA, G2/M.Score, and S.Score. (D) Stacked bar chart quantified the differences in cell composition between the 24 hours native and 24
hours CCI groups. (E) Ro/e scores revealed the preference of cell types for different cell cycles (left) and cell origin groups (right). (F) Bubble plot
revealed the differential expression of stemness feature genes across different cell types. (G) Volcano plot visualized DEGs in various TBI cell types,
highlighting the top five upregulated and downregulated genes in each cell type (P-adj < 0.05), with dashed lines marking the significance boundary.
(H) GO enrichment analysis of different biological processes for each cell type. (I) KEGG enrichment analysis of differential genes based on each cell
type between 24 hours native and 24 hours CCI groups. (J) GSEA enrichment analysis of neutrophils.
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FIGURE 2

Characterization of neutrophil subpopulation profiles after TBI. (A) UMAP plot presented the clustering distribution characteristics of four distinct
neutrophil subpopulations identified based on differential marker gene expression, with contour lines outlining the boundaries of each
subpopulation. The outer axis represented the log scale of each neutrophil subpopulation. The three-ring annotation layer encoded
subpopulation classification (outer ring), tissue origin group (middle ring: 24 hours native vs. 24 hours CCI), and cell cycle stage (inner ring: G1,
G2/M, S phase). (B) Faceted UMAP plot compared the distribution characteristics of individual neutrophil subpopulations. (C, D) UMAP
visualization of the distribution patterns of specific marker genes for each neutrophil subpopulation, with violin plots showed their expression
levels across subpopulations. (E) Bubble plot analyzed the average expression levels of the top five marker genes in each neutrophil
subpopulation, with bubble size proportional to gene expression percentage, and the color gradient indicating data normalization. (F) UMAP plot
combined with pie charts to display the distribution proportions of the 24 hours native and 24 hours CCI groups (top) and cell cycle phases (G1,
G2/M, S phase, bottom) across the four neutrophil subpopulations. (G) Proportional chart quantified the composition of each neutrophil
subpopulation in different cell origin groups (top) and cell cycle phases (bottom). (H, I) UMAP plot combined with violin plots showed the
distribution characteristics and expression levels of nCount RNA, nFeature RNA, G2/M.Score, and S.Score. (J) Volcano plot visualized DEGs in
neutrophil subpopulations, highlighting the top five upregulated and downregulated genes in each subpopulation (P-adj < 0.05), with dashed
lines marking the significance boundary. (K) Word cloud constructed based on GO BP enrichment analysis, visually representing the enrichment
degree of genes associated with neutrophil subpopulations.
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Psap, Atf3, and Spp1; C3 (Wfdc17+): Ifitm2, Wfdc17, Igfbp6,

Pglyrp1, and Dusp2 (Figure 2E).

Analysis of sample origin (Figure 2F) demonstrated that nearly

all neutrophils were derived from the injured (CCI) group, with

negligible representation in the sham control brains. Cell cycle

analysis revealed no significant differences in G1, S, or G2/M phase

distributions among the subsets, which is consistent with the

generally non-proliferative nature of mature neutrophils in

brain parenchyma.

Proportional distribution analysis indicated a marked

expansion of the C0 (Fpr1+), C1 (Slfn4+), and C2 (Sqstm1+)

subsets following TBI, whereas the C3 (Wfdc17+) subset was

notably diminished (Figure 2G). Interestingly, the C1 (Slfn4+)

population exhibited the highest transcriptional activity, as

evidenced by elevated nCount-RNA and nFeature-RNA values

(Figures 2H, I), although no significant enrichment was observed

in proliferative cell cycle phases.

Differential gene expression analysis using volcano plots revealed

that the C1 cluster was specifically enriched for inflammatory and

interferon-responsive transcripts, including Isg15, Slfn4, Slfn5, Rsad2,

and Oasl2, while genes such as Pnpla7, Txnip, Vps37b,Wfdc17, and Ttr

were downregulated (Figure 2J). A DEG word cloud visualization

emphasized key immune mediators such as Tnf and Irf1, suggesting

that the C1 (Slfn4+) neutrophils may represent a transcriptionally

activated subpopulation with immunoregulatory functions in the early

TBI microenvironment (Figure 2K).
3.4 N1-like polarization and metabolic
plasticity of SLFN4+ neutrophils post-TBI

To delineate the immunophenotypic polarization and metabolic

adaptations of the SLFN4+ neutrophil subset in the context of TBI,

we performed comprehensive gene set activity analyses.

Considering the dynamic capacity of neutrophils to adopt either

pro-inflammatory (N1) or anti-inflammatory (N2) phenotypes in

neuroinflammatory environments, we utilized the AUCell scoring

algorithm to quantify the expression of polarization-associated

gene modules.

As depicted in Figures 3A–D, SLFN4+ neutrophils demonstrated

robust enrichment of N1-associated gene signatures, including

markedly upregulated expression of classical pro-inflammatory

markers such as TNF and FAS. In particular, Tnf expression was

significantly higher in the CCI group compared to the sham controls,

indicating a heightened inflammatory status in these cells. Conversely,

N2-associated transcripts such as CXCR4, ARG1, and CD274 were

comparatively diminished in this population (Figures 3A, E), suggesting

a skewing toward an N1-like activation profile. These findings position

the C1 (SLFN4+) subpopulation as a key contributor to the early pro-

inflammatory milieu following traumatic injury to the brain.

To explore the metabolic underpinnings of this inflammatory

phenotype, we conducted pathway enrichment analyses of

metabolic gene sets. The C1 cluster displayed significant

enrichment in energy metabolism–related pathways, including

glycolysis/gluconeogenesis, pentose phosphate pathway, oxidative
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phosphorylation, histidine metabolism, and fructose and mannose

metabolism (Figure 3F). Among the top 20 enriched metabolic

pathways, glycolytic and pentose phosphate pathways, along with

D-glutamine and D-glutamate metabolism, emerged as dominant

(Figure 3G), suggesting metabolic reprogramming aligned with

heightened inflammatory activity.

UMAP projections illustrated the spatial distribution of metabolic

pathway activity within the neutrophil compartment, while violin plots

confirmed that glycolysis/gluconeogenesis and pentose phosphate

pathway activity were significantly upregulated in the CCI group at

24 hours post-injury (Figure 3H). These data imply that bioenergetic

reprogramming, particularly increased glycolytic flux and oxidative

metabolism, may support the effector functions of SLFN4+

neutrophils under acute neuroinflammatory conditions.
3.5 Stemness-driven trajectories reveal
dynamic neutrophil state transitions in
early TBI

To dissect the intra-lineage plasticity and transitional dynamics

of neutrophils during early TBI, we began by evaluating stemness

potential across identified subclusters. Using AUCell-based scoring,

the C1 neutrophil subset exhibited the highest stemness activity

among all groups (Figure 4A), indicating a pronounced regenerative

or progenitor-like profile. This finding suggested that C1

neutrophils may represent an early-stage regulatory population

involved in the acute immune response post-injury.

We then examined the distribution of canonical stemness-

associated genes across clusters. Heatmap analysis revealed

preferential enrichment of Prom1, a well-established stemness

marker, in the C1 subpopulation, further supporting its potential

progenitor role (Figure 4B).

To map the temporal progression of neutrophil states, we

performed pseudotime analysis. CytoTRACE was used to

establish an initial developmental hierarchy based on

transcriptional diversity, revealing that cells from the C1 cluster

and the CCI group at 24 hours post-injury were enriched at the

early pseudotime axis, corresponding to higher inferred stemness

(Figures 4C, D). These data suggested that C1 cells may serve as

intermediates in the early neutrophil response to TBI.

Using Monocle, we constructed high-resolution pseudotemporal

trajectories that delineated 11 transcriptional states spanning early

progenitor-like to terminally differentiated cells. These states

segregated into three distinct branches (Figures 4E, H). Subpopulation

mapping across the pseudotime continuum showed that C2 neutrophils

were positioned predominantly at the origin of the trajectory, whereas

C1 and C3 cells occupied intermediate zones, and C0 neutrophils were

enriched at terminal states (Figures 4F, G, I). The relative distribution of

these subsets was visualized by pie chart, indicating C0 as the most

prevalent, followed by C1 (Figure 4J).

We then analyzed the temporal expression of differentially

expressed genes along the trajectory. Heatmaps and trend plots

highlighted sequential activation and repression programs

corresponding to specific developmental transitions (Figures 4K–
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FIGURE 3

N1 polarization features and metabolic reprogramming of Slfn4+ neutrophil subpopulation. (A) AUCell algorithm was used to calculate the activity levels of
the N1 neutrophil feature gene set in each cell subpopulation, visualized using UMAP. Geometric markers differentiate tissue origins, with circles representing
the 24 hours native group and triangles representing the 24 hours CCI group. The violin plot on the right quantitatively characterized the differential
expression features of the N1 neutrophil gene set activity score across subpopulations and tissue origins, showing median and quartile range statistics. (B)
Analysis of the expression differences of N1 neutrophil-related genes based on average gene expression levels across subpopulations and tissue origins. (C,
D) UMAP analysis revealed the distribution patterns of significantly highly expressed N1 neutrophil feature genes (e.g., Tnf, Fas) in the C1 Slfn4+ neutrophil
subpopulation. Violin-box plots further analyze the expression level heterogeneity of these genes across different neutrophil subpopulations and tissue
origins. (E) Analysis of the expression differences of N2 neutrophil-related genes based on average gene expression levels across subpopulations and tissue
origins. (F) Bubble plot visually represented the significantly enriched metabolic pathways across neutrophil subpopulations. (G) Heatmap showed the top 20
metabolic pathways in the C1 Slfn4+ neutrophil subpopulation. (H) UMAP analysis revealed the distribution patterns of significantly highly expressed
metabolic pathways (Glycolysis/Gluconeogenesis, Pentose phosphate pathway, Oxidative phosphorylation) in the C1 Slfn4+ neutrophil subpopulation. Violin
plots further analyze the expression level heterogeneity of these pathways across different neutrophil subpopulations and tissue origins.
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FIGURE 4

Stemness heterogeneity and pseudotime dynamics analysis of neutrophil subpopulations. (A) UMAP combined with contour plots showcased the
distribution differences in stemness AUC values, with a violin plot quantifying the heterogeneity among neutrophil subpopulations. (B) Differential
expression of stemness genes across neutrophil subpopulations. (C) (Left) Cell stemness prediction distribution based on the CytoTRACE algorithm,
with a color gradient reflecting stemness index (0-1, red: high stemness, blue: low stemness); (Right) UMAP plot showed neutrophil subpopulation
distribution, color-coded for different neutrophil subpopulations. (D) CytoTRACE analysis quantified stemness across different neutrophil
subpopulations and tissue origins. (E–G) Monocle analysis inferred the developmental trajectory of neutrophils, visualized by pseudotime with facet
plots showing the positioning of different cell types along the developmental trajectory. (H, I) Ordering pseudotime states, considering the
proportions of neutrophil subpopulations at each of the nine time points. (J) Pie chart summarized the proportions of each neutrophil
subpopulation. (K) Heatmap showed the differential gene expression of neutrophil subpopulations as pseudotime progresses. (L, M) UMAP plot
showed the dynamic changes in the pseudotime trajectory of neutrophil subpopulations, with point shapes indicating different state classifications.
(N) Slingshot algorithm was used to construct the pseudotime trajectory, visualized by UMAP to show the differentiation path of neutrophil
subpopulations, with arrows indicating the direction of differentiation progression. (O) Expression levels of four marker genes in neutrophil
subpopulations showed temporal changes. (P) Dynamic expression profiles of marker genes compared the temporal trends of different genes.
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M), reflecting dynamic transcriptional remodeling during

neutrophil maturation in response to injury.

To corroborate trajectory structure, we implemented Slingshot

analysis, which identified a primary lineage extending from C2 to

C0, consistent with Monocle findings (Figure 4N). Expression trend

visualization along this lineage further affirmed the temporal gene

expression patterns (Figure 4O).

Finally, Gene Ontology enrichment of trajectory-resolved gene

modules revealed stage-specific biological processes enriched at

distinct phases of differentiation. These included inflammatory

activation, migration, and metabolic adaptation pathways, providing

mechanistic insights into how neutrophil subpopulations contribute

functionally to TBI pathology (Figure 4P).
3.6 Functional heterogeneity of neutrophil
subsets uncovered by GO and pathway
enrichment

To elucidate the distinct functional profiles of neutrophil

subpopulations in the acute phase of TBI, we performed

comprehensive Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses. GO Biological

Process (GOBP) terms revealed divergent functional signatures

among the four clusters (Figure 5A). The C0 cluster was

predominantly associated with apoptotic regulation and cell

migration. In contrast, C1 neutrophils were enriched in leukocyte

activation and immune effector responses, implying a pivotal

immunoregulatory role. C2 cells showed enrichment in pathways

related to innate immunity and tissue homeostasis, whereas C3

shared immunological characteristics with C1 but with reduced

activation signatures.

To further distinguish C1 from C3, Gene Set Enrichment

Analysis (GSEA) was conducted. C1 neutrophils demonstrated

specific upregulation of immune-related gene sets such as

“immune response” and “response to external stimulus”

(Figure 5B), underscoring their heightened involvement in the

early host defense mechanisms following TBI.

KEGG pathway analysis highlighted significant enrichment of

C1 cells in pro-inflammatory signaling cascades, including the NF-

kB signaling axis and antiviral defense pathways such as “Herpes

simplex virus 1 infection” (Figure 5C). These findings suggest that

the C1 subpopulation plays a key role as an inflammatory amplifier

within the post-traumatic immune landscape.

Additional GO enrichment across all three ontology domains—

biological process (BP), cellular component (CC), and molecular

function (MF)—further characterized C1 cells. Enriched terms

included cytokine receptor binding and nuclease activity (BP),

localization to outer membranes and secretory vesicles (CC), and

immunomodulatory molecular functions (MF) (Figure 5D).

Differential gene expression-based enrichment corroborated these

results, further linking C1 cells to key immune defense

mechanisms (Figure 5E).
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Moreover, GSEA revealed positive enrichment of antiviral

responses, including “defense response to virus” and “regulation

of viral life cycle,” within C1 neutrophils. Conversely, metabolic

pathways, particularly those involved in ATP synthesis and protein

translation at synaptic terminals, were negatively enriched

(Figure 5F). This suggests a functional trade-off, whereby C1

neutrophils prioritize immune activation over metabolic

maintenance in the context of acute inflammation.

Taken together, these analyses position the C1 (SLFN4+) neutrophil

subset as a functionally specialized and immunologically dominant

population during the early stages of TBI. Its dual engagement in

antiviral and pro-inflammatory pathways highlights its potential as a

therapeutic target for modulating neuroinflammation while preserving

essential innate immune functions.
3.7 Intercellular communication highlights
the central signaling role of the SLFN4+

neutrophil subset in early post-TBI
inflammation

To further investigate the intercellular dynamics contributing to

neuroinflammation following traumatic brain injury, we performed a

comprehensive cell–cell communication analysis centered on the

SLFN4+ (C1) neutrophil subpopulation. While prior transcriptomic

profiling underscored the immunological relevance of this cluster, its

functional interactions with other immune and stromal compartments

required further delineation. Using ligand–receptor inference

modeling, we mapped a global communication network across 17

cell types, including four neutrophil subsets and 13 additional

populations. Chord diagrams illustrated the overall communication

topology and interaction intensity within the injured brain

microenvironment (Figures 6A, B). Notably, the C1 cluster

demonstrated strong bidirectional signaling with multiple immune

subsets, particularly monocytes andmacrophages. Heatmap analyses of

outgoing and incoming signaling pathways identified the CCL and

TNF axes as dominant mediators of intercellular exchange (Figure 6C).

Dissecting these pathways further, we observed that in the CCL

network, C1 neutrophils primarily served as signal initiators and

modulators, while monocyte-derived cells were the principal

recipients (Figures 6D, E). Interestingly, within the TNF signaling

cascade, C1 cells exhibited amultifaceted role, functioning concurrently

as signal senders, receivers, and mediators, indicating their integrative

capacity in amplifying local inflammatory responses. Network topology

visualizations confirmed that C1 neutrophils acted as key nodes in

propagating paracrine and autocrine cues (Figure 6F), while violin plots

of core ligand–receptor pairs highlighted the selective expression of

interaction mediators such as Ccl3–Ccr1 and Tnf–Tnfrsf1b across cell

types (Figure 6G). Collectively, these findings position the SLFN4+

neutrophil subpopulation as a central orchestrator of inflammatory

signaling in early TBI, exerting regulatory influence over surrounding

immune cells through sustained activation of chemokine and cytokine

pathways. These insights may offer a mechanistic framework for
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FIGURE 5

Biological features of Slfn4+ subpopulation based on GO/KEGG/GSEA enrichment strategies. (A) Word cloud constructed from GOBP enrichment
analysis, visually showing the enrichment degree of pathways associated with neutrophil subpopulations. (B) Bubble plot showed the results of GSEA
enrichment analysis of gene sets in different neutrophil subpopulations, revealing key biological functions in each subpopulation. (C) KEGG pathway
enrichment based on the marker genes of each neutrophil subpopulation. (D) GOBP, GOCC, GOMF enrichment analysis of Slfn4+ neutrophil
subpopulation. (E) GO analysis based on differential genes of the four neutrophil subpopulations. (F) GSEA enrichment analysis of the Slfn4+
neutrophil subpopulation.
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FIGURE 6

Microenvironment interaction network of Slfn4+ neutrophil subpopulation mediating CCL/TNF signaling pathways. (A) Circos plots showed the
number (upper) and strength (lower) of interactions between neutrophil subpopulations and microenvironmental cells, with point size representing
interaction quantity and line thickness reflecting communication probability. (B) Interaction analysis of Slfn4+ neutrophils with other cells: the top
left and top right circle plots showed interaction numbers and weights when acting as signal senders; the bottom left and bottom right circle plots
showed interaction numbers and weights when acting as signal receivers. (C) Heatmap of outgoing and incoming signaling patterns for neutrophil
subpopulations. (D) Hierarchical diagrams showed interactions between neutrophil subpopulations and other cell types in the CCL and TNF signaling
pathways. (E) Heatmap showed the cell communication centrality scores for CCL and TNF signaling pathways. (F) CCL and TNF signaling
communication network circle plot. (G) Violin plot compared the ligand-receptor protein activity differences in the CCL and TNF pathways between
neutrophil subpopulations and other cell types.
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targeting neutrophil-derived signaling in the therapeutic modulation of

post-traumatic neuroinflammation.
3.8 Transcriptional regulatory landscape of
neutrophil subpopulations revealed by
PySCENIC analysis

To dissect transcriptional regulatory heterogeneity among

neutrophil subtypes following TBI, we applied the pySCENIC

pipeline to construct transcription factor (TF)-centered gene

regulatory networks at single-cell resolution. This analysis enabled

the identification of regulon activity patterns, which were used to

stratify cells based on transcriptional control mechanisms.

Clustering based on both transcriptomic profiles (Figures 7A, B)

and regulon activation scores (Figure 7C) delineated four distinct

regulatory modules. Violin plots revealed that the C1 neutrophil

subset was primarily enriched in the M2 regulatory pattern,

suggesting a unique transcriptional program (Figure 7D).

Regulon ranking based on regulatory specificity scores and

activity variance further identified key TFs driving subpopulation-

specific identity (Figure 7E). UMAP projections demonstrated the

spatial distribution of each neutrophil subset in relation to their

associated regulatory modules (Figure 7F). Functional enrichment

of top regulons for each cluster revealed distinct transcriptional

signatures: the C0 subpopulation was characterized by Hic1, Tcf7l2,

Shox2, Zxdb, and Etv3; the C1 subpopulation by Stat2, Irf9, Irf8,

Junb, and Irf7; the C2 subpopulation by Srebf2, Hes1, Bhlhe41,

Atf3, and Usf2; and the C3 subpopulation by Fos, Rfx5, Stat3, Pbx1,

and Stat1 (Figure 7G).

Comparative visualization via UMAP further highlighted

subpopulation-specific TF expression landscapes (Figures 7H, I).

Finally, the top five TFs defining the C1 (SLFN4+) cluster—Stat2,

Irf9, Irf8, Junb, and Irf7—were visualized through both dimensional

reduction and bar plot analysis, confirming their elevated and

preferential expression in this inflammatory neutrophil subset

(Figures 7J, K). These findings suggest that distinct TF circuits

underlie neutrophil subset identity and function, with the C1

subpopulation governed by a STAT–IRF–JUNB regulatory axis,

potentially driving its pro-inflammatory phenotype in TBI.
3.9 Clinical utility of a composite nursing
prognostic model for TBI

In a prospective clinical cohort consisting of 30 patients

diagnosed with moderate-to-severe traumatic brain injury (TBI),

we constructed and applied a composite nursing prognostic model

aimed at stratifying patient risk and guiding post-injury clinical

management. The model integrated multiple prognostic

dimensions, including initial neurological status (Glasgow Coma

Scale), serum SLFN4 concentration as a molecular biomarker,

systemic inflammatory indices (e.g., neutrophil-to-lymphocyte

ratio), functional recovery metrics (Barthel Index), and the
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burden of in-hospital complications (e.g., pulmonary infection,

seizure, electrolyte disturbance).

Patients were categorized into low-risk (n = 15), intermediate-

risk (n = 6), and high-risk (n = 9) subgroups according to total

composite scores. The average score across all patients was 12.8 ±

5.3, with a score range of 4.2 to 22.6. High-risk patients

demonstrated significantly elevated serum SLFN4 levels (mean:

3.12 ng/mL, P < 0.001), higher mean number of complications

during hospitalization (2.8 events per patient, P = 0.004), and

substantially lower Barthel Index scores at discharge (mean: 38.6

± 9.2, P < 0.001). Notably, 8 out of 9 patients in the high-risk group

exhibited unfavorable neurological outcomes at 6-month follow-up,

defined as Glasgow Outcome Scale–Extended (GOSE) ≤ 4.

3.9.1 Predictive accuracy of the nursing
prognostic score

Receiver operating characteristic (ROC) curve analysis

confirmed the predictive value of the composite model. The area

under the curve (AUC) for predicting poor functional outcome

(GOSE ≤ 4 at 6 months) was 0.91 (95% CI: 0.82–0.99), indicating

excellent discriminative capacity. A cutoff value of 15.2—

determined by maximizing the Youden index—yielded a

sensitivity of 88.9% and specificity of 86.7%. These findings

suggest that the composite score may serve as a clinically useful

and statistically robust tool for early identification of high-risk

individuals who may benefit from enhanced nursing surveillance

and tailored interventions.

3.9.2 Stratified nursing interventions based on
prognostic risk

To operationalize the prognostic model into clinical nursing

practice, high-risk patients received individualized care plans

incorporating intensified nursing strategies. These included:

3.9.2.1 Early multidisciplinary intervention

Patients were enrolled in a multidisciplinary rehabilitation

pathway involving neurology, physical therapy, nutrition, and

psychiatric consultation within 72 hours of admission.

3.9.2.2 Dynamic biomarker monitoring

Serial serum inflammatory markers including SLFN4, CRP, and

IL-6 were monitored every 48 hours during the acute care phase.

3.9.2.3 Structured follow-up nursing

A standardized post-discharge follow-up protocol was

implemented for all high-risk patients. This included weekly

telephone follow-ups for the first 3 months, home visit

assessments at 1 and 3 months, and monthly nurse-led

psychological support for patients and caregivers.

3.9.2.4 Patient-centered education

Tailored education sessions on medication adherence,

complication prevention, and signs of neurological deterioration
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FIGURE 7

TF regulatory networks in neutrophil subpopulations. (A, B) Dimensionality reduction clustering of neutrophil subpopulations based on all TF
regulatory activities, visualized by faceted UMAP plots to show the distribution features of each subpopulation. (C) Heatmap based on SCENIC-
identified transcription module similarity, using AUCell scores to identify four regulon modules (M1-M4) in neutrophil subpopulations. (D) Bar chart
quantified the AUC score differences across neutrophil subpopulations for each of the four modules. (E) Scatter plot ranking TFs based on variance
scores in each regulatory module, highlighting key regulatory factors. (F) Faceted UMAP plot showed the distribution features of four regulatory
modules across different neutrophil subpopulations. (G) Heatmap showed the top 5 TFs in each neutrophil subpopulation. (H) Faceted UMAP plots
presented the distribution features of each neutrophil subpopulation. (I) The scatter plot ranked the TFs of each neutrophil subpopulation according
to their Regulon specificity score, highlighting the top 5 ranked TFs. (J, K) The UMAP plot visualized key TFs (Stat2(+), Irf9(+), Irf8(+), Junb(+), Irf7(+))
in the Slfn4+ neutrophil subpopulation, and bar plots compared the activity differences of these TFs between subpopulations.
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were delivered to patients and their families prior to discharge,

supplemented by printed home care manuals.

3.9.3 Implications for precision nursing care
This composite model enables nurses to transition from reactive

monitoring to proactive risk prediction, allowing for the

deployment of resource-intensive care to those at highest risk.

The incorporation of molecular biomarkers (e.g., SLFN4) and

functional scales into a unified scoring framework exemplifies a

precision nursing approach, aligning with current goals of
Frontiers in Immunology 17
personalized rehabilitation and nursing-sensitive outcomes in

neurotrauma care.

3.10 Functional role of Slfn4 in regulating
inflammation and migration after TBI

To elucidate the functional significance of Slfn4+ neutrophils in

the context of traumatic brain injury (TBI), we generated stable

knockdown models targeting Slfn4 and STAT2 in neutrophil-like

HL-60 and NB4 cell lines using two distinct short hairpin RNAs
FIGURE 8

Functional assessment of Slfn4+ neutrophils in TBI. (A, B) Relative Slfn4 and STAT2 mRNA expression in HL-60 and NB4 cells after shRNA-mediated
knockdown (sh-Ctrl, sh-1, sh-2). (C, D) Cell proliferation curves measured via CCK-8 assay over 5 days post-knockdown. (E) Representative colony
formation assay images in HL-60 and NB4 cells. (F) Quantification of colony number. (G, H) Wound healing (0 h and 72 h) and Transwell migration
assays across groups. (I, J) Quantitative analysis of wound closure percentage and number of migrated cells. (K) ELISA results of TNF-a and IL-6
levels in supernatants of HL-60, NB4 cells after LPS stimulation with or without Slfn4/STAT2 knockdown.
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(shRNAs) per gene. Quantitative reverse transcription PCR

confirmed efficient gene silencing in both cell lines (Figures 8A, B).

Cell proliferation analysis using the CCK-8 assay demonstrated

that suppression of Slfn4 or STAT2 markedly enhanced

proliferation over a 5-day period compared to control cells

(Figures 8C, D). Similarly, colony formation assays indicated a

substantial increase in clonogenic potential following gene

knockdown (Figures 8E, F).

In vitro migration capacity was evaluated using wound healing

and Transwell assays. Cells deficient in Slfn4 or STAT2 exhibited

significantly accelerated wound closure and enhanced

transmembrane migration (Figures 8G–J), suggesting that the

Slfn4–STAT2 axis may exert a negative regulatory effect on

neutrophil motility under neuroinflammatory conditions.

To assess inflammatory output, we stimulated the cells with

lipopolysaccharide (LPS) and measured cytokine production in

culture supernatants. ELISA quantification revealed a significant

reduction in TNF-a secretion upon knockdown of either Slfn4 or

STAT2 in both HL-60 and NB4 cells (Figure 8K), indicating that

Slfn4+ neutrophils contribute to cytokine-driven inflammatory

signaling following TBI.

Collectively, these results suggest that Slfn4+ neutrophils, via

STAT2-dependent mechanisms, may play a dual role in modulating

immune responses and cellular motility after brain injury,

potentially acting as a regulatory brake on excessive inflammation

and neutrophil infiltration.
4 Discussion

Traumatic brain injury (TBI) is increasingly recognized not only

as a localized neuropathological event but as a systemic inflammatory

disorder characterized by robust activation of innate immune

responses—particularly those involving neutrophils (13). In this

study, we employed a multi-layered omics strategy integrating

single-cell transcriptomics, bulk RNA-seq, and proteomic profiling

to dissect the immune complexity of the post-injury brain

microenvironment (11, 12). Through this comprehensive approach,

we identified a distinct neutrophil subpopulation marked by high

SLFN4 expression, which exhibited pronounced pro-inflammatory

signatures and metabolic remodeling, and was found to be closely

associated with clinical outcomes.

The current study presents a significant advancement in the

integration of molecular immunology and nursing science by

incorporating the novel biomarker SLFN4 into a composite

prognostic framework for traumatic brain injury (TBI).

Traditional nursing prognostic models primarily rely on clinical

symptoms, functional scales, and patient-reported outcomes.

However, these approaches often lack the sensitivity and

specificity needed for early risk stratification, particularly in

patients with complex systemic responses to neurotrauma.

By embedding SLFN4—a pro-inflammatory neutrophil marker

identified through single-cell RNA sequencing— into a

multifactorial follow-up scoring system, our model enables

nursing professionals to dynamically evaluate disease progression
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molecularly informed scoring strategy not only enhances the

predictive power of conventional functional assessments (e.g.,

Barthel Index, GOSE), but also bridges the translational gap

between laboratory research and front-line patient care.

From a nursing perspective, the implementation of this

composite model allows for precision nursing interventions.

High-risk individuals, as identified by the score, can be targeted

for enhanced monitoring protocols, tailored caregiver education,

early multidisciplinary rehabilitation, and structured follow-up.

These strategies align closely with the principles of individualized

nursing care, ensuring that interventions are both proactive and

patient-centered.

Moreover, this study underscores the value of integrating omics

data into the construction of nursing prognostic tools, offering a

blueprint for future interdisciplinary research. It redefines the role of

nursing professionals as not only caregivers but also active participants

in data-driven decision-making, ultimately contributing to improved

patient outcomes and quality of care in neurocritical settings.

The use of scRNA-seq enabled high-resolution delineation of

neutrophil subsets and revealed a unique SLFN4+ cluster with N1-

like characteristics. These cells demonstrated elevated expression of

inflammatory mediators and metabolic pathway enrichment,

suggestive of a functionally primed state conducive to secondary

injury propagation (36, 37). Concordant results from bulk

transcriptome and proteomic datasets confirmed SLFN4 as a

robust biomarker within the acute neuroinflammatory response.

Notably, serum SLFN4 levels, prospectively measured in TBI

patients, were strongly predictive of neurological prognosis and

complication burden, underscoring its potential as a clinically

actionable indicator of disease trajectory (38).

Functionally, SLFN4 belongs to the Schlafen gene family, which

is implicated in regulating interferon-mediated signaling, myeloid

lineage maturation, and immune metabolic adaptation. Our data

sugges t that SLFN4+ neutrophi l s may contr ibute to

neuroinflammatory amplification through reactive oxygen species

(ROS) generation, sustained pro-inflammatory cytokine secretion

(e.g., TNF-a, IL-6), and persistent infiltration into injured tissue

(39). These properties position the SLFN4+ subpopulation as a

promising candidate for targeted immunomodulation—potentially

through interventions aimed at disrupting their metabolic or

transcriptional programming (40).

Importantly, the clinical value of SLFN4 expression as a

circulating biomarker has strong implications for precision

nursing care and individualized risk assessment. In modern

neurocritical care, timely identification of high-risk patients who

are prone to exacerbated secondary injury or poor recovery remains

a major challenge for frontline nurses and interdisciplinary teams.

SLFN4+ neutrophil enrichment in peripheral blood may serve as an

early warning signal, guiding nursing professionals to implement

more intensive monitoring, enhanced neurological evaluation

protocols, and timely coordination with neuroimmunology and

rehabilitation teams (41).

Moreover, our longitudinal nursing follow-up data indicated

that certain TBI patients experience sustained post-acute
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inflammation and delayed neurocognitive improvement, which

may be partially attributed to prolonged activity of SLFN4+

neutrophils. This maladaptive response highlights the need for

strategies that can modulate neutrophil resolution dynamics in

the subacute and chronic phases of TBI (42). From a nursing

perspective, SLFN4-based immune profiling also enriches our

understanding of inflammation-associated complications, such as

delirium, autonomic dysfunction, or systemic immune suppression

after TBI. Incorporating SLFN4 assessments into nursing risk

stratification models, especially in the early post-injury phase,

may facilitate decision-making regarding step-down care,

frequency of neurochecks, and resource allocation. Moreover, as

the importance of nurse-led follow-up clinics and post-discharge

care grows, having measurable biomarkers like SLFN4 enhances

longitudinal tracking of recovery trajectories and helps tailor

psychosocial and rehabilitative interventions.

Despite the translational promise of our findings, several

limitations should be acknowledged. The temporal dynamics of

SLFN4 expression during the different stages of TBI remain

undefined, and our current analysis primarily centers on

neutrophils without fully capturing their interactions with other

immune or stromal cell types. Further studies employing spatial

transcriptomics, lineage tracing, and targeted gene manipulation in

vivo will be required to clarify the causal role of SLFN4 and evaluate

its potential as a therapeutic target in broader inflammatory

neurological contexts (15). In addition, this study highlights the

importance of interdisciplinary collaboration—bridging molecular

immunology, translational medicine, and clinical nursing sciences

—to develop integrative care strategies. Our findings call for further

research into whether targeted modulation of SLFN4+ neutrophils

(e.g., via anti-inflammatory agents or metabolic interventions) can

alleviate secondary injury and improve functional outcomes,

particularly from a nursing-sensitive outcomes perspective such

as Glasgow Outcome Scale-Extended (GOSE), Barthel Index, and

quality-of-life indicators.

In summary, our study identifies SLFN4+ neutrophils as a

mechanistically relevant, inflammation-associated subset defined

by integrated multi-omics analysis. This population may serve as

both a prognostic biomarker and a potential target for precision

immunotherapy in TBI. These findings not only deepen our

understanding of neuroimmune regulation but also illustrate the

translational potential of multi-omics-guided approaches in

advancing personalized care for neurotrauma patients.
5 Conclusions

This study identified SLFN4+ neutrophils as a distinct pro-

inflammatory subset associated with poor prognosis in patients

with traumatic brain injury (TBI). Through integrated multi-omics

and clinical validation, SLFN4 was shown to serve as a potential

biomarker for immune activation and neurological outcomes.

Importantly, SLFN4 levels may facilitate early risk assessment and

individualized care planning in neurocritical settings. These
Frontiers in Immunology 19
findings offer mechanistic insights into TBI-associated

inflammation and provide a foundation for precision nursing

strategies focused on immune monitoring and patient-centered

outcome improvement.
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