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Introduction: Decision support models that predict both when and where to

expect emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera:

Buprestidae), are needed for the development and implementation of effective

management strategies against this major invasive pest of ash (Fraxinus species)

in North America and other regions such as Europe. We present a spatialized

model of phenology and climatic suitability for EAB for use in the Degree-Days,

Risk, and Phenological event mapping (DDRP) platform, which is an open-source

decision support tool to help detect, monitor, and manage invasive threats.

Methods: We evaluated the model using presence records from three geographic

regions (China, North America, and Europe) and a phenological dataset consisting

primarily of observations from the northeastern and midwestern United States. To

demonstrate the model, we produced phenological event maps for a recent year

and tested for trends in EAB’s phenology and potential distribution over a recent 20-

year period.

Results: Overall, the model exhibited strong performance. Presence was correctly

estimated for over 99% of presence records and predicted dates of adult

phenological events corresponded closely with observed dates, with a mean

absolute error of ca. 7 days and low estimates of bias. Climate stresses were

insufficient to exclude EAB from areas with native Fraxinus species in North

America and Europe; however, extreme weather events, climate warming, and an

inability for EAB to complete its life cycle may reduce suitability for some areas.

Significant trends toward earlier adult emergence over 20 years occurred in only

some areas.

Discussion: Near real-time model forecasts for the conterminous United States

are available at two websites to provide end-users with decision-support for

surveillance andmanagement of this invasive pest. Forecasts of adult emergence

and egg hatch are particularly relevant for surveillance and for managing existing

populations with pesticide treatments and parasitoid introductions.

KEYWORDS
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1 Introduction

Invasive insects are one of the most serious and urgent

ecological and economic threats to forests in North America and

Europe (1, 2). Phenological maps may increase the effectiveness of

eradication or management of invasive insect species because

knowing where and when to expect a specific life stage may

increase the likelihood of pest detection (1–4) and improve the

timing of control measures against the susceptible life stage (5, 6).

Likewise, maps of establishment risk can help decision-makers

know whether to invest in pre-arrival strategies, such as

surveillance and attaining approval for tree removal, chemical

treatments, and biological control, to mitigate against the forest

pest’s colonization and establishment (7, 8).

Native to East Asia, the emerald ash borer (EAB), Agrilus

planipennis Fairmaire (Coleoptera: Buprestidae) is a major threat

to ash species (Fraxinus species, Oleaceae) in North America and

Europe, all of which are susceptible to this wood-boring beetle to at

least some extent (9–12). In North America, EAB was first detected

in Michigan in 2002 and is now present in 36 U.S. states and the

District of Columbia, in addition to five Canadian Provinces

(Ontario, Quebec, New Brunswick, Novia Scotia and Manitoba)

(13–17). In Europe, the pest was first found in Moscow in 2003 and

has since spread throughout European Russia and eastern Ukraine

(18–21). Ash declines caused by EAB have had devastating impacts

on ecosystem processes, ecological services, sociocultural practices,

and local and regional economies (15, 22–25). These impacts will

likely grow if EAB continues its expansion into new areas such as

the Pacific Coast of the United States (26) and Central and Western

Europe (7, 12, 27, 28). Spatial forecasts of phenology and

establishment risk are urgently needed for managing infestations

and slowing the spread of invasive EAB populations (3, 7, 12).

Phenology models that predict the seasonal timing of EAB’s life

cycle can help decision-makers know when to install surveillance

equipment and implement control tactics that target a specific life

stage (5). EAB is extremely difficult to detect in part because immature

life stages develop underneath tree bark (29, 30). Forecasts of

phenology for the adult stage, which occurs outside of trees, may

help detect newly established and low density populations, potentially

providing time to reduce adult dispersal to new locations (15, 31).

Additionally, forecasts of adult activity andegghatch canhelpproperly

time the application of systemic insecticides (5) and the release of

parasitoids that target EAB eggs or larvae (32–35). Published

phenology models developed for EAB include those that predict

adult emergence (5, 36, 37), first oviposition (32), and the

proportion of insects overwintering as J-larvae (33). However, only

onemodel was operationalized to produce regularly updated forecasts

of adult activities based on degree-days, which made it useful for real-

time decision support (5, 38). This model was developed from adult

EAB trapcaptures primarily from themidwesternUnited States and its

performance has not been evaluated.

Several studies have assessed establishment risk for EAB based

on climate, which is a regional-scale indicator of environmental

suitability for organisms (8, 39, 40). Climatic suitability models for

EAB generally indicate that most or all of the ranges of native
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Fraxinus species in North America and Europe are suitable for

establishment (41–48). However, most of these models used climate

normals (41–47) or climate data for a past year (48), which provides

only a single snapshot of establishment risk and may not reflect

present-day suitability because of rapid climate change in both

continents (49–53). Indeed, one model predicted reductions in

overwintering mortality in EAB in North America between 1973

and 2013, which suggests that suitability has increased in some areas

that were previously too cold for establishment (45). Additionally,

climate normals may essentially erase signals of extreme weather

events such as polar vortexes that can reduce the EAB’s survival

(48, 54).

In this study,wepresenta spatializedmodel forEAB that integrates

predictionsof phenologyandclimatic suitability toprovide insight into

the climatic risk of EAB being present and its seasonal development

where climates are suitable for establishment. The model was

developed for use in the DDRP (Degree-Days, Risk, and Pest event

maps) platform(55, 56),which is anopen-sourcedecision support tool

(https://github.com/bbarker505/ddrp_v2.git) to help detect, monitor,

and manage invasive threats. DDRP has been operationalized at

USPest.org (https://uspest.org/CAPS) to provide regularly updated

(every 2−3 days) forecasts of phenology and climatic suitability for 16

invasive insect species in the conterminous United States (CONUS).

The DDRP model for EAB improves upon previously developed

models for this pest by integrating predictions of phenology and

climate-based establishment risk, predicting phenology for all major

life stages, incorporating within-population variation in phenology,

andusing a process-based approach tomodel climatic suitability based

on thermal stress accumulation.

We then evaluated the performance of the model using available

monitoring datasets and presence records for EAB. To date,

assessing performance of DDRP models has been difficult because

most modeled species are not currently established in CONUS (55,

57), and daily climate data sets needed for modeling are typically

unavailable for regions where they are established (e.g., the native

range). We capitalized on numerous phenological observations and

presence records for EAB, as well daily climatic datasets from three

different regions (China, Europe, and North America), to evaluate

model performance for this species. Finally, we demonstrate the

model by producing phenological event maps for North America

and Europe for a particularly warm recent year, and by testing for

temporal trends in EAB’s phenology and potential distribution over

a recent 20-year period. Understanding the potential impacts of

climate warming on EAB’s development and survival is important

for planning surveillance and management programs for this pest

(33, 58).
2 Methods

All analyses and modeling were conducted using R versions 3.6

or 4.1 (59, 60). Raster data processing and calculations were

performed using the raster R package v. 3.5 (61) and terra

package R package v. 1.5 (62). All plots were produced using the

ggplot2 R package 3.4.0 (63).
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2.1 Overview of DDRP

The mechanics of DDRP are detailed in Barker et al. (55).

Briefly, DDRP uses a process-based modeling approach in which

degree-days and climate stress are calculated daily and accumulate

over time to model phenology and climatic suitability, respectively

(Figure 1). Required inputs include gridded daily minimum and

maximum temperature data (Tmin and Tmax, respectively) for a time

frame of interest and a species parameter file (summarized

in Table 1). Models include four separate life stages (egg,

larva, pupa, and adult) plus a separately parameterized

overwintering stage.

Phenology models often incorporate variation in phenology

using a user-defined number of time-distributed cohorts that reflect

the distribution of times in which the overwintering stage completes

development. Thus, the daily accumulation of degree-days and

accompanying life cycle transitions are carried out in separate

bins starting from the completion of development of the

overwintering stage of each cohort. For computational simplicity,

individuals within each cohort are assumed to develop in

synchrony. We typically apply seven cohorts because they

approximate a normal distribution of development completion
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times and allow for reasonable model run times since the

phenology model is run separately for each cohort.

DDRP uses accumulated stress unit totals for the year to delimit

two levels of exclusion (i.e., moderate vs. severe stress exclusion) at

any given location (Figure 1) (55). Areas not excluded by either

moderate or severe temperature stress are part of the potential

distribution and therefore at highest risk of establishment.

Moderate stress may inhibit long-term establishment, with a high

probability that short-term establishment could occur during

favorable years, whereas areas under severe stress would likely

prevent even short-term (one complete year) establishment.

Over the daily time-step, DDRP produces outputs that include

maps of the potential distribution, number of generations, life stages

present, and dates of phenological events. Additionally, it integrates

maps produced by the phenology and climatic suitability model to

provide insight into phenology (i.e., life stage present or the date of

specific event) only in areas at risk of establishment.

2.2 Phenology model

Parameter values used in the final phenology model are

provided in Table 1.
FIGURE 1

Schematic of the DDRP model framework for emerald ash borer (EAB). (1) Input data sets include the model parameter file and daily minimum and
maximum temperature data (Tmin and Tmax, respectively). (2) Hollow boxes indicate calculations conducted at each daily time-step in the phenology
and climatic suitability model (purple and blue boxes, respectively). The phenology model includes one phenological event (italic font) each for five
life stages: the overwintered (OW) J-larva, pupa, adult, egg, and larva (instar 1 to J-larval formation). (3) After the daily time-step completes, DDRP
combines phenology model results across all cohorts, integrates outputs of the phenology and climatic suitability models, and exports the final
outputs as multi-layer raster (GeoTIFF) and summary map (PNG) files.
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TABLE 1 Parameters used in the DDRP model for emerald ash borer.

Parameter Code Value

Lower developmental thresholds (°C)

Egg eggLDT 12.2

Larvae larvaeLDT 12.2

Pupae pupaeLDT 12.2

Adult adultLDT 12.2

Upper developmental thresholds (°C)

Egg eggUDT 36.0

Larvae larvaeUDT 36.0

Pupae pupaeUDT 36.0

Adult adultUDT 36.0

Stage durations (°C degree-days)

Egg eggDD 172

Larvae (instar 1 to J-larval formation) larvaeDD 700

Pupae pupDD 135

Adult adultDD 145

Phenological events (°C degree-days)

Appearance of pupae OWEventDD varies

Egg hatch eggEventDD 172

Appearance of J-larvae larvaeEventDD 700

Adult emergence (pupal development complete) pupaeEventDD 135

Egg laying adultEventDD 72

Cold stress

Cold stress temperature threshold (°C) coldstress_threshold −31

Moderate cold degree-day (°C) limit coldstress_units_max1 80

Severe cold degree-day (°C) limit coldstress_units_max2 160

Heat stress

Heat stress temperature threshold (°C) heatstress_threshold 38

Moderate heat stress degree-day (°C) limit heatstress_units_max1 75

Severe heat stress degree-day (°C) limit heatstress_units_max2 150

Cohorts

Degree-days (°C) to complete J-larval development (average) distro_mean 200

Degree-days (°C) to complete J-larval development (variation) distro_var 15000

Minimum degree-days (°C) to complete J-larval development xdist1 60

Maximum degree-days (°C) to complete J-larval development xdist2 350

Shape of the distribution distro_shape lognormal

Other

Order of stages stgorder OL, P, A, E, L

Obligate diapause (1 = TRUE) obligate_diapause 1

Degree-day calculation method calctype triangle
F
rontiers in Insect Science 0
4
OL, Overwintered larvae (J-larvae); P, pupae; A, adult; E, egg; L, larvae.
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2.2.1 Life cycle and overwintering stage
The model uses a start date of 1 January and assumes a one-year

(univoltine) life cycle in which the J-larva is the overwintering stage

(Figure 1). EAB develops through four larval instars before

transitioning into a J-shape (mature 4th instar) and overwintering via

an obligatory diapause (or winter dormancy) phase, which is required

for pupation and adult emergence to occur when the growing season

begins (64). EAB is known tohave a two-year (semivoltine) life cycle in

cooler climates orwhen population densities are low (65–68), inwhich

insects do not advance to the J-larval stage in a single growing season

and require another year to complete development. In semivoltine

populations, EAB overwinters in various larval instar stages, resulting

in overlapping life stages (67–71). Phenology model predictions for

semivoltine populations are relevantonly to individuals in their second

year of development (i.e., insects that overwintered as J-larvae).

2.2.2 Thresholds, stage durations, and
phenological events

We assigned all life stages of EAB a lower developmental

threshold of 12.2°C (54°F) based on a re-analysis of development

times reported by previous studies for the egg stage, egg to J-larvae

stage, and oviposition longevity (Supplementary Data 1;

Supplementary Figures 1−3) (32, 37, 64, 72). DDRP allows for

different temperature thresholds for each stage, but there was

insufficient data for deriving thresholds for certain stages or using

a different threshold resulted in very similar predictions. For

example, a lower threshold of 10°C (50°F) is commonly used to

predict EAB adult phenology (5, 36, 73, 74), but applying this

threshold to J-larvae and pupae did not improve predictive accuracy

of first adult emergence (Supplementary Data 2). Additionally, the

site-based phenology modeling tool that we use at USPest.org

(https://uspest.org/risk/models) requires common thresholds, and

these are presented as whole numbers in Fahrenheit scale for easy

interpretation by end-users. Building the model for both platforms

keeps models simpler and facilitates cross-comparison.

Degree-day requirements for the adult, egg, and larval (instar 1 to

J-larval formation) stages were derived using the regression equations

(Supplementary Figures 1−3) whereas those for the pupal stage were

derived from previously reported values (37, 75). An upper

developmental threshold of 36°C (97°F) for all life stages is based on

studies showing that temperatures of ca. 35°C led to lower fecundity

and survival rates in adults (32, 37, 76) and longer development times

in larvae (32, 72). The model applies the single triangle calculation

method with upper threshold (77) to calculate degree-days. It predicts

five phenological events: pupation, adult emergence, oviposition, egg

hatch, and J-larval formation (Figure 1).

The phenology model applied time-distributed cohorts because

within-site variation in the timing of emergence of EAB adults is

well documented (36, 37, 67, 74). A monitoring dataset for EAB

emergence at five locations (36) (Figure 2A) was used to calibrate

model parameters that describe the completion of J-larval

development (Table 1) because it provided insight into the full

range and shape of the distribution of emergence times. As

described in Supplementary Data 3, this involved calculating

degree-day accumulation for emergence events using a lower
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developmental threshold of 12.2°C (Supplementary Table S1),

visualizing and summarizing resulting values to create a matrix

of possible parameter values (Supplementary Figure S4;

Supplementary Tables S2, S3), and identifying the combination of

parameter values that resulted in the lowest mean absolute error

(MAE) between predicted and observed days of the year (DOYs) of

first and 50% adult emergence (hereafter “peak” adult emergence).

The application of seven cohorts combined with the final cohort

parameter values resulted in distribution of adult emergence times

that corresponded well with monitoring data (Supplementary

Figure S4).

Differences between predicted and observed DOYs of first and

peak adult emergence were visualized with scatterplots (with

smooth lines) and summarized with estimates of their range and

bias. Bias was estimated as the average amount by which predicted

DOYs are greater than observed DOYs, in which negative values

would indicate model underprediction (too early) whereas positive

values would indicate overprediction (too late).

2.2.3 Phenology model validation
We used field-collected phenological observations to evaluate

the accuracy of predicted DOYs for phenological events in EAB.

Observations of first pupation (78, 79), first adult emergence, peak

adult emergence, peak adult activity (32, 34, 37, 67, 71, 74, 79–83),

and first egg hatch (84) used for model validation were derived from

the literature, the Nature’s Notebook database [accessed 10 Nov

2022 using the rnpn R package version 1.25 (85, 86)], and

monitoring datasets collected for this study (T. Petrice and J.

Duan; Supplementary Table S4). This resulted in 60 observations

collected from 23 locations in nine states in the eastern United States

between 2003 and 2022 (Figure 2B) and from one location (Moscow)

in European Russia in 2013 and 2014 (Figure 2C; Table 2). Only 41

observations were independent in terms of location and year because

the monitoring study reported multiple phenological events over the

year (Supplementary Table S5). We did not include observations that

were likely derived from semivoltine individuals in their second year of

development (67, 71).

Models for the eastern United States used daily estimates of

Tmin and Tmax from the PRISM database at a spatial resolution of 4

km2 (https://prism.oregonstate.edu) (87) whereas those for Europe

used estimates from the E-OBS database at a spatial resolution of

0.1° (ca. 11.1 km2; https://surfobs.climate.copernicus.eu, accessed

19 April 2022) (88). DOYs for first pupation, first adult emergence,

and first egg hatch were calculated as the earliest DOY for pupal

development, adult emergence, and egg hatch across cohorts,

respectively. DOYs for peak adult activity were calculated as the

weighted average of DOYs for oviposition across cohorts.

Predictions were extracted from corresponding grid cells in the

phenological map outputs produced by DDRP. Five observations

from Michigan lacked precise coordinate data (Supplementary

Table S4) so predictions were obtained by averaging predictions

within their city of origin (Ann Arbor, Detroit, Novi, and Troy). A

shapefile of city boundaries was obtained from the U.S. Census

Bureau's Master Address File / Topologically Integrated Geographic

Encoding and Referencing (TIGER) database.
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For each phenological event, we visualized differences between

predicted and observed DOYs with scatterplots and calculated

descriptive statistics (MAE and bias). Additionally, we performed a

two one-sided (TOST) test for equivalence using the equivalence R

package 0.7.2 (89, 90) to evaluate whether predicted and observed

DOYs for adult events were equivalent. Tests did not assume equal

variances between groups. Statistical equivalence can be demonstrated

if the two one-sided 95% confidence intervals (CIs) are completely

contained within a specified equivalence interval for the difference in

means (d) (i.e., bias). For each event, we conducted a test that applied

an equivalence interval of seven days (−7 < d < 7) and another that

applied an equivalence interval of 14 days (−14 < d < 14). A narrower

equivalence interval makes it more difficult to reject the null hypothesis

of differences in means. Equivalence tests were not performed for first

pupation and first egg hatch owing to very small sample sizes.
2.3 Climatic suitability model

We developed and validated a climatic suitability model for

EAB using a combination of eco-physiological information and

georeferenced presence records from China (N = 148), European
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Russia and Ukraine (hereafter Europe; N = 139), and North

America (N = 2947). Presence records were derived from peer-

reviewed literature, theses, reports, the NAPIS database (https://

cmr.earthdata.nasa.gov/search/concepts/C1214608223-SCIOPS,

accessed 29 Aug 2022), the Global Biodiversity Information Facility

(91) (http://gbif.org, accessed 27 Dec 2022), and CERIS Pest

Tracker (https://pest.ceris.purdue.edu, accessed 27 Dec 2022). Of

the 3234 presence records, 1068 were spatially resolved only to the

level of a county or city, which is typically a coarser scale than

climate data. However, predictive uncertainty was not an issue for

these locations because none occurred near the predicted range

limits for EAB (see ‘3.2 Results’). Presence records were deposited in

Zenodo (https://doi.org/10.5281/zenodo.7493142).

Climatic suitability models used daily estimates of Tmin and

Tmax for the most recent 20-year time frame available for each focal

region. These included (1) the CDAT dataset for China for 1999 to

2018 at a spatial resolution of 0.1° (92)(accessed on 28 Jun 2022;

https://zenodo.org/record/5513811#.YtnLNXbMIuU), (2) the

Daymet dataset for North America for 2002 to 2021 at a spatial

resolution of 1 km2 (93, 94) (https://daymet.ornl.gov/getdata,

accessed 13 Jul 2022), and (3) the E-OBS dataset for Europe for

1999 to 2018. E-OBS data for 2019 and 2020 were excluded because
B

C

A

FIGURE 2

Geographic origins of observations of emerald ash borer used to (A) calibrate cohort parameters in the DDRP model and to (B, C) evaluate predictive
accuracy of five phenological events. Symbols represent phenological events predicted by the model that were compared to observed events.
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of a large amount of missing data in European Russia. Daymet data

were chosen over PRISM data because they include climate

estimates for Canada; however, they were cropped to a maximum

latitude of 60°N and aggregated to a spatial resolution of 4 km2 to

decrease model run times.

2.3.1 Climatic suitability model
parameter calibration

Parameter values used in the final climatic suitability model are

provided in Table 1.

2.3.1.1 Cold stress parameters

To identify an appropriate cold stress threshold, we extracted

estimates ofTmin of the coldest week for each presence record from the

provinces of Inner Mongolia, Heilongjiang, and Jilin in northeastern

China. Theseprovinces include someof the coldest areas of the species’

known distribution (95). Daily CDAT data (1999 to 2018) were

averaged and then aggregated to a weekly resolution to better reflect

longer term (i.e., multi-day) cold stress experienced by EAB, which is

capable of surviving through extended periods of sub-zero

temperatures (54, 96). According to this analysis, all records

occurred in areas with weekly Tmin values ≥ −31°C (Supplementary

Figure S5). This finding is consistent with work showing that EAB is

killed by internal ice formation that occurs at temperatures around

−31°C (97), and with laboratory studies of EAB’s cold hardiness

(96, 98).

The average number of consecutive days during winter months

(December, January, and February) that daily average Tmin fell below

−31°C was calculated to help define cold stress limits. The severe cold

stress limit in DDRP was set to correspond roughly with areas that

experienced more than 10 consecutive days below −31°C

(Supplementary Figure S5). Mortality rates of cold-acclimated

EAB larvae were ca. 20 to 60% after exposure to temperatures

between −30°C and −35°C for one week (96), which suggests that

exposure of EAB to these temperatures for a week may not prevent

long-term establishment. One field study reported severe mortality

(93%) in populations that experienced temperatures below−30°C for a

three-day period; however, deacclimation of larvae resulting from

unusually warm winter conditions likely explained low survival

rates (54).

We delineated the moderate cold stress limit to correspond

roughly with areas that experienced a daily average Tmin < −31°C for
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five to 10 consecutive days during winter months (Supplementary

Figure S5). The moderate cold stress limit was further calibrated by

minimizing the number of records that were excluded in a model for

2001, which was an extreme year in terms of cold stress accumulation.

Several records were excluded by severe (N = 1) or moderate (N = 16)

cold stress in 2001 even after calibrations. However, we opted to retain

parameter values because most of these records (N = 16) were not

excluded for other years.

2.3.1.2 Heat stress parameters

EAB may survive at temperatures near 56°C for short periods of

time (≤ 60 min) (99, 100), but the impact of less extreme heat levels on

survival are not well understood. Following the same approach used for

cold stress parameter calibration, we averaged daily Daymet data (2001

to 2021) and extracted data on weekly and daily estimates of Tmax data

for presence records from the southern United States, which is the

hottest area for which records existed. According to this analysis, all

records had average weekly Tmax ≤ 38°C and six occurred in areas of

northcentral Texas that experienced daily average Tmax > 38°C for 2−4

days (Supplementary Figure S6).

We set the severe and moderate heat stress limits to correspond

roughly with areas that experienced average daily Tmax for 40 and 90

consecutive days during summer months (as delineated in

Supplementary Figure S6), respectively, to avoid underpredicting the

pest’s potential distribution inhot areas. Themoderate heat stress limit

was further calibrated by minimizing the number of records that were

excluded in the model that used data for an extreme year (2011) in

terms of heat stress accumulation (Supplementary Figure S6).

2.3.2 Climatic suitability model validation
We assessed whether DDRP correctly included presence records

not used for model calibration in the potential distribution for each of

20 modeled years. This analysis included records from Europe (N =

139), China (N = 107, not including records fromHeilongjiang, Inner

Mongolia, and Jilin provinces), and North America (N = 2790, not

including records from the southern United States). Maps were

combined to identify areas that were consistently included in the

potential distribution across 20 years.Combinedmapswere compared

to digitized maps of native Fraxinus species for North America (101)

andEurope (102) to assess potential range limitations due tohost plant

availability. We were unable to find digitized maps of native Fraxinus

species for China.
TABLE 2 Summary of field observations used to validate phenological event predictions produced by the DDRP model for emerald ash borer.

Observed event Nloc Nobs Observation years Phenological event

first pupation 2 3 2017, 2020, 2021 pupal development (earliest)

first adult emergence 16 30 2003, 2004, 2010, 2013, 2014, 2016−2022 adult emergence (earliest)

peak adult emergence 7 8 2003−2005, 2016, 2020 adult emergence (average)

peak adult activity 6 16 2006, 2007, 2016−2019 egg-laying (earliest)

egg hatch 2 3 2016, 2017 egg hatch (earliest)
Each observed event has a corresponding predicted event in the model [earliest, earliest day of year (DOY) across cohorts; average, weighted average of DOYs across cohorts]. Nloc, number of
locations; Nobs, number of observations.
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2.4 Demonstration

We produced phenological event maps of first adult emergence

and first egg hatch for EAB in 2021 for North America and Europe

to provide insight into its phenology and potential distribution

during a particularly warm year. The summer of 2021 was tied with

1936 for the warmest on record in CONUS (NOAA website https://

www.ncei.noaa.gov/news/national-climate-202108, last accessed 22

Jan 2023) and was the hottest on record for Europe (European State

of the Climate 2021, https://climate.copernicus.eu/esotc/2021, last

accessed 22 Jan 2023). The model used Daymet data for North

America and E-OBS data for Europe.

We tested for trends in the DOY of first adult emergence and

climate stress exclusions over a 20-year period to explore potential

changes in EAB’s phenology and potential distribution due to

climate warming. Tests used the ‘Mann-Kendall’ function in the

Kendall R package v. 2.2.1 (103) and excluded grid cells with

missing data (Europe only). The Mann-Kendall statistical test

(104, 105) is a rank-based non-parametric method that is widely

used for time series of remote sensing data (106, 107). Analyses of

climate stress exclusions were only conducted for North America

because Europe was climatically suitable for most years (see ‘3.2

Results’). We used absolute values for climate stress exclusion values

in DDRP (0 = no stress exclusion, −1 = moderate stress exclusion,

and −2 = severe stress exclusion) to make trends easier to interpret

(e.g., a decreasing trend would indicate decreasing climate stress

over time). Trends were considered statistically significant at the P =

0.1 level because Mann-Kendall tests may have low power for time-

series data (107).
3 Results

3.1 Phenology model

The process of filtering combinations of five cohort parameter

values to determine overwintering cohort settings resulted in 22
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parameter combinations (Supplementary Table S3). The lowest

combined MAE for first and peak adult emergence (i.e., sum of

MAE for both events) was obtained for the model that used a low

bound = 60, mean = 200, high bound = 350, and variance = 15000 of

development completion times [in degree-days (°C), DDC] for J-

larvae. Accordingly, adult emergence was predicted to occur

between 217 and 460 DDCs (Supplementary Table S6 and Figure

S4). Predicted DOYs exhibited a linear relationship with observed

DOYs (Figure 3), although the line of fit for peak adult emergence

curved downward at higher DOYs. The MAE between predicted

and observed DOYs for first and peak adult emergence were 3.7 and

4.6 days, respectively (Table 3). On average, first adult emergence

was overpredicted by 1.2 days [standard deviation (SD) = 4.8]

whereas peak adult emergence was underpredicted by 0.8 days

(SD = 6.1).

According to model validation analyses, predicted DOYs for

phenological events in adults exhibited mostly linear relationships

with observed DOYs (Table 3; Figure 4). However, a single

observation from Washington DC (34) resulted in a slight

upward curve at lower DOYs for peak adult activity, whereas a

single observation from Louisiana (80) resulted in a downward

curve for peak adult emergence at lower DOYs. MAE values for first

adult emergence, peak adult emergence, and peak adult activity

were 7.4, 8.4, and 7.2 days, respectively. On average, first adult

emergence was overpredicted by 1.6 days (SD = 9.2) whereas peak

adult emergence and peak adult activity were underpredicted by 0.1

(SD = 10.2) and 0.9 days (SD = 8.2), respectively. Predicted DOYs

for first pupation and first egg hatch exhibited lower

correspondence with observed DOYs (Figure 4) and were less

accurate (MAE = 12.0 and 13.7 days, respectively) than

predictions of adult events. However, sample sizes for these two

events were very small (N = 3 observations each).

According to equivalence tests for first adult emergence and

peak adult activity, the two one-sided 95% CIs for difference

between the means of predicted and observed DOYs were

completely contained in the equivalence interval of 14 days

(Figure 5), indicating that the means were statistically equivalent
FIGURE 3

Scatterplots showing predicted vs. observed days of year (DOYs) of first and peak adult emergence of emerald ash borer based on the dataset used
to calibrate the phenology model. Solid colored lines represent the curved line of best fit calculated with linear regression. Dark gray line represents
a 1:1 relationship between predicted and observed DOYs.
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(no bias). However, the CIs for the difference between the means of

predicted and observed DOYs for first adult emergence exceeded

the upper equivalence bound of seven days, indicating

overprediction of up to seven days. The CIs for the difference

between the means of predicted and observed DOYs for peak adult

emergence exceeded both the lower and upper bounds of the

equivalence interval of 14 days, indicating under- and over-

prediction of up to 14 days.
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3.2 Climatic suitability model

The climatic suitability model correctly predicted presence of

EAB for 99.9% (3024/3028) of presence records used for model

validation, which provides evidence for high model sensitivity. The

potential distribution based on climate data for 20 years included

most of China (Figure 6A), and it overlapped with the ranges of all

native Fraxinus species in North America (Figure 6B) and Europe
FIGURE 4

Scatterplots showing predicted vs. observed days of year (DOYs) for five phenological events in emerald ash borer based on the dataset used to
validate the phenology model. Solid colored lines represent the curved line of best fit calculated with linear regression (not shown for first pupation
and egg hatch owing to small sample sizes). Dark gray line represents a 1:1 relationship between predicted and observed DOYs.
TABLE 3 Summary statistics for five phenological events predicted by the phenology model for emerald ash borer based on datasets used for model
calibration and validation.

Analysis Event Nobs MAE Bias SD Range

calibration first adult emergence 11 3.7 1.2 4.8 −6 to 9

calibration peak adult emergence 11 4.6 −0.8 6.1 −12 to 9

validation first pupation 3 12.0 8.7 15.8 −5 to 26

validation first adult emergence 30 7.4 1.6 9.2 −19 to 23

validation peak adult emergence 8 8.4 −0.1 10.2 −14 to 14

validation peak adult activity 16 7.2 −0.9 8.2 −12 to 14

validation first egg hatch 3 13.7 −7.7 16.0 −23 to 9
The number of observations (Nobs), mean absolute error (MAE), bias with standard deviation (SD), and range of differences between predicted and observed dates (in days) are shown for each
event. MAE, the average absolute difference of (observed – predicted); Bias, average of (predicted – observed); SD, standard deviation of (predicted – observed).
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(Figure 6C). In North America, areas predicted to be excluded by

cold stress for at least one modeled year corresponded roughly with

the northern range edges (ca. north of 49 °N in continental areas) of

green ash and black ash, F. pennsylvanica Marsh and F. nigra

Marsh, respectively (Figure 6B). However, a few areas along these

range edges were excluded by moderate cold stress during an

extreme year in terms of cold stress accumulation (1999;

Figure 7A). Conversely, cold stress accumulation in Europe did

not exceed EAB’s limits in any region, except for some small areas of
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the northernmost latitudes of Europe and European Russia in

1999 (Figure 8A).

Heat stress played a minor role in shaping EAB’s potential

distribution within the ranges of native Fraxinus species in North

America and Europe (Figures 7B, 8B). However, parts of the ranges

of Mexican ash (F. berlandieriana DC) and littleleaf ash (F. greggii

Gray) in northeastern Mexico as well as California ash (F. dipetala

Hook. & Arn.) in Baja California were excluded by moderate heat

stress (Figure 7B). Areas excluded by moderate and severe heat

stresses expanded throughout this area and in southern United

States (Texas and Oklahoma) during an extreme year in terms of

heat stress accumulation (2011).
3.3 Demonstration

Predictions of first adult emergence and egg hatch for EAB in

2021 varied substantially by latitude. For most of Europe and

northern parts of North America, first adult emergence occurred

between June and July (Figures 9A, 10A) whereas egg hatch

occurred between late June and August (Figures 9B, 10B). The

earliest dates for these events in North America were in

southwestern areas (Mexico, southern Texas, and Florida) and

latest in southeastern Canada, whereas in Europe the earliest

dates were in Spain and latest in the United Kingdom and

Scandinavia. There was insufficient degree-day accumulation for

egg hatch to occur in parts of the ranges of Fraxinus species in

southern Canada and northern Europe (e.g., in Ireland, Great
FIGURE 5

Results of equivalence tests for adult phenological events in emerald
ash borer. The two one-sided 95% confidence intervals (black horizontal
line) for differences between the means of predicted and observed days
of year (solid circle) are shown for each event. Red and blue dotted lines
depict the equivalence interval of seven days and 14 days, respectively.
B CA

FIGURE 6

The modeled potential distribution for emerald ash borer (EAB) in (A) China, (B) North America, and (C) Europe according to DDRP runs for 20
recent years (top maps). Yellow areas were included in the potential distribution for all 20 years, areas with cooler colors were excluded by climate
stress for one or more years, and gray areas lack predictions owing to missing climate data. Pink circles depict the approximate locations of
presence records used for model calibration and validation. Bottom maps in (B, C) depict the range of native ash (Fraxinus) species (green shading)
in North America (16 species) and Europe (three species) to provide insight into possible range restrictions in EAB due host plant availability. Spatial
data for native ash species in China were unavailable.
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B

A

FIGURE 8

Maps of annual (A) cold stress and (B) heat stress accumulation for emerald ash borer in Europe produced by DDRP. Results based on 20-year
climate averages (left maps) are compared to those based on climate data for an extreme year (right maps) in terms of cold or heat stress
accumulation (1999 and 2000, respectively).
B

A

FIGURE 7

Maps of annual (A) cold stress and (B) heat stress accumulation for emerald ash borer in North America produced by DDRP. Results based on 20-
year climate averages (left maps) are compared to those based on climate data for an extreme year (right maps) in terms of cold or heat stress
accumulation (2004 and 2011, respectively).
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Britain, and Scandinavia), which suggests that EAB may be unable

to complete its life cycle in these areas. Within the host ranges,

moderate cold stress was predicted for a small area of southern

Saskatchewan and Manitoba in Canada.

Trends in the DOY of first adult emergence over 20 recent years

were significant in only a few areas. Significant trends towards

earlier emergence in North America occurred in both southern

areas (parts of Mexico and the southeastern United States) and

northern areas (parts of New England and the Midwest;

Figure 11A), whereas in Europe they occurred predominantly in

central-eastern regions (Ukraine and European Russia; Figure 11B).

A significant trend towards later adult emergence were

predicted in a few small areas of the midwestern United States

and eastern Turkey.

Significant trends in range-limiting climate stress for EAB in

North America between 2002 and 2021 occurred predominantly in
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areas outside of the range of native Fraxinus species. Areas excluded

by cold stress declined in parts of Quebec, the Hudson Bay area in

central Canada, and northern Alberta, whereas they increased in

parts of western Canada (Figure 12A). Areas excluded by heat stress

significantly increased in parts of northern Mexico and the

southwestern United States, including in parts of the ranges of F.

berlandieriana and F. greggii in northeastern Mexico and F. dipetala

in Baja California (Figure 12B).
4 Discussion

4.1 Phenology model

According to model validation analyses, predicted DOYs for

phenological events in adults exhibited strong concordance with
B

A

FIGURE 9

Maps of the predicted dates of (A) first adult emergence and (B) egg hatch for emerald ash borer for North America for 2021 produced by DDRP.
Phenological predictions occurring outside of the range native ash (Fraxinus) species (blue line) are semi-transparent. Maps include estimates of
climatic suitability, where long-term establishment is indicated by areas not under moderate (excl.-moderate, medium gray) or severe (excl.-severe,
dark gray) climate stress exclusion. Areas with insufficient degree-day accumulation for an event to occur are indicated with light gray.
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observed DOYs, with mean absolute errors of ca. 7 days and low

estimates of bias. However, an equivalence test indicated that the

mean predicted DOY of first adult emergence was overpredicted by

as much as seven days, which is concerning because surveillance

and management tactics that target adults are often employed

several days before adult emergence (5, 30). As a precautionary

measure, activities such as installing detection devices and applying

insecticide treatments could be implemented at least a week before

the predicted date of first adult emergence to help avoid the

potential consequences of model overprediction (e.g., failing to

detect beetles that had already emerged).

Additional phenological observations collected from across a

latitudinal range are needed to conduct a more robust evaluation of

model performance. For example, high levels of under- and over-

prediction of the DOY of peak adult emergence (±14 days)

according to equivalence tests may be partly due to low statistical
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power owing to a small sample size (N = 8 observations). Sample

sizes were particularly small for first pupation and first egg hatch

(N = 3 observations each), so we refrained from interpreting results

of analyses for these events. Additionally, observations of all life

stages are needed from southern populations to better evaluate

model performance in warmer climates. EAB’s activity and

development in areas with warm climates are not well understood

because the pest began spreading into the southern United States

only over the past decade (14, 108, 109). To date, monitoring data

collected from the southern United States indicate that EAB

overwinters primarily as J-larvae and that populations are

univoltine (78–80, 84). Thus, model assumptions of a one-year

life cycle in which the J-larva is the overwintering stage are likely

valid for this region.

The model could potentially be improved by incorporating

stage-specific temperature thresholds and a low temperature
B

A

FIGURE 10

Maps of the predicted dates of (A) first adult emergence and (B) egg hatch for emerald ash borer for Europe for 2021 produced by DDRP. Phenological
predictions occurring outside of the range native ash (Fraxinus) species (blue line) are semi-transparent. Maps include estimates of climatic suitability, where
long-term establishment is indicated by areas not under moderate (excl.-moderate, medium gray) or severe (excl.-severe, dark gray) climate stress exclusion.
Areas with insufficient degree-day accumulation for an event to occur and missing climate data are indicated with light gray and white, respectively.
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BA

FIGURE 11

Trends in predicted dates of first adult emergence for emerald ash borer over a 20-year period in (A) North America (2002−2021) and (B) Europe
(1999−2018). The Kendall tau metric varies from −1 and 1, where positive values indicate an increasing trend and negative values indicate a
decreasing trend (top maps). Statistically significant trends are indicated (P ≤ 0.1; bottom maps). Predictions occurring outside of the range of native
Fraxinus species (blue line) are semi-transparent. Areas with no trend, insufficient degree-day accumulation for emergence to occur, or missing
climate data for any years are indicated with light gray.
BA

FIGURE 12

Trends in exclusions by (A) cold stress and (B) heat stress for emerald ash borer in North America between 2002 and 2021. The Kendall tau metric
varies from −1 and 1, where positive values indicate an increasing trend and negative values indicate a decreasing trend (top maps). Statistically
significant trends are indicated (P ≤ 0.1; bottom maps). The range of 16 native Fraxinus species is shown to provide insight into possible range
restrictions in EAB due host plant availability. Areas with no trend are indicated with light gray.
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requirement for the completion of diapause development in the J-

larval stage. Using different thresholds for immature stages (10°C

for larvae and pupae, and 13.7°C for eggs) did not significantly affect

prediction error, but the analysis was based on a limited observation

dataset. Another area needing further study is whether termination

or completion of diapause development in J-larvae requires a

specific low temperature regime or other cue (110, 111). Recent

work indicated that J-larvae may require at least two months at

moderately low temperatures (ca. 12.8°C) to complete diapause

development before pupation can begin (36, 64). However, future

work should investigate whether J-larvae in southern populations

have different thermal requirements to terminate diapause. A low

temperature requirement for diapause completion was not added to

the model in part because of DDRP’s single-year modeling

structure, which prevents it from using climate data for the entire

winter (e.g., November–February). The single-year modeling

structure also prevents modeling a two-year life cycle for EAB.

In CONUS, trends towards earlier adult emergence over 20

recent years were predicted in some areas that experienced marked

increases in average winter (December−February) temperatures (≥

1.7°C) and spring (March−May) temperatures (0.5−3.4°C) since

1970, such as parts of New England and the South (112, 113).

Similarly, trends in Europe occurred predominantly in areas

(European Russia and Ukraine) that experienced rapid increases

in winter and spring temperatures (0.07−0.08°C/year) between 1985

and 2020 (50). However, temporal trends in the DOY of first adult

emergence were not significant for most areas of North America

and Europe, which may be due to our use of a rather short (20

years) time-series dataset that likely exhibited serial correlation (i.e.,

the variable is correlated with itself over periods of time) (107).

Alternatively, climate warming may not be impacting the timing of

adult emergence as much as other phenological events. For

example, a degree-day modeling study of EAB in Winnipeg,

Canada concluded that climate change between 1970 and 2010

significantly impacted the date of peak activity but not the date of

emergence in adults (73).
4.2 Climatic suitability model

The potential distribution of EAB based on 20-year climate

averages overlapped with the ranges of all native Fraxinus species in

North America and Europe, which is broadly consistent with

previous climatic suitability models for EAB based on climate

normals (41–47). Very high estimates of sensitivity of the climatic

suitability model (99% of known presence records correctly

modeled) suggest that it does not underpredict the potential

distribution of EAB. However, we were unable to quantify model

specificity (i.e., the proportion of known absence records correctly

modeled) owing to a lack of data on absences of EAB in relation to

climate. Thus, absence records are needed to assess whether the

model overpredicts the potential distribution and to quantify

overall model accuracy.

For certain years, cold stress excluded populations at the

northern range of Fraxinus species in North America (i.e., green

ash and black ash), which may be explained by severe cold events
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that can reduce overwintering survival rates in EAB (48, 54). While

North America and Europe are experiencing warming winter

temperatures and an overall decrease in the frequency and

duration of extreme cold events (52, 106, 114), the frequency of

high intensity cold events increased in some areas between 1950 and

2020 (115). Spatiotemporal variation in extreme cold events may

explain why range-limiting cold stress for EAB between 2002 and

2021 in North America significantly decreased in some areas (e.g.,

in Quebec) but increased in others (e.g., in British Columbia). Thus,

the impacts of climate change on EAB’s survival in the coldest parts

of its distribution will likely vary across space and time.

Models based on 20-year climate averages indicated a minor role

for heat stress in shaping EAB’s potential distribution in areas with

native Fraxinus species. However, summer temperatures and the

intensity, frequency, and duration of heat waves are increasing in

western North America and are projected to worsen under enhanced

global warming (49, 106, 116). Thus, the ranges of certain host species

in southwestern North America such as F. berlandieriana, F. greggii,

andF. dipetala could potentially become increasingly unsuitable under

enhancedwarming. Conversely, range-limiting heat stress for EABdid

not significantly increase in the southeastern United States. Previous

studies likely underestimated climatic suitability for EAB in this region

because they used correlative algorithms and did not completely

sample the species’ climatic distribution (42, 43).

Climatic suitability modeling in DDRP is based only on

survival-limiting climate stresses, but the ability for a pest to

complete its life cycle in a new climate also influences

establ ishment risk [e .g . , (40)] . Insufficient degree-day

accumulation for egg hatch to occur in parts of southern Canada

and northern Europe during 2021, which had record-breaking

summer temperatures, suggests that EAB is incapable of

completing its life cycle in these areas. Similarly, models based on

annual growing degree-days for Europe predicted that EAB could

not complete development in many areas of Norway, Sweden,

Finland, Ireland, and Great Britain (7, 46). Overlaying DDRP

predictions of egg hatch produced for multiple years may provide

greater insight into spatiotemporal variability in establishment risk

based on life cycle completion. Future work could also investigate

the relative roles of cold stress vs. incomplete life cycle progression

in potentially excluding EAB from parts of southern Canada.
4.3 Potential sources of model error

Differences in monitoring methods used across studies likely

explain at least some prediction error for adult phenological events.

For example, some studies counted the number of exit holes to

monitor adult emergence whereas others used trapping data. Adults

are capable of immediate flight upon emergence (16); however, the

efficiency in counting adults with traps and visual observation of

adult exit holes may differ. While trap captures of EAB adults are

affected by trap deployment location and many other factors such as

beetle age and weather, visual observation of adult exit holes on

infested ash trees may be less affected by those factors and thus may

provide more accurate counts of emerging adults (J. Duan,

unpublished data).
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An additional explanation for prediction error for adult

phenological events is our use of seven cohorts and a single set of

cohort parameter values for all populations. These settings produced a

distribution in adult emergence times that correspondedwellwithfield

data used for model calibration; however, distributions likely vary

across the range of EAB. For example, decreasing the lowbound for the

timing of the completion of J-larvae (xdist1) may be appropriate for

populations that have cohorts which require fewer degree days to

complete J-larval development. The phenology model could be

modified to accept a raster of values for cohort numbers and cohort

parameter values; however, significantly more observations of pupal

development and adult emergence of overwintered insects across

latitudinal gradients are needed to estimate how J-larval

development varies within populations across EAB’s range.

Differences between air temperatures and under-bark

microclimates experienced by immature stages of EAB are a likely

source of model error (32, 41, 117). Under-bark temperatures may

be 1−7°C higher than ambient air temperatures during winter

owing to the buffering capacity of snow and tree bark, potentially

increasing rates of development and overwintering survival for EAB

(117, 118). However, accounting for these temperature differences

in our model is difficult because making assumptions of a constant

level of thermal buffering are not valid owing to variability both

within and between trees (117). For example, urban heating (45,

117) as well as variation in solar insolation within a forest patch

(e.g., density of canopy cover) and within individual trees (e.g., the

south side of a tree experiences warmer temperatures because it

faces sunlight) can affect under-bark microclimates experienced by

EAB (37, 66, 117, 118).

Our model assumes that tolerance to climate stress is constant

across EAB’s range, but cold tolerance in EAB is a phenotypically

plastic trait that varies both temporally and geographically (118–

120). Mid-winter warm spells followed by an extreme cold event

may have lethal effects on non-diapaused overwintering larvae

owing to the breakdown of cryoprotectants during deacclimation,

which decreases their cold tolerance (120). Populations in the

northernmost (coldest) parts of EAB’s range may have higher

survival rates during extreme cold events compared to southern

populations because they acclimate to colder winter temperatures

(119). A mechanistic model of overwintering mortality for EAB

incorporated an equation to model the temperature dose-response

relationship for overwintering J-larvae (48). However, the single-

year modeling structure of DDRP would likely hinder using a

similar method for the EAB model.

Biological factors not included in the model that may affect

EAB’s development and survival include host tree health and

nutritional quality of host tissues (66, 83, 121), presence of

parasitoids and predators (122, 123), levels of host plant

resistance (66, 124), and density of infestations (83). Phenology

within a site may vary over time owing to host composition. Upon

establishment, EAB kills the most susceptible ash species (green and

black ash) first and then infests more resistant ash species (e.g.,

white ash, Fraxinus americana L.) and even white fringe trees

(Chionanthus virginicus L.), which may result in delays in adult

emergence in later years because of poorer host tree nutrition or

other detrimental factors on larval development (125–127).
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4.4 Applications for real-time
decision support

The DDRP model for EAB has been operationalized for real-

time decision support for CONUS at USPest.org (https://uspest.org/

CAPS) and at the USA National Phenology Network (https://

usanpn.org/data/forecasts/EAB). USPest.org provides all model

outputs including phenological event maps for all life stages in

raster (GeoTIFF) and summary map (PNG) formats. Conversely,

the USA National Phenology Network presents predictions of first

adult emergence and egg hatch as Pheno Forecasts (38) in summary

map and interactive formats, and end users can sign up to receive e-

mail notifications that provide advanced warnings (3, 2, and 1-

week) of when these events will occur in their area. Interactive

forecasts allow end users to zoom, pan, and interrogate maps (e.g.,

click on individual raster pixels in an area of interest). Pheno

Forecasts for EAB show predictions only in climatically suitable

areas and convert dates of phenological events to time relative to the

map issue date (e.g., “This Week”, “Next Week”, etc.), which is a

preferred format of many Pheno Forecast end users (38). Model

outputs at both web sites are updated every three days. Climate

datasets used for real-time modeling include PRISM daily data and

daily-downscaled NMME (North American Multi-Model

Ensemble) 7-month forecasts (128) at a spatial resolution of 4

km2 (55).

Real-time forecasts of adult emergence can support timely

surveillance of adults, which are the most visible and therefore most

easily detected life stage of the pest. For example, notifications that

adults will emerge in three weeks can alert surveillance teams to finish

installing detection devices such as sticky prism traps or funnel traps

before adults begin flying in the canopy. Early detection of EAB is

critical because infestations in ash trees are usually fatal, and failure to

detect adults early may result in dispersal to new locations and increase

the cost of ash treatments and removal (31, 129). Thus, early detection

may help slow the spread of EAB in new regions such as the west coast

of North America, where the pest was detected for the first time in 2022

in Forest Grove, Oregon (26). Forecasts of adult emergence may also

improve the timing of systemic insecticide treatments and cover sprays

that target adults feeding on host foliage (5, 130). For example, a

manager can begin applying systemic insecticides when they know to

expect adults in 2−3 weeks because females must feed on leaves for ca.

1−2 weeks before they begin laying eggs (5).

Real-time forecasts of egg hatch may help with the timing of

insecticide applications that target EAB larvae, which are most

effective when newly hatched larvae encounter the insecticide as

they chew through the bark and into the cambial tissue (5, 130).

Additionally, forecasts of adult oviposition and egg hatch may help

biocontrol practitioners identify the critical periods for releases of

biological control agents against EAB, which may increase the

likelihood that agents establish and grow in the target area.

Releases of the egg parasitoid Oobius agrili Zhang and Huang

(Hymenoptera: Encyrtidae) must be timed during the EAB

oviposition period because eggs are only suitable for parasitism

up to the development of the neonate host larva (30, 131).

Conversely, the larval parasitoids such as Spathius agrili Yang

(Hymenoptera: Braconidae) and S. galinae Belokobylskij &
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Strazanac (Hymenoptera: Braconidae) must be released when 3rd

and 4th instar larvae are present (131, 132).

While the DDRP model for EAB exhibited overall good

performance, it should still be used conservatively for decision-

making, particularly given that model validation analyses were

based on a small observation dataset. As mentioned previously,

surveillance and management activities could be implemented

several days (e.g., a week) prior to the date of a predicted event.

With additional observations of EAB, one could assess how to

interpret forecasts in order to maximize the probability that adults

are captured upon first emergence or that insecticides or biocontrol

treatments are employed within the optimal window of time. To

potentially avoid under-predicting the risk of establishment, the

potential distribution could be defined as areas not under severe

climate stress as opposed to defining it using both stress levels.

A lack of near real-time daily climate datasets for Canada and

Europe would likely hinder using the model for real-time decision

support in these regions despite a need for additional tools to manage

EAB (12, 133). Continued spread of EAB in Canada is predicted to

cause substantial economic impacts primarily owing to its destruction

of urban forests (17). In Europe, the pest has spread to 16 regions of

European Russia and to the east of Ukraine (19, 21, 28) and is

expected to expand into neighboring countries within 5−20 years (27,

134). Declines in Europe’s most widespread ash species, European

ash (F. excelsior L.), would have severe ecological and economic

consequences because this species is a key component of many forests

and has been widely planted in cities, parks and along roads as shade

or ornamental trees (12, 21, 134, 135).

Future work on the EAB model could add capabilities that would

allow it to predict EAB’s spread across the landscape and forecast the

timing of its arrival (136, 137), which would provide a more

comprehensive assessment of both where and when to expect this

pest. For example, surveillance could be focused on areas that are

climatically suitable for EAB and have a high likelihood of being

colonized in the next five years. Within areas at highest risk of

establishment, forecasts of adult emergence over subsequent years

may help ensure that surveillance teams install detection devices

on time.
5 Conclusions

We presented a spatialized model of phenology and climatic

suitability for EAB for use in DDRP platform, which serves as an

open-source decision support tool to help detect, monitor, and

manage invasive threats. Real-time forecasts of adult emergence and

egg hatch are particularly relevant for surveillance and for

managing existing populations with pesticide treatments and

parasitoid introductions. Model predictions based on historical

climate data or future climate scenarios may provide insight into

shifts in EAB’s phenology and potential distribution driven by

climate change. Overall, the model exhibited strong performance,

but additional monitoring data collected from across a latitudinal

range are needed to further evaluate and potentially improve upon

the model. Significant temporal trends towards earlier adult
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emergence, declines in range-limiting cold stress, and increases in

range-limiting heat stress for certain regions suggest that climate

change is influencing rates of development and survival in EAB in

parts of its invaded range. Climate stresses were insufficient to

exclude the pest from areas with native Fraxinus species in these

continents; however, extreme weather events, climate warming, and

an inability for EAB to complete its life cycle may reduce suitability

for some areas.
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