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Micro-CT and deep learning:
Modern techniques and
applications in insect morphology
and neuroscience

Thorin Jonsson*

Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
Advances in modern imaging and computer technologies have led to a steady rise

in the use of micro-computed tomography (µCT) in many biological areas. In

zoological research, this fast and non-destructive method for producing high-

resolution, two- and three-dimensional images is increasingly being used for the

functional analysis of the external and internal anatomy of animals. µCT is hereby

no longer limited to the analysis of specific biological tissues in a medical or

preclinical context but can be combined with a variety of contrast agents to study

form and function of all kinds of tissues and species, frommammals and reptiles to

fish and microscopic invertebrates. Concurrently, advances in the field of artificial

intelligence, especially in deep learning, have revolutionised computer vision and

facilitated the automatic, fast and ever more accurate analysis of two- and three-

dimensional image datasets. Here, I want to give a brief overview of both micro-

computed tomography and deep learning and present their recent applications,

especially within the field of insect science. Furthermore, the combination of both

approaches to investigate neural tissues and the resulting potential for the analysis

of insect sensory systems, from receptor structures via neuronal pathways to the

brain, are discussed.

KEYWORDS

micro-CT (computed tomography), deep learning, ANN - Artificial neural networks, image
segmentation - deep learning, 3D modelling
Introduction

Technological advances during the last decades have given researchers many new tools

and methods that either opened up hitherto less approachable or even inaccessible areas of

science or that enabled pushing the boundaries of already established fields. Some of the most

obvious advances have taken place in the development of computer technology, with

computing power and available space to store and access information increasing near

exponentially over the last 50 years (1). This computational revolution has driven the

development and rise of, amongst many others, advanced imaging technologies as well as

artificial intelligence (AI) with its subfields machine and deep learning. Here, I present an

overview of a (necessarily small) selection of the recent advances in those quickly expanding
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fields, with a focus on X-ray micro-computed tomography (μCT) and

AI-supported approaches to analyse and interpret two- and three-

dimensional (2D and 3D, respectively) image data gathered with μCT.

For both fields, I will give a brief introduction and illustrate how these

technologies and methods can be combined specifically to shed light

on the external and internal morphology of insects; their outer form

as well as their neuronal structure.
X-ray micro-computed tomography

Introduction

Since the development of the first X-ray computed tomography

(CT) scanner by Godfrey Hounsfield in the early 1970s (2), CT

scanners have become practically ubiquitous in hospitals around the

world for the fast, non-invasive detection of a wide range of

pathologies, from brain aneurysms to bone fractures and tumours.

With the advent of ever cheaper scan units and increasing image

resolutions, CT has also become an increasingly interesting tool for

biologists to investigate the external and internal morphology of their

organisms of interest.

Many excellent reviews exist that describe the development,

function and the many uses of CT and μCT in both the medical

and natural sciences in detail (e.g., 2–9). Thus, the method will be

explained only briefly here: Generally, in commercially available μCT

scanners used in laboratories (also called desktop scanners), X-rays

are generated through the deceleration of fast electrons in an X-ray

tube and directed in a cone-shaped beam towards a sample placed on

a rotating stage in front of a 2D detector array. Traversing the sample,

X-rays are attenuated, with the amount of attenuation or absorption

depending on electron density and atomic number of the chemical

elements in the sample (10). The detector is collecting the attenuated

X-rays in form of a 2D X-ray image, called radiograph. The sample is

then rotated in small angular intervals and an image is taken at each

step, resulting in datasets of many 100s or 1000s of radiographs.

Using filtered back projection or iterative reconstruction algorithms

(7, 11), 2D tomographic images (axial cross-sections or ortho-slices)

of the whole sample are generated, which form the basis for a

complete 3D reconstruction, where the grey value of each voxel

represents the X-ray attenuation of this volume element of the

sample. Both 2D tomographic images and 3D reconstructions can

then be used to explore the interior and exterior structures of the

sample qualitatively and quantitatively.

The main advantage of μCT over classical techniques for

anatomical and morphological studies is certainly the possibility to

non-destructively and non-invasively create whole-volume 3D

reconstructions of complete organisms in a relatively short amount

of time due to minimal sample preparation, fast image acquisition

and streamlined data post-processing (12). This is in sharp contrast to

sectional image reconstruction using time-consuming and destructive

histological methods including complex staining and embedding

protocols, microtome slicing, manual mounting and sequential

imaging of samples with light microscopes (LM) or confocal laser

scanning microscopy (CLSM). Disadvantages, on the other side, are

the comparatively lower image resolution of most μCT scanners in

comparison with CLSM and LM (typically ~200 nm; the Abbe
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diffraction limit. 13) and a lack of contrast in soft tissues. The latter

is due to the low absorption rates of X-rays in biological tissues

containing predominantly low-Z elements (low atomic number; e.g.,

carbon, oxygen, nitrogen), leading to mostly uniform density patterns

in the image data (10, 14, 15). To overcome this issue, various

contrasting or staining agents can be used to increase tissue

contrast. Contrasting agents are usually comprised of high-Z

elements that bind to tissues, increasing the X-ray absorption and

thus image contrast. Common staining methods include elements like

iodine (e.g., Lugol’s iodine potassium iodide solution), tungsten

(phosphotungstic acid; PTA), osmium (osmium tetroxide), lead

(lead nitrate or lead acetate) or silver (Bodian’s reduced silver stain

or Golgi stain). The reader is here referred to 10, 15–17 for in-depth

evaluations of contrast-enhancing solutions and methods. Most of

these contrast agents are relatively non-specific stains. For example,

iodine is generally absorbed by lipid-rich soft tissue, PTA binds to

various proteins like fibrin and collagen and Golgi’s method stains

neurons randomly (10, 15). To improve selectivity of contrast-

enhancing stains suitable for μCT, recent studies have employed

immunohistochemical methods, coupling neuron-specific antibodies

with gold nanoparticles to selectively stain neuronal nuclei in mice (9,

18). This approach of combining traditional immunohistological

staining protocols with X-ray-absorbing nanoparticles is still new

but has the potential to substantially improve the quantitative analysis

of nervous systems using μCT.

Another way to produce high-contrast images and 3D models of

soft and nervous tissue is to use phase-contrast μCT (PC-μCT). X-ray

beams are not only absorbed when passing through a material but the

electromagnetic waves also undergo phase-shifts at the boundaries of

materials with different densities and thus refractive indices. Phase

shifts along material boundaries can be analysed and used to

reconstruct images with high edge-contrast between tissues without

the need for contrast agents. To detect these changes in phase, parallel

and highly coherent X-ray beams are needed, so that the use of phase-

contrast μCT is usually constricted to synchrotron beamlines (15, 19,

20; however, see 21–23 for notable exceptions). Although this makes

synchrotron-based PC-μCT as a technique not as accessible as general

absorption-contrast μCT using laboratory-based desktop scanners,

there are certain advantages to consider: Maximum spatial resolution

using PC-μCT is considerably increased, reaching 10-50 nm/voxel,

depending on the sample dimensions (and often at the cost of a highly

reduced field of view; 15, 22, 24). Additionally, image acquisition at

synchrotron facilities can be faster by a factor of 1000 when compared

to commercially available μCT scanners, allowing for both high

sample throughput and fast collection of time-series scans (9, 15,

25; and see examples below). In Walker et al., e.g., the authors present

time-resolved (sub-millisecond) tomographic data showing the

mechanics and kinematics of the blowfly (Calliphora vicina)

thoracic flight motor in 3D during tethered flight at a resolution of

~3 μm/voxel (26).
µCT and insect neuroscience

While the early generation of medical CT scanners only allowed

identifying rather large and well delineated anatomical structures like

brain tumours, major blood vessels (for angiography) or bones (for
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fracture detection and density measurements), a steady improvement

of scanning speeds and spatial resolution led to an increased use of CT

in small-mammal preclinical studies (mostly rodents; in and ex vivo;

3, 4, 6). The comparably low resolution of conventional medical CTs

prevented the widespread use of this technique for invertebrate

morphology. From the beginning of the 2000s, however, μCT with

spatial resolutions down to ~5 μm became more widely available (and

affordable), leading to a “renaissance of insect morphology” in the

years to come (27, 28). Today, many desktop μCT scanners can

routinely achieve isotropical resolutions down to 1-2 μm/voxel, with

some commercially available high-end scanners now even

approaching nanoscale resolutions of ~0.4-0.2 μm/voxel (8, 29, 30).

Additionally, recent years have also seen advances in the development

of laboratory-based phase-contrast CT scanners with resolutions in

the range of 0.5-0.1 μm, approaching spatial resolutions available at

synchrotron beamlines (21, 22).

These advances in μCT technology have made it feasible to not

only use CT as a tool in insect morphology (e.g., larval development:

31, 32; locomotion: 25, 33; muscular system: 19, 34; respiration: 35,

36; vision: 37, 38; wing structure: 39, 40) but to also explore the central

nervous system (CNS) of insects. In 2007, for example, Mizutani et al.

imaged the brain of larval Drosophila melanogaster using

synchrotron-based μCT with a resolution of ~1 μm/voxel. The

authors could visualise the major components of the developing

supraoesophageal ganglion, including the optic lobes and the

peduncles of the mushroom bodies. 3D views of the brain also

included neuronal cell bodies and axons (41). A year later,

Ribi et al. (42), presented the first application of a lab-based μCT-

system for the scanning and 3D visualisation of an invertebrate brain.

Here, the authors scanned whole heads of the honey bee Apis mellifera

stained with osmium tetroxide at a resolution of 7 μm/voxel. In the

resulting 3D reconstruction, the main brain neuropiles

(protocerebrum, antennal and optic lobes as well as the mushroom

bodies and some substructures) are visualised and well delineated,

demonstrating the suitability of the method for insect neuroscience

(42). In 16, 3D and 2D views of a lacewing head stained with iodine

and a mantophasmid tibia stained with PTA and scanned with a lab-

based μCT are presented at even lower resolutions of 2 and 0.9 μm,

respectively. In the lacewing head, individual ommatidia and the

layers of the optic lobe (lamina, medulla, lobula) are clearly

delineated, as are other brain neuropiles like the peduncles and

calyces of the mushroom bodies. In the 3D model of the tibia, some

individual sensory cells as well as a scolopidial organ can be

distinguished (16). Building on the pioneering work by Ribi et al.

(42) Smith et al. (43) refined and adapted PTA-staining procedures to

stain the brains of 19 bumblebees (Bombus terrestris) that were

subsequently μCT-scanned at resolutions ranging from 3.1-4.6 μm/

voxel. The resulting 3D reconstructions were then used for the first

time to quantify brain allometry and differences in the volumes of bee

brain neuropiles (43). Expanding on this work, Smith et al. (44) used

their existing protocols to scan and segment the brains of 78 adult

bumblebee workers exposed to either a neonicotinoid insecticide

during development or to a control sucrose solution. Performing

volumetric analyses on the brain neuropiles, the authors could show

that the mushroom body calyxes of workers exposed to the insecticide

had significantly lower relative volumes compared to the control bees

and that this negatively influenced their behaviour in learning and
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responsiveness tests. Rother et al. (45) then reused parts of the data

collected by Smith et al. (44) to construct the first 3D insect brain atlas

based on μCT instead of on CLSM data. The atlas visualises all major

brain neuropiles in B. terrestris, including smaller ones like the central

complex and its sub-divisions, the anterior optic tubercles and

substructures of the mushroom body calyces. Additionally, several

prominently visible neuronal tracts linking different neuropiles are

identified. Although the authors also map some individual neurons

and their projections into the central complex, these are visualised

through classical immunostaining methods and CLSM, as no

individual neurons are visible on the CT data itself (45). In contrast

to this, Ribi and Zeil (46) successfully traced the origins and

projection areas of all large ocellar interneurons (L-neurons) in

orchid bee (Euglossa imperialis) brains stained with osmium

tetroxide and μCT scanned at a resolution of 3 μm/voxel. Using

fibre-tracing methods, the authors reconstruct the individual

dendritic origins of the 27 L-neurons in the ocellar plexi (below the

retinae) and follow their paths to the ipsi- or contralateral

protocerebrum where they terminate within close proximity to

optic (lobula) and mechanosensory (antennal lobe) interneurons.

While identification and reconstruction of the large fibers (up to

22 μm in diameter) and their main arborizations proves

unproblematic at the resolution used, the authors also acknowledge

that fine arborizations and branching patterns, and thus exact

connectivities, are not resolved (46).

Through these examples, it becomes clear that a combination of

adequate staining protocols and voxel resolutions in the low μm-

range is sufficient to gain a general insight into the organisation of the

insect CNS (end even some of its functions; 44), at least on the level of

brain neuropiles. At resolutions of ~1-3 μm/voxel (now achievable

with many desktop μCTs), cell bodies and axons of some neurons are

visible, but these most likely constitute only a subset of the neuronal

population, i.e., neurons with sufficiently large cell bodies and axon

diameters to enable a clear distinction from background tissue. While

identification and tracing of populations of larger neurons is possible,

reconstructing their finer dendritic arborization or synaptic fields

would certainly require higher resolutions (as demonstrated below).

Overall, neuron sizes are highly variable in both vertebrates and

invertebrates but are generally smaller in smaller animals (47, 48). In

insects, neuron cell bodies can reach diameters of many 10s of μm

while the minimum soma size seems to be limited to ~2-3 μm due to

limitations in the size of the nucleus (49, 50). The diameter of

unmyelinated axons, on the other side, only seem to be constrained

by the electrical properties of the neuronal cell machinery, the ion

channels. At diameters <0.1 μm, the stochastical noise generated by

thermodynamically activated ion channels increases exponentially,

preventing meaningful information transport via the axon (51, 52).

Taking neuron cell body and axon sizes into account, Chin et al. (24)

argue that a voxel resolution of 0.3 μm “…is not just a sufficient level

but in fact an optimized compromise between…” image resolution

and acquisition speed when setting out to map neuronal brain

architecture in insects. In the same study, the authors then use

synchrotron-based μCT at said resolution and 250 Golgi-stained

Drosophila melanogaster heads to create a standard 3D map of the

fly’s whole-brain neural network “…in a few days” (24).

This study exemplifies the potential of modern μCT technology

for the field of insect morphology and neuroscience: Non-destructive,
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fast, high-resolution data acquisition at levels sufficient to enable the

construction of three-dimensional, detailed outer and inner anatomy

models in conjunction with maps of the neuronal architecture. As a

result, μCT could be easily applied to study insect sensory systems in

high anatomical and neuronal detail: high-resolution scans of stained

whole-body preparations can be generated and the sensory system in

question can be visualised, virtually dissected and explored; from the

outer signal receiving structures to the sensory receptors to the

neuronal projections into the brain or other body parts. Arguably,

resolution of fine axonal projections or dendritic arborizations will

not be as high as with CLSM, but both synchrotron- as well as modern

lab-based CT setups can achieve resolutions high enough (~0.3 μm)

that such quick models can provide valuable overviews and inform

and guide subsequent experimental approaches using other,

complementary methods to add to our understanding of the

sensory systems in question.
AI, artificial neural networks and
deep learning

After performing high-resolution μCT scans, one is confronted

with very large datasets, usually consisting of many hundreds or

thousands of images with megapixel resolution. A μCT dataset of a

bush-cricket ear, for example, can thus easily contain 3 gigabytes (GB)

of raw (8 bit; uncompressed) image data at 1 μm/voxel resolution (C.

gorgonensis, ~1.5 x 1.5 x 1.3 mm³; 53). The much smaller head of a

Drosophila (~0.5³ mm³) scanned at a voxel resolution of 0.3 μm – as

carried out by 24 – would result in a ~4.6 GB dataset per individual

fly. To reconstruct the outer and inner anatomy of an organism, the

image data has to be labelled or annotated according to the desired

level of detail, a process called segmentation. In essence, during

segmentation each voxel of interest in a 3D dataset is assigned a

label that identifies the voxel belonging to a specific structure or object

and there are now many free, open-source (e.g., 3D Slicer, Drishti,

ITK-SNAP, SPIERS) as well as commercial (Amira/Avizo, Dragonfly,

VGStudio) software packages that allow importing, manipulating and

segmentation of 3D datasets (see e.g., 7, 54, 55). Some segmentation

tasks can be performed in a semi-automated manner, especially when

contrast between the structures to be labelled and image signal-to-

noise ratio is high. The outer cuticle or mandibular structures of

insects, for example, can often be easily segmented by simple

thresholding methods, as these relatively hard body parts will be

clearly delineated from softer materials. For the most part, however,

segmentation of μCT data is a time-intensive process that often

involves hours or days of manually labelling images.

While it is feasible to manually segment e.g. the cuticle and major

internal organs of one or several CT-scanned specimens (56, 57), the

cost in terms of time quickly becomes prohibitive when one wants to

investigate species on a population level (24, 44, 45) or when

attempting to segment neuronal networks (58, 59). For the latter

cases, AI techniques like deep learning using artificial neural networks

(ANN) can provide solutions to enable the analysis of large-scale CT

datasets within sensible timeframes.

There are a multitude of introductory textbooks (e.g., 60–63) and

excellent reviews about deep learning, its history (64 recapitulates 70
Frontiers in Insect Science 04
years of ANN development) and implementation in both biological

and medical contexts (e.g., 65–70). Here, I will only give a brief

overview before concentrating on examples of specific network

architectures applied to (mostly) biological and biomedical imaging,

and potential applications of deep learning specific to μCT data in

insect science.
A brief introduction to deep learning

Deep learning, a subset of AI machine-learning techniques, has

experienced considerable breakthroughs in the last decade that makes

it a valuable tool for practically anyone who wishes to analyse very

large and complex datasets (“big data”); from engineers constructing

self-driving cars to economists predicting stock-market developments

to linguists performing natural language processing and speech

recognition tasks to molecular biologists investigating protein

folding structures (71, 72).

The advantage of deep learning over more general machine-

learning approaches lies in the organisation of the specific ANNs

employed to solve particular tasks. In conventional machine learning,

an algorithm learns to perform a certain task on the basis of manually

designed (“hand-crafted”) features that have to be extracted from the

raw data (67, 68). This approach thus requires a good a priori

understanding of which feature representations of a given dataset

can be useful for solving the task at hand. In contrast, ANNs don’t rely

on a manual definition of features but can learn abstract hierarchical

features directly from the raw data (65, 69). In supervised learning,

the ANN is given pre-labelled training data, presenting the ground-

truth for a specific task. Given enough training data, the network then

learns to predict the correct label for data is has not encountered in

the training phase. In unsupervised learning, the network uses

unlabelled data to uncover (often abstract) features or patterns

inherent in the data. Such networks are often used in combination

with supervised ANNs to enhance the overall performance (67,

73, 74).

ANNs are composed of various layers of artificial neurons or

nodes (loosely inspired by the organisation and connectedness of

neurons in the brain) that take information from previous layer

neurons, apply mathematical functions and associated weights and

biases to it and pass it on to neurons in the next layer of the network.

A basic ANN normally consists of an input layer, a (low) number of

hidden neuron layers that are sequentially (often fully) connected and

an output that contains the result (e.g., a decision or classification).

Convolutional neural networks (CNN) are a class of ANN that are

especially useful for the analysis of 2D data like images or sequential

data and are extensively used for tasks like image recognition, object

detection, motion tracking or speech analysis. Here, the first layers of

the network after the input – the convolutional layers – are inspired

by the neuronal organisation of the visual cortex, so that neurons are

not fully connected to each other but form receptive fields with shared

weights and biases (60, 73, 75). Subsequently, the information

extracted from the convolutional layers is sent to a number of

pooling layers, which are simplifying the information before

sending it to either more convolutional layers or fully-connected

layers and finally to an output (65, 68). While the overall architecture
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of CNNs seems to be more complex than that of standard ANNs with

only a few hidden layers, the sharing of weights and biases in the

convolutional layers and the subsequent pooling reduces the overall

number of connections and parameters, making CNNs easier to

train (76).

While CNNs with various but usually low depths were already in

use in the 1990s and 2000s (64, 77), it was the development and

implementation of ever faster graphics card processors in conjunction

with advances in CNN architecture that led to important

breakthroughs for deep learning in computer vision in the early

2010s. In 2013, Krizhevsky et al. presented a 13-layer deep CNN

(AlexNet; five convolutional layers interspersed with five pooling and

normalisation layers plus three fully connected layers) which

classified the 1.2 million images of the ImageNet dataset into its

1000 individual classes with nearly half the error rates of the then

state-of-the-art models (70, 76). Later research on transfer-learning

(the idea that networks pre-trained on bigger, more general datasets

could be used as basis for fine-tuned networks performing different

but related tasks; 78, 79) and deep residual learning networks resulted

in the construction of very deep ResNets (up to 152 layers) that

further significantly reduced error rates in image classification,

detection, localisation and segmentation tasks (80). ResNets are

now often used as backbone architecture for the development of

other networks for computer vision tasks (81). Prominent examples

are the fully convolutional networks U-Net and V-Net, both building

on the ideas of ResNets to increase performance specifically in 2D and

3D biomedical image segmentation (67, 82, 83). The next section will

mainly concentrate on these more recent deep learning networks and

on their use in the context of image segmentation. Since the (bio)

medical sciences have not only been playing a considerable role in the

development of CT and μCT technology but have also partly driven

the development of ANNs able to analyse the resulting data, examples

given will include implementations from biological and medical

fields alike.
AI-supported image analysis

In the medical sciences, mainly driven by the early and ubiquitous

application of imaging devices like MRI and CT as diagnostic tools,

AI has been used since the 1990s on an ever-growing scale (see e.g.,

77, 84). Here, learning algorithms are used in image analysis tasks

ranging from object detection and classification (e.g., nuclei, cell

types, tumours) to automated segmentation in 2D and 3D (e.g.,

brain, liver, prostate, cardiac vessels; 65, 70, 82, 83). The

applications for AI in medical imaging are numerous, as are the

data sources used to train the networks on, which leads to a high

amount of very specialised ANN implementations (and associated

issues concerning training data availability, label noise, non-standard

data acquisition with different modalities, biased datasets, etc.). Some

examples of these implementations for the analysis of medical CT

data are given below:

Hamwood et al. (85) use two modified U-Nets to automatically

segment the boundary of the bony parts of the human orbit fromMRI

or CT scans with results similar to segmentation by human specialists,
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although in a fraction of the time (1.5-3 min instead of ~4 h).

However, the training and test data only includes MRI and CT

scans from 11 test subjects, suggesting that the algorithm could

perform better after being trained with more data and also

highlighting the problem of data availability in some clinical

contexts (85). In other circumstances, however, data availability is

less of an issue: Xie et al. (86), for example, use publicly available,

high-resolution (sub-mm in this context) lung CT scans from 5000

subjects with chronic obstructive pulmonary disease (COPD) to train

a relational 2-stage U-Net (RTSU-Net) to automatically segment the

five pulmonary lobes. Their approach includes one stage that extracts

global features from the whole 3D scan and a second (simultaneous)

stage that captures local, high-resolution details. The authors then

apply a transfer learning approach and retrain the network with CT

scans of the lungs of 370 patients with suspicion of COVID-19. In

both cases (COPD and COVID-19), RTSU-Net significantly

outperforms three standard networks and reaches human

segmentation accuracy, even for the COVID-19 dataset with its

much smaller training set and different pathologies (86).

For a different segmentation task, Lindgren Belal et al. (87)

construct and train a fully convolutional network to automatically

identify and measure the volumes of 49 bones of the human skeleton

(mainly vertebrae and ribs) on the basis of whole-body CT scans. The

CNN is trained on 100 manually segmented CT scans, tested on scans

of 46 different patients and its performance compared against

segmentation results of a trained radiologist. This specialist

manually segmented a set of bones twice for five patients with data

from two different CT scans per patient. Dice coefficients (a measure

of accuracy that considers true positive, false positive and false

negative labels; with a value of 1 corresponding to full and 0 to no

overlap of automated segmentation and ground-truth) are in the

range of 0.85 but, interestingly, the intraindividual volume differences

between bones of the five test-patient scans are much higher for the

manual observer (3-14%) than for the CNN (1-7%), suggesting that

the CNN produced results with a much higher reproducibility than

the human specialist (87).

More in the context of preclinical μCT using small mammals,

Malimban et al. (88) apply the nnU-Net pipeline (an “out-of-the-

box”, hyper-versatile, self-configuring segmentation method based on

the U-Net architecture; 89) to an auto-contouring and -segmentation

task of internal organs of mice on the basis of in vivo μCT images. The

nnU-Net is applied to the 3D data and shown to perform better and

more robustly than a comparable 2D network (Dice coefficients of

0.91-0.97, depending on segmented organ). Additionally, the authors

show that the nnU-Net’s performance on data taken from a different

distribution than the original training data (contrast-enhanced

instead of normal CT scans) is far superior to the 2D network,

demonstrating a high generalisability of the trained network (88).

In biology, the use of AI to analyse image data has been on the rise

as well, especially since the advent of deep CNNs and the

accompanying frameworks (e.g., Keras, TensorFlow) which

dramatically decreased the error rates of ANNs and increased the

facility of implementing specific model architectures (i.e., the

structure of the neural network).Widespread uses for AI in

biological image analysis are the automated identification of species
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from still images (e.g., iNaturalist, Merlin Bird ID or Flora Incognita;

90) or markerless pose estimation or motion tracking from videos of

behaving animals (e.g., DeepLabCut, 91, 92), to name but a few

examples. There are certainly many more uses of deep learning in

ecology, bioacoustics or behavioural sciences and the interested

reader is referred to e.g., 66, 93–97.
ANNs and insect neuroscience

While deep learning networks in species recognition or motion

tracking perform mainly object recognition tasks, ANNs in

neurobiology are now increasingly used to perform segmentation of

neurons and biological neural networks, usually based on 3D

microscopy data. Here, data stems from using CLSM, scanning

electron microscopy (EM), transmission EM or similar high-

resolution imaging methods. Li et al., for example, apply a complex,

200+ layer, ResNet-like CNN to automatically trace neurons from 3D

optical microscopy datasets of single (stained) neurons of various

vertebrate and invertebrate species. The authors demonstrate that

their neural segmentation approach is robust against image noise and

that it significantly outperforms prior state-of-the-art tracing

methods (98).

In another approach, Januszewski et al. (59) construct a new type

of flood-filling network (FFN) to automatically trace and reconstruct

3D neurons in serial block-face EM images of a section of zebra finch

brain (~100³ μm³ at a xy-resolution of 9 nm and z-resolution of 20

nm; containing ~450 somata). While the network itself is a 19-layer

CNN building on AlexNet and ResNet characteristics, it differs from

these in that it only segments one object at any given time and that it

implements a new type of feedback pathway. This feedback enables

the network to use information about previously labelled voxels,

increasing its performance by an order of magnitude when

compared to two baseline CNNs (1.1 mm mean error-free neurite

length and only four wrongly merged neuronal processes within

97 mm of traced neurons). Applied to different EM datasets of

Drosophila optic lobe and mouse somatosensory cortex, the FFN

outperformed all previously applied methods, including a U-Net

approach (59). With the help of this FFN and using focussed ion

beam SEM, Scheffer et al. (99) built the complete connectome of a

Drosophila hemibrain (one half of the central region of the brain,

including the whole central complex; ~250³ μm³ in volume with a

resolution of 8 nm/voxel), identifying, tracing and characterising

~25000 individual neurons, their neurites and synapses (~20

million). This connectome represents approximately 1/4 of all

neurons in the fly’s brain and substantially adds to information

previously collected in smaller sections of the Drosophila brain

using similar methods (e.g., the connectome of the ~1000 neurones

of the mushroom body a lobe; 100). However, even with the extensive

use of ANNs to analyse and segment the data, the authors estimate

that an additional 50-100 person-years of proofreading were invested

to generate the final outcome (99).

Despite these advances in using AI and deep learning tools for

automated analysis and segmentation tasks, there seems to be only
Frontiers in Insect Science 06
two studies so far that investigate fully-automated tissue segmentation

from μCT data in a non-medical context: Toulkeridou et al. (101)

produce complete μCT scans of 76 species of ants (iodine-stained;

resolutions between 0.5 and 3.5 μm/voxel) and subsequently segment

their brains in a semi-automated manner (using a seed-based

watershed method followed by manual post-processing; ~5 hours

work per brain). This provides the authors with a decent training

(60%) and testing (40%) dataset of 76 brains with an average of 1000

labelled images (cross-sections in all three dimensions) each. They

then train a 15-layer U-Net on the 2D data (using data from all three

dimensions) to segment the brain from other tissue (fat, muscles, etc.)

and the cuticle. The trained ANN segments whole brains in 1-2

minutes, achieves Dice coefficients of 0.9 (after combining data into

3D and post-processing) and is shown to also segment the brains of

other insects (wasp and praying mantis) with similar accuracy (101).

However, a significant improvement of its performance could

potentially be accomplished if the network was adapted and trained

on 3D data, thus taking spatial or structural information like position

and size into account (like ANNs in 59, 88).

To this effect, in a recent study by Lösel et al. (102), a 3D U-Net is

trained to automatically segment μCT data of brains of both honey

bees and bumblebees (PTA-stained; 5.4 μm/voxel resolution) into six

major areas (antennal lobes, mushroom bodies, central complex,

medulla, lobula and ‘other neuropils’). Here, the authors make use

of the free, open-source, online platform Biomedisa (biomedisa.org;

103) for semi-automated and deep learning-supported image

segmentation. In its basic form, Biomedisa allows the user to

upload a sparsely annotated 3D dataset (i.e., structures of interest

are not completely labelled but labels are supplied in intervals of tens

of slices) in a variety of common file formats. The pre-segmented

images are then used as starting points for adaptive weighted random

walks algorithms that perform ‘smart interpolation’ whilst taking into

account the underlying 3D data (103). Using this semi-automated

way, one can generate complete sets of segmentation labels of 3D

datasets in a fraction of the time usually needed and with better

accuracy when compared to other interpolation methods. Lösel et al.

(102), thus create a training dataset of 26 fully labelled honey bee

brains with an average Dice score of 0.97 when compared to manual

labelling and in contrast to a Dice score of 0.93 when using standard

interpolation methods (see also 103, for a table comparing various

segmentation methods). The authors proceed to use Biomedisa’s

inbuilt 3D U-Net architecture to train a network that subsequently

segmented a further 84 honey bee and 64 bumblebee brains with Dice

scores of 0.99 and 0.98, respectively. This particular approach allowed

the authors to perform quantitative neuroanatomical comparisons of

brain areas for not a select few, but a high amount of individual

animals in two species whilst reducing manual segmentation and

analysis effort by up to 98% (102).
Conclusion

Overall, the studies by Toulkeridou et al. (101) and Lösel et al.

(102) and, likewise, the lack of other research in this direction,
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highlights the following: While using deep learning approaches for

automated segmentation tasks in insects (or invertebrates in general)

is certainly possible, one of the bottlenecks is still the availability of

large sets of standardised and sufficiently labelled training data.

Although, projects like Biomedisa and the resulting (openly

available) data present ways to overcome this issue (102, 103).

However, while more and more researchers are implementing μCT

in their studies, datasets like those presented above (24, 44, 45, 101,

102), where either many closely related species or many individuals of

one species are imaged with the same modality, are few and far

between. While medical researchers can often access more or less

standardised image data from big, centralised databases (86), similar

options are usually not (yet) available for biologists. Nevertheless, the

increasing ubiquity of μCT in biology and the efforts of the

community to share raw and annotated data on open-access

repositories and websites (e.g. Dryad, Zenodo, Biomedisa) and pre-

trained networks on developer platforms (e.g., GitHub) provide

interesting possibilities: Researchers could make use of transfer

learning methods and use those pre-trained networks in

conjunction with own training data, augmented datasets and

parameter fine-tuning to derive ANNs able to better fulfil a desired

task (78, 79). Conceivably, one could also collect more diverse

datasets and train deep ANNs with advanced architectures (like the

promising nnU-Net used in 88 or FFNs in 99) to extract features that

will allow them to perform tasks independent of variables like

imaging modality, resolution, staining protocol or species.

Hypothetically, such a network could then be trained to, for

example, automatically segment and quantify not only whole insect

brains, but also individual neuropiles, across taxa or during various

developmental stages.

Also, while image resolutions like those attained with EM methods

(59, 99) are far higher than those of state-of-the-art lab-based μCT

scanners, they are, in practice, too high to even allow imaging of whole

invertebrate brains in a realistic timeframe. For example, Scheffer et al.

(99) report the total imaging time for one (!) Drosophila hemibrain as

“roughly four [ … ] years”. However, using either synchrotron or lab-

based CT methods in combination with appropriate tissue fixation and

staining protocols to create sufficient tissue contrast, imaging the neural

tissue of complete insect brains or even whole bodies at sub-μm

resolution (0.3 μm/voxel, as suggested by 24) has become a, if not

trivial, then at least not unreasonable endeavour. Such datasets would

undoubtedly be quite large: a whole-body Drosophila (which very

roughly fits a bounding box of 3.5 x 1.5 x 1.5 mm³), scanned at 0.5

μm/voxel resolution, would result in ~63 GB of uncompressed image

data. However, employing an ANN that analyses data in 3D and has

been trained to, e.g., separate neuronal tissue from internal organs and

muscles, a dataset like this could be automatically segmented into broad

anatomical components in a matter of minutes. If one could also

conjugate contrast-enhancing nanoparticles to antibodies specifically
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targeting insect neurons (e.g., anti-horseradish peroxidase antibodies;

104, 105), like it has been shown in mice (18), an additional ANN could

subsequently identify and trace those targeted neurons. While it can be

argued that even a resolution of 0.3 μm/voxel combined with targeted

contrast enhancers is still not sufficient to trace the finest dendritic

arborizations and thus the full connectivity of neurons (as done in 99,

100) such an approach would still significantly facilitate the exploration

of neuronal circuits in the insect CNS.

In summary, combining state-of-the-art μCT scanningmethods with

subsequent, AI-supported, 3D data analysis to study insect morphology

has the potential to allow researchers to approach certain questions or

problems from a different methodological angle: μCT can be used to

quickly, cheaply, non-invasively and non-destructively image either

whole insects or specific regions of interest with relatively high spatial

resolution. Resulting datasets can be used to produce highly detailed

virtual 3D models of the animal’s exterior and interior that can be

virtually explored and dissected. These models already allow for the

qualitative and quantitative analyses of major anatomical structures that

would be technically highly complicated and very time-consuming to

carry out with more traditional methods: One can, for example, easily

compare the relative densities of various parts of the chitinous cuticle

(intra-, inter-individually or between species), set morphological

landmarks and perform morphometric measurements in 3D with high

accuracy or measure the volume of internal organs, trachea, muscles or

parts of the CNS. As an aside, these models can additionally serve as

detailed geometrical blue-prints for the construction of virtual sensory

receptors like, e.g., mechano- or electroceptive hairs (106, 107), the

different antennal structures linked to the mechanoreceptive Johnston’s

organ (108) or the tympanic auditory receptors of bush-crickets (109).

On the basis of these 3D geometries, advanced finite element models

(another quickly advancing field with great potential that could only be

mentioned briefly here) can then be constructed to simulate the

structural mechanical behaviour in response to physical stimuli, be it

mechanical motion, acoustic waves or electric fields; thus also

complementing our understanding of insect sensory systems. Finally,

there is the possibility of implementing properly trained, deep ANNs to

automatically classify the vast number of digital pixels resulting from

high-resolution μCT scans into categories like cuticle, muscle or neuronal

tissue, leading to the automated, fast and accurate segmentation and

tracing of the internal insect anatomy, including at the level of individual

neurons. Although some problems do still exist – like standardised

training data availability or neuron-specific contrast-enhancers – these

will most likely be solved in the near future, leading hopefully to

methodological frameworks and streamlined pipelines that will allow

researchers to, for example, map whole sensory systems, from the

receptor, via its neuronal pathways, to the brain. Such projects could

be completed in weeks or a few months, instead of taking years, thus

helping in extending our knowledge and understanding of the neuronal

systems guiding the behaviour of insects.
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