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Large-conductance calcium (Ca2+)-activated potassium (K+) (BK) channel activation is

important for feedback control of Ca2+ influx and cell excitability during spontaneous

muscle contraction. To characterize endogenously expressed BK channels and

evaluate the functional relevance of Ca2+ sources leading to BK activity, patch-clamp

electrophysiology was performed on cricket oviduct myocytes to obtain single-channel

recordings. The single-channel conductance of BK channels was 120 pS, with

increased activity resulting from membrane depolarization or increased intracellular Ca2+

concentration. Extracellular application of tetraethylammonium (TEA) and iberiotoxin

(IbTX) suppressed single-channel current amplitude. These results indicate that BK

channels are endogenously expressed in cricket oviduct myocytes. Ca2+ release from

internal Ca2+ stores and Ca2+ influx via the plasma membrane, which affect BK activity,

were investigated. Extracellular Ca2+ removal nullified BK activity. Administration of

ryanodine and caffeine reduced BK activity. Administration of L-type Ca2+ channel

activity regulators (Bay K 8644 and nifedipine) increased and decreased BK activity,

respectively. Finally, the proximity between the L-type Ca2+ channel and BK was

investigated. Administration of Bay K 8644 to the microscopic area within the pipette

increased BK activity. However, this increase was not observed at a sustained

depolarizing potential. These results show that BK channels are endogenously expressed

in cricket oviduct myocytes and that BK activity is regulated by L-type Ca2+ channel

activity and Ca2+ release from Ca2+ stores. Together, these results show that functional

coupling between L-type Ca2+ and BK channels may underlie the molecular basis of

spontaneous rhythmic contraction.

Keywords: BK channel, patch clamp, cricket, oviduct, myocyte, functional coupling

INTRODUCTION

The calcium (Ca2+)-activated potassium (K+) (BK) channel has a large single-channel conductance
(∼100–300 pS) (or MaxiK), hence the nickname “Big K” (1, 2). The BK channel α-subunit
plays a central role in channel function. BK channel α-subunit homologs are found in a
wide variety of organisms, from invertebrates, such as Drosophila and Caenorhabditis elegans,
to vertebrates, including fish, mice, and rats (1–4). BK channels are expressed in nerves and
muscles, and in endocrine, cardiovascular, digestive, urinary, and reproductive organs (1, 2, 5, 6).
BK channel activity is regulated by membrane depolarization and increased intracellular Ca2+
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concentration ([Ca2+]i). BK channel activation results in
membrane repolarization and voltage-gated Ca2+ channel
closure, reducing Ca2+ entry into cells. BK channels primarily
function as negative-feedback regulators of membrane potential
and [Ca2+]i, which are important in many physiological
processes. BK activity is involved in action potential intervals,

TABLE 1 | Composition of solutions (in mM).

Solution NaCl KCl CaCl2 MgCl2 Glucose HEPES EGTA

A 10mM K+ (ringer) 140 10 1.6 2 44 2 0

B 35mM K+ 115 35 1.6 2 44 2 0

C 70mM K+ 80 70 1.6 2 44 2 0

D 105mM K+ 45 105 1.6 2 44 2 0

E 140mM K+ 10 140 1.6 2 44 2 0

F Ca2+-free 140 10 0 3.6 44 2 0

G Ca2+-free 140 10 0 0 44 2 5

H 1nM Ca2+ 140 10 0.08 0 44 2 5

I 10 nM Ca2+ 140 10 0.67 0 44 2 5

J 100 nM Ca2+ 140 10 3.05 0 44 2 5

K 1µM Ca2+ 140 10 4.7 0 44 2 5

L 10µM Ca2+ 140 10 4.98 0 44 2 5

*Adjusted to pH 7.4 with Tris-HCl.

FIGURE 1 | Voltage-sensitive single K+ channel current in isolated cricket oviduct cells. (A) A single myocyte isolated from the lateral oviduct by optical microscopy.

The scale bar is 50µm. (B) Single K+ channel current from cell-attached patches under an extracellular K+ concentration ([K+]o) of 10mM. Representative

single-channel current traces at various holding potentials (Vpip) are indicated in the figure. c indicates a closed level. (C) Averaged single-channel current (i) -Vpip

(i-Vpip) relationship (n = 6–14). Data points from +20mV to −80mV of Vpip were fitted by linear regression to obtain a slope conductance of 35.7 pS. (D) The

average number of channel and single-channel open probability (NPo)–Vpip relationship of steady-state single-channel current recorded at each Vpip. The NPo–Vpip

curve fits the Boltzmann function with the voltage for half-maximal activation of −38.9mV and the slope of 12.3mV. A total of 59 cells isolated from a total of 75

animals were used in the experiment and 65 tests were performed for data collection.

duration, firing frequency, neurotransmitter release, endocrine
secretion, smooth muscle contraction, and control of epithelial
cell potassium release in nerves (6–10). At the tissue level, the
BK channels are functionally involved in movement disorders,
circadian rhythms, learning and memory, hearing, vision,
cardiovascular function, airway control, urination, glucose
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homeostasis, renal homeostasis, digestive function, immunity,
body weight, pain, and bone remodeling. Consistent with
their physiological importance, BK channel mutation and
dysfunction can lead to epilepsy, Alzheimer’s disease, noise-
induced hearing loss, ataxia, congenital visceral malformations,
hypertension, urinary incontinence, diabetes mellitus, cancer,
and asthma (6–10). In vertebrates, the importance of BK
channels at levels from the molecular to the organism has been
comprehensively demonstrated.

A reductionist approach, using various simple forms of
invertebrate behavior modification with simple physiological
response systems, can provide biological insights into ion
channels. Using this approach, channelopathies were identified
from an extensive collection of Drosophila mutations (11).
Additionally, the basis of ion channel function was identified
from accurate action potential measurements using the giant

squid axon (12) and was shown to be involved in Aprian
learning (13), and the role of ion channels was identified by
integrated-approach physiology and behavioral genetics in C.
elegans (14). Despite the usefulness of invertebrates as model
organisms, there is little information about their endogenous ion
channel expression.

Membrane proteins can be organized by functional
coupling with other proteins. Our understanding of systematic
physiological reactions has been enhanced by focusing on the
relationship between effector molecules and targets. BK channel
activity may be regulated by a network of proteins involved in
[Ca2+]i regulation. Indeed, many reports suggest that influx
Ca2+ through different channel types leads to activation of
Ca2+-activated channels. BK channels can be activated by Ca2+

influx via N-methyl-D-aspartate receptors (15) and voltage-gated
N- (16, 17), L- (18, 19), N- (20), P/Q- (21), and R-type Ca2+

FIGURE 2 | Single K+ channel IV relationship at various extracellular K+ concentrations. (A) Averaged IV data at various extracellular K+ concentrations ([K+]o), •,

140; N, 105; �, 70; �, 35; ◦, 10, from cell-attached patches. (B) The data show a semi-logarithmic plot of [K+]o against the difference in reversal potential obtained at

140mM and the reversal potential obtained at each K+ concentration ( Erev ). The Erev was obtained by fitting the i–Vpip relationship of each K+ concentration in A

by linear regression. The slope of the regression line shows 48.1 mV/decade. (C) The [K+]o dependence of slope conductance (g) is shown. The value of each

conductance was obtained by fitting the i–Vpip relationship of each K+ concentration of A by linear regression. The solid curve fits the Michaelis–Menten equation.

The inset shows the same data plotted in double reciprocal format. gmax, 117.6 pS; Km, 25.9mM. A total of 56 cells isolated from a total of 46 animals were used in

the experiment and 45 tests were performed for data collection.
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channels (22). The ryanodine receptor on the endoplasmic
reticulum is another Ca2+ effector molecule that regulates
membrane excitability by controlling BK channel activity with
Ca2+-induced Ca2+ release (23, 24). Therefore, BK channels
are less sensitive to [Ca2+]i at the resting membrane potential
(∼10µM) (9) and must be close to the Ca2+ source to function.
The issue of proximity has become a hot topic for researchers
investigating the effect of functional ion channel complex
formation on membrane excitation (25–27).

Plasma membrane Ca2+ channels and ryanodine receptors
are involved in spontaneous rhythmic contractions of the cricket
lateral oviduct (28). Furthermore, muscle contractions in blood
vessels and the bladder, which are accompanied by many Ca2+

vibrations, are generated by functional coupling between voltage-
gated Ca2+ channels and BK channels (29, 30). However,
the functional binding of BK channels to Ca2+ sources in
myogenic spontaneous rhythmic contractions has not yet been
evaluated (31, 32).

In this study, an electrophysiological approach was used to
biophysically and pharmacologically characterize BK channels in
isolated muscle cells from the cricket lateral oviduct. We also
investigated the functional linkage between L-type Ca2+ channels
and BK channels. Our results show that Ca2+ influx via L-type
Ca2+ channels induces the activation of nearby BK channels by
functional coupling.

MATERIALS AND METHODS

Insect Rearing
The sexually mature Gryllus bimaculatus females used in this
study were purchased from a local pet store where they are sold

as food for pet reptiles (i.e., genetic and environmental variability
is limited). Crickets were housed in a covered plastic container
with a shelter shaped from cardboard until required for use. All
crickets were bred at 27± 2◦C, in a 12 h light/dark cycle. Crickets
had free access to feed and water for insects (I, Oriental Yeast Co.,
Ltd., Kyoto, Japan).

Cell Isolation
Adult female crickets were fixed in the upper dorsal area under
CO2 anesthesia. Lateral oviducts were exposed by removing
the connective tissue around reproductive organs after a
dorsal incision in the abdomen in normal saline (in mM):
140 NaCl, 10 KCl, 1.6 CaCl2, 2 MgCl2, 44 glucose, and 2
HEPES, pH adjusted to 7.4 with 2-amino-2-hydroxymethyl-
1,3-propanediol(tris(hydroxymethyl)aminomethane) (Tris). Left
and right lateral oviducts connected to the common oviduct
from the vitellarium were excised. Enzymatic cell dissociation
was performed using protease dispersion, as described previously
(33). Isolated lateral oviduct myocytes were maintained in fresh
saline at room temperature and used within 12 h.

Electrophysiology
Cells were dropped onto a glass-bottom dish containing
the experimental solution, and adhered cells were used for
measurements. Cells were observed and imaged under an
inverted microscope (IX70: OLYMPUS, Tokyo, Japan). Currents
from cells were recorded at room temperature (22–27◦C)
using patch-clamp techniques using the cell-attached and
excised inside-out modes, and an Axopatch 200B (Axon
Instruments/Molecular Devices, Union City, CA, USA) or CEZ-
2200 (Nihon Kohden, Tokyo, Japan) patch-clamp amplifier.

FIGURE 3 | Intracellular Ca2+ concentration dependence of K+ channel activation. (A) Representative traces of single K+ channel currents recorded under various

intracellular Ca2+ concentration ([Ca2+]i) conditions at Vpip = 0mV from excised inside-out patches. c and o indicate closed and open levels, respectively. (B)

Average NPo-[Ca2+]i relationship of steady-state single-channel current. The data fit the Hill equation with an EC50 of 31.2 ± 10.6 nM and a Hill coefficient of 1.4. A

total of 36 cells isolated from 32 animals were used in the experiment and 23 tests were performed to data collection.
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Patch electrodes were prepared from capillary tubes (hemato-
clad capillary, Drummond Scientific Co., Broomall, PA, USA)
using a two-stage pipette puller (PC-10 Narishige, Tokyo, Japan).
When filled with a solution for single-channel recordings,
patch electrodes had a tip resistance of ∼10 M�. Current
signals were filtered at 5 kHz with a four-pole Bessel filter
and digitized at 10 or 20 kHz. pCLAMP (version 6, 7, or 10;
Axon Instruments/Molecular Devices) software was used for
command pulse control, data acquisition, and analysis. The
amplitude of single-channel currents and steady-state open
probabilities (NPo) were determined by a cursor on Clampfit,
Fetchan, or pStat or using the single-channel search mode of
the pCLAMP software. Data were also analyzed using Origin
software (OriginLab Corp., Northampton, MA, USA) and Sigma
Plot (Systat Software, San Jose, CA, USA). For single-channel
recordings, cell-attached recordings were obtained using normal
saline as the external solution and a pipette solution that
contained (in mM) 140 KCl, 10 NaCl, 1.6 CaCl2, 2 MgCl2, and
2 HEPES (pH adjusted to 7.4 by Tris). K+ selectivity of isolated

myocytes was tested with, 100, 70, 35, and 10mM KCl that was
prepared by replacing the KCl in the pipette solution with an
equal amount of NaCl (see Table 1). The Ca2+ dependence of
BK channels was assessed by adding CaCl2 to the bath solution
and adjusting the free Ca2+ concentration from 1 nM to 1µM
[calculated using CaBuf software (G. Droogmans, KU Leuven,
Leuven, Belgium)]. The bath solution contained (in mM): 140
KCl, 10 NaCl, 5 EGTA, 2 MgCl2, and 2 HEPES (pH adjusted
to 7.4 with Tris). The extracellular effects of iberiotoxin (IbTX)
and tetraethylammonium (TEA) were tested by application in
the pipette solution using the standard backfill method described
previously (34). In brief, electrode tips were filled with normal
pipette solution and then backfilled with the same solution
containing the indicated concentration of the inhibitors being
tested. Data were recorded after waiting for at least 10min.
Bay K8644 and nifedipine were dissolved in dimethylsulfoxide
(DMSO) to create stock solutions, and aliquots were added to
the perfusate. Concentrations of DMSO were below 0.1% in the
treatment solution, and this had no observable effects on the

FIGURE 4 | Effect of tetraethylammonium and iberiotoxin on K+ channel current. (A) (top) Single-channel current in the absence (control) and presence of extracellular

0.5mM tetraethylammonium (TEA) using the backfill method. (lower) Single-channel current in the absence (control) and presence of 10 nM extracellular iberiotoxin

(IbTX) using the backfill method. The Vpip was 100mV. c indicates a closed level. (B) The averaged amplitude of the single-channel currents in the absence and

presence of TEA (t-value 25.16) or IbTX (t-value 25.16), respectively. *Significantly different (P < 0.05) from control values. (C) Average relative relationship in the

presence of TEA concentration ([TEA]o) to the control value of single K+ channel current amplitude. The data fit the Hill equation with an IC50 of 318.8 ± 68.8µM and

a Hill coefficient of 1.0. A total of 83 cells isolated from 11 animals were used in the experiment, and 11 tests were performed for data collection.
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cells. All activator and inhibitor reagents used were purchased
from Sigma-Aldrich Corp. (St. Louis, MO, USA). All other
reagents were purchased from Wako Pure Chemical Industries,
Ltd. (Osaka, Japan).

Statistical Analyses
All data are expressed as means ± standard error of the mean
(SEM). Data for each condition were obtained from at least
three independent experiments. A comparison of the means
between groups was performed using unpaired Student’s t-test
and one-way ANOVA to assess statistical significance using
Excel (Microsoft Corporation, Redmond, WA, USA) or Origin
8 (OriginLab Corp.) software. The data used for statistical
analysis passed the Shapiro–Wilk normality test and the Levene
equal variance test. For Figure 7F, the one-way ANOVA test
used Levene’s test for equal variance, and Bonferroni correction
was used for the post-hoc test. P < 0.05 was considered
statistically significant.

RESULTS

Single-Channel Recording of BK Channels
in Isolated Myocytes
Tubular oviductal myocytes have a distinct striped appearance
with alternating bright and dark bands at regular intervals and

FIGURE 5 | Effect of Ca2+ removal from bath solution on BK channel activity.

(A) Representative BK channel currents before (control) and after Ca2+

removal from bath solution (Ca2+-free; Solution F in Table 1) and after

washout (washout). The current was recorded from cell-attached patches.

c indicates a closed level. (B) Average NPo of BK channel current. Recordings

were made at a holding potential of −10mV. *Significantly different (P < 0.05)

from control values (t-value 25.16). A total of 18 cells isolated from 15 animals

were used in the experiment and 14 tests were performed for data collection.

a major axis of 100µm and a minor axis of 5µm (Figure 1A).
Single-channel recording was used to eliminate the effects of
muscle contraction and resting membrane potential using a
previously reported extracellular Ca2+-free high-concentration
K+ solution (33, 35). A previous report revealed no single
K+ channel current in the extracellular solution used (35).
In this study, we used a physiological solution containing
Ca2+ to produce and observe single-current channels. When
the holding potential was maintained at the depolarizing
potential in cell-attached mode, the single-channel opening was
consistently observed in the current amplitude type with burst-
like kinetics (Figures 1B, 2). Single-channel currents recorded
from +20mV to −80mV of the holding potential showed a
linear current–voltage (IV) curve with a slope conductance of
35.7 pS with respect to voltage (n = 6–14) (Figure 1C). NPo
increased with increasing depolarizing potential (Figure 1D).We
then investigated the effect on single-channel conductance and
reversal potential by altering extracellular K+ concentrations
(Solutions A–E in Table 1). The IV relationship constructed
from single-channel recordings at holding potentials of +20mV
to −80mV (Figure 2A) shows a linear IV relationship under
the conditions of five different extracellular K+ concentrations.
Assessment of linear IV relationships using least-square analysis
showed reverse potentials of 20.6, 10.3, −9.7, −23.1, and
−35.5mV for channel currents recorded under 10, 35, 70, 105,
and 140mM conditions, respectively. The slope of the Erev
change for extracellular K+ concentration changes was 48.1mV
per decade change in K+ concentration (Figure 2B). Conversely,
the slope conductance of the channel obtained from the linear
approximation fitting in Figure 2A increased with increased
extracellular K+ (Figure 2C). The extracellular K+ concentration
dependence of conductance was estimated as 120 ± 11.7 pS
for maximum channel conductance and 26.4 ± 5.8mM for
Km by fitting a single Michaelis–Menten equation (n = 5–7).
BK channels have the unique property of being activated by
increased [Ca2+]i, in addition to being voltage-gated and having
high conductance (1, 2). To directly assess the dependence of
K+ channels on [Ca2+]i, single-channel currents were measured
from inside-out patches of excised membranes exposed to a bath
solution containing various concentrations of Ca2+ (Solutions
G–L in Table 1, Figure 3). The NPo of K+ currents recorded
at various concentrations in the Ca2+ bath at a potential of
0mV becamemore frequent with increasing [Ca2+]i in a manner
suitable for the Hill equation with a k value of 31.2µM and a Hill
coefficient of 1.4.

Pharmacology of BK Channels
To pharmacologically characterize BK channels, the effects
of the established inhibitor tetraethylammonium (TEA) (36)
and the scorpion-derived IbTX peptide (37, 38) on channel
currents were assessed. The backfill method (33) was used
to test the inhibitory effect of BK channel blockers from the
outside of the cell. The inhibitory effect on the endogenously
expressed BK channel was evaluated by the magnitude of the
single-channel amplitude that appeared more than 5min after
backfilling. Consistent BK channel currents were recorded for
each measurement immediately after measuring in cell-attached
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mode (left trace of Figure 4A). After 10min, both TEA and IbTX
inhibited single-channel current amplitude (Figure 4A right
trace, Figure 4B). Consistent with previous reports (9), the effect
of TEA shows open-channel blocking behavior (Figure 4A),
allowing a stable evaluation of single-channel current amplitude.
Extracellular TEA administration revealed a concentration-
dependent inhibitory effect on the current amplitude of a single
BK channel with an IC50 value of 318.8± 68.8µM (Figure 4C).

Together, the biophysical properties, [Ca2+]i dependence,
and pharmacological properties show that the recorded single-
channel current is a BK channel that is endogenously expressed
in isolated myocytes.

Functional Coupling Between BK and Ca2+

Sources
Activation of Ca2+-dependent BK channels in excitatory cells
is important for feedback control of Ca2+ influx and cell
excitability. To examine the effect of Ca2+ on BK channel activity,
we removed extracellular Ca2+. Extracellular Ca2+ removal
resulted in suppression of BK activity after consistent BK channel
activity (Figure 5).

We then investigated the pathways of intracellular Ca2+

release from intracellular Ca2+ stores and extracellular Ca2+

influx and their effect on BK activity. Ryanodine receptors
play a central role in Ca2+ release in muscle cells, including

skeletal muscle and myocardium with clear striated muscle
(Figure 1A) (39). Furthermore, ryanodine receptors are involved
in contraction in cricket lateral oviduct cells (28). L-type Ca2+

channels are another Ca2+ source and are functionally expressed
in cricket lateral oviduct cells (35).

Ryanodine and caffeine are ryanodine receptor inhibitors and
suppress constitutive BK activity under the same experimental
conditions as were used in the previous experiment. Nifedipine
administration decreased BK activity, whereas Bay K 8644
administration increased BK activity (Figures 7A–C). We
investigated the proximity of BK and L-type Ca2+ channels
within the microdomain by administering Bay K 8644 through a
patch pipette and observing the effect on BK activity on the patch
membrane. By recording with the holding voltage maintained
at 0 and −60mV, the effects of resting membrane potential and
depolarization on L-type Ca2+ channel activity were investigated.
BK activity was suppressed at −60mV rather than at 0mV
(Figures 7E,F control). In all measurements, administration of
Bay K 8644 increased BK activity only at 0mV (Figures 7E,F).

DISCUSSION

In this study, we performed patch-clamp electrophysiology
to characterize the functional expression of BK channels in
cricket oviduct cells. We demonstrated, for the first time,

FIGURE 6 | Effect of ryanodine and caffeine on BK channel activity. (A) Representative BK channel currents before (control) and after addition of 40µM ryanodine

(ryanodine) to the bath solution. c indicates a closed level. (B) Representative BK channel currents before (control) and after addition of 10mM caffeine (caffeine) to the

bath solution. c indicates a closed level. (C,D) Average NPo of BK channel current. Recordings were made at a holding potential of −10mV. *Significantly different (P

< 0.05) from control values (t-values, ryanodine: 5.91, caffeine: 5.80). A total of 18 cells isolated from a total of 12 animals were used in the experiment, and 12 tests

were performed for data collection.
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FIGURE 7 | Effect of nifedipine and Bay K 8644 on BK channel activity. (A) Representative BK channel currents before (control) and after addition of 5µM nifedipine

(nifedipine) to the bath solution. c indicates a closed level. (B) Representative BK channel currents before (control) and after addition of 5µM S(-)-Bay K 8644

(BayK8644) to the bath solution. The current was recorded at a Vpip of −10mV from cell-attached patches. c indicates a closed level. (C,D) Average NPo of BK

channel current (t-values, nifedipine: 3.13, BayK8644: 3.13). (E) Representative BK channel currents before (control) and after addition of extracellular 5µM S(-)-Bay K

8644 (BayK8644) using the backfill method at a Vpip of −60 and 0mV, respectively, from cell-attached patches. c indicates a closed level. (F) Average NPo of BK

channel current. *Significantly different (P < 0.05) from control at +20mV values. †Significantly different (P < 0.05) from BayK8644 at +20mV values. A total of 39

cells isolated from a total of 32 animals were used in the experiment, and 25 tests were performed for data collection.
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that BK channels are endogenously expressed in this cell
type. A series of recordings of single-channel activity and
the appropriate classification criteria, such as K+ selectivity,
high conductance dependent on extracellular K+ concentration,
voltage dependence, and intracellular Ca2+ sensitivity, revealed
these channels as BK channels (Figures 1–3). Extracellular
application of TEA and IbTX inhibited single-channel current
amplitude (Figure 4). The inhibition sensitivity of TEA on
cricket BK channels (IC50 = 318.8µM) is within the range
observed in humans and Drosophila (IC50 = 80–330µM) (40).
These properties are consistent with those of high-conductance
vertebrate BK channels (1, 2). The BK channel considered
representative of invertebrate BK channels is that of the
Drosophila slo family (41, 42), which has common properties
across species, including crayfish (43) and locust (44, 45).
Examination of the Ca2+ source that activates BK channels
revealed that extracellular Ca2+ influx was essential for BK
channel activity (Figure 5). We also observed that the effects
of Ca2+ influx and release by L-type Ca2+ channel regulators
and ryanodine receptor regulators affect BK activity (Figures 6,
7A–D). The effect of Bay K 8644 in the patch pipette indicated the
proximity of BK and L-type Ca2+ channels in themicroregions of
the patch membrane (Figures 7E,F).

The activation threshold of BK channels at resting membrane
potential reflects the associated voltage-gated Ca2+ activation
threshold because, at this potential, it is mainly activated by
[Ca2+]i. Dihydropyridine-sensitive L-type Cav1.1–1.4 exhibit
unique activation threshold profiles. Cav1.3 and 1.4 can be
activated at low voltage thresholds, and Cav1.3 can initiate
activation at a negative voltage of −55mV (46). Accordingly,
it activates BK at a low potential (near −50mV) in neuronal
cells (19). Cricket myocytes exhibit voltage-gated Ca2+ channel
currents with properties similar to those of Cav1.2, which are
activated at around −40mV with a peak at 0mV (35, 46, 47).
These results indicate that it is unlikely that Ca2+ influx through
the activity of L-type Ca2+ channels can be expected in cells
with a resting membrane potential near −50mV. However,
the resting membrane potential of cricket myocytes was more
comparable to that previously reported [−25.8 ± 2.8mV (n =

9)] and to Numata’s unpublished observation [−24 ± 2.5mV
(47)]. Therefore, the BK channel in this experiment is likely
to be activated even though L-type Ca2+ channel activity
exceeded the threshold value of around −25mV. BK activity
was controlled by the dihydropyridine receptor modulator at
the resting membrane potential (Figures 7A–D), but Bay K 8644
administration had no effect at depolarizing potentials, causing
the L-type Ca2+ channel to enter a steady inactivated state
(Figures 7E,F). The physiological importance of BK activity at
the relatively low resting membrane potentials obtained in this
experiment may also apply to species exhibiting similar resting
membrane potentials, including Drosophila muscle [−40mV
(48)], earthworm [−37mV (49)], C. elegans [−20 to −25mV
(50, 51)], and Ascaris lumbricoides [−33 mV (52)].

Opening a single Ca2+ channel increases local [Ca2+] to
over 100µM within tens of nanometers of the inner mouth
of the channel, but most of these ions are buffered within
microseconds (53). The BK channel is found in close proximity

to all Ca2+ channel subfamilies on the cell membrane (16, 54–
56). This association is reproducible in heterogeneous systems
and when reconstituting functional nanodomains (19, 57).
The key to establishing this nanodomain is the high Ca2+

sensitivity of BK channels (EC50 = 10 nM−1µM) (2) and
the proximity to Ca2+ channels (57). Our results show that
cricket muscle cell BK channels have an intracellular Ca2+

sensitivity of EC50 of 31.2 nM. This shows that they are highly
sensitive to intracellular Ca2+ and is similar that of invertebrate
locust muscle (100 pM−1 nM) (45). Furthermore, cell-attached
mode measurements within 1µm of the patch pipette show
the proximity of the L-type Ca2+ channel to the BK channel
(Figures 7E,F). These observations show that the BK channel has
sufficient properties for the construction of amicrodomain in this
study. Further detailed studies require molecular identification
of cricket ion channels and clarification of the functional and
positional relationships between BK channels and Ca2+ sources
in cells.

In conclusion, characterization of a single BK channel in
cricket oviduct cells provides a model for investigating the
functional association with Ca2+ sources. The BK channel
characterized in this study was activated near the resting
membrane potential by functional coupling with a voltage-gated
Ca2+ channel with spontaneous activity. We propose that cricket
muscle cells are involved in spontaneous contraction (28) via
microdomains of BK channels and L-type Ca2+ channels.
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