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Odorant binding proteins (OBPs) are small water-soluble proteins mainly

associated with olfaction, facilitating the transport of odorant molecules to

their relevant receptors in the sensillum lymph. While traditionally considered

essential for olfaction, recent research has revealed that OBPs are engaged in a

diverse range of physiological functions in modulating chemical communication

and defense. Over the past 10 years, emerging evidence suggests that OBPs play

vital roles in purifying the perireceptor space from unwanted xenobiotics

including plant volatiles and pesticides, potentially facilitating xenobiotic

adaptation, such as host location, adaptation, and pesticide resistance. This

multifunctionality can be attributed, in part, to their structural variability and

effectiveness in transporting, sequestering, and concealing numerous

hydrophobic molecules. Here, we firstly overviewed the classification and

structural properties of OBPs in diverse insect orders. Subsequently, we

discussed the myriad of functional roles of insect OBPs in communication and

their adaptation to xenobiotics. By synthesizing the current knowledge in this

field, our review paper contributes to a comprehensive understanding of the

significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving

the way for future research in this fascinating area of study.

KEYWORDS
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1 Introduction

The ability to perceive and differentiate various chemical stimuli present in a set

environment is paramount to an organism’s success (1–4). Insects, the most successful

group of animals on Earth, have developed a sophisticated olfactory system that has widely

contributed to this success. Insect olfactory systems are known for their remarkable sensitivity

and the ability to integrate odorant blends through distributed specificity of receptor tuning

profiles (5–7). The classification and integration of these profiles in different portions of “odor
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space” rely on structures like the mushroom body and lateral horn of

the protocerebrum, enabling precise discrimination of pheromone

blends or subtle differences in plant odor blends (5, 8). Insect

olfaction is composed of several transmembrane receptors and

soluble and insoluble proteins, which collaborate harmoniously to

receive, process, interpret, and ultimately react to external stimuli (3).

The key olfactory proteins involved in this process include odorant

binding proteins (OBPs), odorant receptors (ORs), ionotropic

receptors (IRs), odorant degrading enzymes (ODEs). and sensory

neuron membrane proteins (SNMPs) (3). ORs form a heteromeric

complex with a ubiquitous coreceptor coined odorant receptor co-

receptor (Orco) that is omni-present in every functional OR complex

and is highly conserved among all insects (3). In general, exogenous

odorants or volatiles enter the sensillum lymph through cuticular

pores and are subsequently bound and solubilized by OBPs, wherein

this OBP-odorant complex is transported across the sensillum to a

candidate OR for transduction (3, 9) (Figure 1). Once the OBP-

odorant complex (or the odorant alone) is bound to a receptive OR, a

transduction cascade is triggered, which leads to action potentials

transmitting from olfactory receptor neurons to the higher

integration centers within the protocerebrum. Odorants must be

deactivated rapidly by ODEs or scavengers once this occurs,

otherwise efficiency of olfactory processes will be impaired via

prolonged exposure of the respective odorant inducing

overstimulation. Numerous lines of evidence suggest that many

ODEs such as cytochrome P450s, glutathione S-transferases

(GSTs), carboxyl/cholinesterases (CCEs) are involved in degrading

volatile molecules during the deactivation process (3, 10–13). Some

studies indicate that prior to degradation by ODEs, pheromones

undergo deactivation through their binding to OBPs (e.g.,

pheromone binding proteins, PBPs). Additionally, these OBPs

serve as scavengers, contributing to the decline of the receptor

potential after stimulus offset. This implies the existence of a

broader molecular mechanism beyond enzymatic degradation (3,

14–17).
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Within the realm of olfaction processing, OBPs play a vital role

as the primary mediators connecting the external environment with

ORs (7, 9). OBPs are frequently necessary for safeguarding

exogenous hydrophobic volatiles against degradation prior to

their interaction with the corresponding ORs. This protection

occurs following the initial uptake, binding, and transportation of

these volatiles within the aqueous sensillum lymph. The delivery of

the exogenous volatiles to the OR triggers an elicited response,

allowing for the recognition of volatiles from hosts or natural

enemies and identification of pheromones of potential mates.

Following the stimulation of ORs by exogenous molecules, OBPs

may also participate as molecular traps, preventing neuron

oversaturation (1–3, 17–20). In addition, evidence shows that

OBPs may play essential roles in cleaning the perireceptor space

from undesirable xenobiotics, including plant volatiles and

pesticides. This function potentially contributes to host plant

adaptation and pesticide resistance (20–27). Despite their primary

role as olfactory proteins, recent research has identified OBPs to be

involved in a variety of physiological roles in insects outside of

olfactory tissues, owing in part to their structural variability and

efficacy in the transporting, sequestering, and concealing of various

hydrophobic molecules (2, 3, 9, 28–30).

Roughly half of insect species are phytophagous, forming a close

relationship with the host plants they feed and interact with (31).

During the coevolution of insects and plants over hundreds of

millions of years, insects have evolved diverse mechanisms to adapt

to numerous xenobiotics (12, 13, 32–34). Olfaction in insects may

serve as an “Achilles heel” - a target for plant defense because of its

remarkable sensitivity, critical importance, and vulnerability (22).

OBPs serve as the primary point of contact for the insect olfactory

system with xenobiotics, playing a principal role in modulating

chemical communication and defense. Here, we initially summarize

the classification and structural properties of OBPs in various insect

orders. Then we focus on the variety of functional roles of OBPs in

insect communication and adaptation to xenobiotics. Our review
FIGURE 1

Schematic summary of the odor path. OR, odorant receptor (in some cases, it can involve other olfactory receptors, such as ionotropic receptors);
Orco, co-receptor for OR.
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concludes with prospective thoughts on future studies that could

expand our knowledge of OBPs and their diverse functions in

chemical ecology and xenobiotic adaptation.
2 Classification and structural
characteristics of insect OBPs

Insect OBPs are small water-soluble extracellular proteins,

ranging from between roughly 100 to ~200 amino acid residues,

with very little sequence similarity within OBPs of the same

species (1). Initially described in Lepidoptera (16), these

proteins were categorized into three separate subfamilies based

on the amino acid sequences and differential expression patterns:

pheromone binding proteins (PBPs), general odorant binding

proteins (GOBPs), and antennal binding proteins (ABPs) (1,

16). However, a primary challenge with this classification

methods arises from the significant variation observed in the

amino acid sequences, ligand binding affinity, differential

expression, and functional roles beyond Lepidoptera, extending

even to functions beyond chemosensation (35, 36). Therefore,

there was a pressing need for a more comprehensive and flexible

classification method to accurately characterize their diverse

functional roles and implications. Currently, insect OBPs are

generally divided into three primary groups based on the

number of conserved cysteine residues and interlocked disulfide

bridges: 1) Classic OBPs (e.g. Chrysopa pallens CpalOBP4, PDB

ID:6JPM), which have six conserved cysteine residues that

participate in three disulfide bridges; 2) Minus-C OBPs (e.g.

Apis mellifera AmelOBP14, PDB ID:3S0A), featuring four or five

conserved cysteine residues and two disulfide bridges; 3) Plus-C

OBPs (e.g. Anopheles gambiae AgamOBP7, PDB ID:3R1P), which

possess eight or more conserved cysteine residues, four or more

disulfide bridges, and a conserved proline residue (Figure 2) (36).

Among these groups, Classic OBPs are the most frequently

identified type of OBPs in every insect genome (Table 1;
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Figures 2, 3). Phylogenic analysis of insect OBPs have shown

that Classic OBPs seem to be the basal group, and other Minus-C

and Plus-C groups of OBPs are subgroups of the Classic OBPs (39).

This may suggest that Minus-C and Plus-C OBPs likely diverged from

the Classic OBPs (39–41) (Figure 2). However, the relative composition

of OBPs in an insect genome can vary greatly, as some OBP groups

may feature a larger expansion in one group of insects as compared to

others, as has been observed in certain beetle species (35, 42–47)

(Figure 3A; Table 1). There is a group of OBPs that has been termed

“atypical OBPs” characterized by 10 or more conserved cysteines, a

long C-terminus, a conserved proline residue, and four or more

disulfide bridges, which is recorded in several mosquito and locust

species, suggesting this group of genes may be recently evolved in these

species (36, 48–50). Additionally, groups of insect OBPs that exist

outside of the three primary structural groups can be found in certain

insects, such as double domain OBPs that are found exclusively in

certain wasp species (51) and Dimer OBPs that are found in some

species of dipterans and lepidopterans (Figures 3A–C; Table 1) (39, 51).

In certain insect groups, there is a complete absence of an entire

primary group of OBPs; for instance, honey bees lack of plus-C OBPs

all together (Figure 3B; Table 1) (40). The amount of OBP genes in an

insect genome can vary greatly among species, ranging from as low as 7

in Ceratosolen solmsi to as high as 111 in Aedes aegypti (Table 1). The

reason why certain insect species possess a higher number of OBPs

while others have relatively few remains unclear. However, this

disparity can likely be attributed to the insects’ unique lifestyles,

evolutionary processes, and wide variety of environments (39).

Despite the high diversity and variation among insect OBPs,

this group of proteins has some hallmark features. In addition to the

extremely conserved cysteine residues, insect OBPs typically have

two to four interconnected disulfide bridges (e.g., a pattern of C1-

C3, C2-C5, and C4-C6) that play a vital role in stabilizing the

protein (52–58) (Figure 2). Furthermore, six a-helices, which may

vary in number in certain cases, synergistically work with the

interlocked disulfide bridges to further enhance the protein’s

stability. Specific a-helices may be involved in forming a
FIGURE 2

Major classes of insect OBPs. Beginning from the left, minus-C (e.g. Apis mellifera AmelOBP14, PDB ID:3S0A); Classic (e.g. Chrysopa pallens
CpalOBP4, PDB ID:6JPM); Plus-C (e.g. Anopheles gambiae AgamOBP7, PDB ID:3R1P). Blue indicates a-helices; yellow indicates disulfide bridge; red
indicates strands; and lastly grey indicates coils. Black text indicates a conserved cysteine residue, white text indicates an a-helix. Below each protein
is the corresponding class of the odorant binding protein and the protein database reference used to generate the specific protein. Three-
dimensional protein structures were constructed using the program ChimeraX.
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TABLE 1 Number of Odorant Binding Protein genes and classification in genomes or transcriptomes of 37 insect species.

Order Species Total Classic Minus-C Plus-C Other* Reference $

Blattodea

Blatella germanica 109 38 71 0 (1)

Periplaneta americana† 60 37 3 20 0 (2)

Zootermopsis nevadensis 29 19 3 7 0 (2)

Coleoptera

Anoplophora glabripennis 52 20 31 1 0 (3)

Dendroctonus ponderosae 31 18 12 1 0 (4)

Holotrichia oblita†# 29 19 7 3 0 (5)

Holotrichia parallela†# 25 15 6 4 0 (6)

Leptinotarsa decemlineata# 59 14 43 1 1 (7)

Tenebrio molitor† 19 10 8 0 1 (8)

Tribolium castaneum# 49 20 21 1 7 (9, 10)

Diptera

Aedes aegypti 111 39 0 27 45 (11)

Anopheles gambiae 69 29 0 20 20 (11)

Anopheles stephensi 44 27 0 7 10 (12)

Culex quinquefasciatus 109 69 0 12 28 (11)

Drosophila melanogaster 52 28 7 15 2 (13-15)

Hemiptera

Acyrthosiphon pisum 15 13 0 2 0 (16)

Adelphocoris lineolatus† 14 12 0 2 0 (17)

Bemisia tabaci 8 5 1 2 0 (18)

Riptortus pedestris 49 41 0 8 0 (19)

Tropidothorax elegans† 19 14 0 5 0 (20)

Hymenoptera

Aphidius gifuensis† 14 12 2 0 0 (21)

Apis florea# 22 13 9 0 0 (22)

Apis mellifera# 21 13 8 0 0 (22, 23)

Bombus terrestris# 16 16 0 0 0 (24)

Ceratosolen solmsi 7 7 0 0 0 (25, 26)

Cotesia vestalis 20 18 2 0 0 (27, 28)

Nasiona vitripennis# 90 72 8 0 10** (29)

Lepidoptera

Bombyx mori# 44 29 9 6 0 (29, 30)

Danaus plexippus# 32 19 6 6 1 (31)

Heliconius Melpomene# 51 23 22 6 0 (31)

Manduca sexta# 49 24 18 7 0 (31)

Plutella xylostella 39 39 0 0 0 (32)

Spodoptera frugiperda 33 25 3 3 2 (33)

Orthoptera

Locusta migratoria 17 11 0 5 1 (34)

Oedaleus asiaticus† 15 10 1 4 0 (35)

Schistocerca gregaria† 14 9 0 3 2 (35)

Thysanoptera Odontothrips loti† 7 5 1 0 1 (36)
F
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†

stands for the data collected from transcriptome studies; * "Other" corresponds to unidentified OBPs or OBPs that do not fall under the classic, minus-C, and plus-C classification; ** These OBPs
are minus-C OBPs, but possess a double domain in their sequence, as compared to typical minus-C OBPs in other insect species; $ These references are listed in the Supplementary Material; #

OBPs from these species were used in the generation of the phylogenetic trees featured in Figure 3.
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hydrophobic cavity crucial for ligand binding activity (52, 53, 58–

60). The ligand binding specificity of insect OBPs exhibits

significant variation, ranging from high specificity to remarkable

broadness. This diversity is influenced by the overall size and shape

of the binding pocket, as well as the specific amino acids lining it

(54, 55). Previous studies have demonstrated that variability in

amino acid identity and length of the C-terminal region can

influence ligand binding affinity. For example, in a specific case,

the rearrangement of amino acids within the C-terminus region of a

Drosophila melanogaster OBP (LUSH) disrupted the formation of a

salt bridge, resulting in impaired binding ability to the expected

ligand 11-cis vaccenyl acetate, a conspecific male sex pheromone

(56). The length variation in the C-terminal region also impacts the

interaction of the C-terminus with the hydrophobic binding cavity.

Insect OBPs with longer C-terminus regions possess a flap that can

cover the entrance of the binding cavity, whereas those with shorter

C-terminus regions leave their binding cavities exposed to bulk

solvent (2, 61, 62). Additional research has demonstrated that pH-

induced conformational changes can impact the ligand-binding

capability of specific insect OBPs (52, 63–65). Notably,

Lepidopteran OBPs AtraPBP1 from Amyelois transitella and

ApolPBP from Antheraea polyphemus possess a C-terminal

region that plays a crucial role in pheromone binding and release,

triggered by changes in pH levels (66, 67). In AtraPBP1, the polar

amino acid residues Glu132 and Glu141 create two salt bridges with

protonated histidine residues His 80 and His95, respectively. These

two salt bridges are induced by acidic conditions, promoting the

formation of a seventh helix at the C-terminal region that can

compete with the ligand and trigger its release (9, 66). In contrast to

OBPs in Lepidoptera, the majority of Dipteran OBPs lack a

sufficiently long C-terminal region to form an additional helix

able to occupy the binding cavity (9, 52). Nevertheless, many

Dipteran OBPs, such as AaegOBP1 (Ae. aegypti, PDB ID:3K1E),

AgamOBP1 (An. gambiae, PDB ID:2ERB), CquiOBP1 (Culex

quinquefasciatus, PDB ID:3OGN), undergo pH-depended

conformation changes associated with loss of binding affinity,

similar to what has been observed in Lepidopteran OBPs,

indicating a distinct mechanism (9). The C-terminal region of

these Dipteran insect OBP proteins instead function as a “lid”

over the binding cavity, a characteristic not found in other insect
Frontiers in Insect Science 05
groups. This lid was suggested to act as a pH-sensitive hinge,

moving away from the binding cavity when pH is reduced, as the

OBP-odorant complex approaches the dendritic membrane (9, 52).

Moreover, the ligand binding ability of an OBP may be affected by

its molecular volume. For example, in the Minus-C OBP

DhelOBP21 of Dastarcus helophoroides, the ligand being either

too small (<100 A3) or too large (>185 A3) can disrupt its facultative

binding ability (68). Additionally, hydrophobic and hydrogen bond

interactions can also influence binding efficacy of an OBP, and the

absence of either can lead to substantial reductions in the binding

affinity of an OBP towards a ligand (68, 69). Lastly, it is worth

noting that the majority of determined crystal structures of insect

OBPs reveal a tendency for dimerization upon ligand binding (59,

70–73) (Table 2). Insect OBP protein structures in both ligand-free

apo forms and in complex with various ligands, have been

determined using protein crystallography and nuclear magnetic

resonance (NMR) spectroscopy (9, 74). A list of currently published

insect OBP structures at the time of this publication has been

provided in Table 2. The list includes 27 individual insect OBP

structures across 17 insect species, including 10 OBP structures

from species in Diptera and 7 OBP structures from species in

Lepidoptera. Currently, our understanding is limited, as over half of

the elucidated structures (17 out of 27) come from Dipteran and

Lepidopteran insects (Table 2). Further research is crucial to

comprehensively understand the relationship between the varied

structures and functions of numerous OBPs from a wide range of

insect species.
3 Diverse roles of insect
OBPs in communication
and xenobiotic adaptation

Insects encounter a diverse array of semiochemicals and

xenobiotics in their environment, necessitating adaptive

responses. These chemicals range from allospecific and

conspecific pheromones, plant allelochemicals, volatiles, and a

multitude of anthropogenic compounds, such as pesticides (34,

75–77). On one hand, insects use these chemical cues to detect their
B CA

FIGURE 3

Phylogenetic analysis of insect OBPs in three major orders, and OBPs used in the analysis had been previously characterized through either
proteomic or transcriptomic analyses. (A) Coleopteran insect OBPs from Holotrichia oblita, Holotrichia parallela, Leptinotarsa decemlineata, and
Tribolium castaneum; (B) Hymenopteran insect OBPs from Apis florea, Apis melifera, Bombus terrestris, and nasiona vitripennis; (C) Lepidopteran
insect OBPs from Bombyx mori, Danaus plexippus, Heliconius melpomene, and Manduca sexta. Phylogenetic trees were inferred by the neighbor-
joining method (37) and were created using MEGA11 software (38). The trees were visualized using Figtree v1.4.4 software.
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TABLE 2 List of 27 three-dimensional crystal structures, classification, and function of insect Odorant Binding Proteins.

Order
Species
Name

Name (PDB
number)

Classification Function Reference*

Blattodea
Leucophaea
maderae

PBP (1ORG) Classic
Involved in recognition of sex pheromone components: 3-

hydroxy-butan-2-on and butane-2,3-diol
(37, 38)

Coleoptera
Tenebrio
molitor

THP12 (1C3Z) Minus-C N/A (39)

Diptera

Aedes aegypti
OBP1 (3K1E) Classic N/A (40)

OBP22 (6OG0) Classic Potentially involved in the recognition of fatty acids (41)

Anopheles
gambiae

OBP1 (2ERB) Classic Involved in host recognition (42-45)

OBP7 (3R1P) Plus-C N/A (46)

OBP20 (3VB1) Classic N/A (47)

OBP47 (3PM2) Plus-C N/A (48)

OBP48 (4KYN) Plus-C N/A (49)

Culex
quinquefasciatus

OBP1 (3OGN) Classic Modulates ovipositional preference (50, 51)

Drosophila
melanogaster

OBP28A (6QQ4) Classic
Involved in the detection and mediation of sensitivity to fruit-like

odors
(52)

LUSH (OBP76A)
(1T14)

Classic
Involved in host and pheromone recognition through mediation

of alcohol compounds
(53-55)

Hemiptera

Megoura viciae OBP3 (4Z39) Classic Potentially involved in the recognition of alarm pheromones (56)

Nasovonia
ribisnigri

OBP3 (4Z45) Classic Potentially involved in the recognition of alarm pheromones (56)

Hymenoptera Apis melifera

ASP1 (OBP1)
(3BJH)

Classic Involved in the recognition of the queen pheromone (57-60)

OBP5 (3R72) Classic N/A To be published

ASP2 (GOBP2)
(1TUJ)

Classic Involved in non-sexual pheromone recognition
To be published,

(61, 62)

OBP14 (3S0A) Minus-C Binds with the highest affinity to citralva and eugenol (63)

Lepidoptera

Amyelois
transitella

PBP1 (2KPH) Classic
Involved in the recognition and transport of non-polar

pheromone
(64, 65)

Antheraea
polyphemus

PBP1 (1QWV) Classic
Involved in the recognition of sex pheromone component (E, Z)-

6,11-hexadecadienyl acetate (AC1)
(66-69)

Bombyx mori

PBP1 (1DQE) Classic Modulates sensitivity to the sex pheromone bombykol (70-72)

GOBP2 (2WC5) Classic
Involved in the recognition and discrimination of the sex

pheromones bombykol and bombykal
(73, 74)

Epiphyas
postvittana

PBP3 (6VQ5) Classic
Involved in recognition of sex pheromone components: E11-14:

OAc and E9, E11-14: OAc
(75)

Helicoverpa
armigera

PBP1 (7VW8) Classic
Involved in recognition of sex pheromone components: to Z11-

16: Ald and Z9-16: Ald
(76, 77)

Lymantria
dispar

PBP1 (6UM9) Classic N/A (78)

Neuroptera
Chrysopa
pallens

OBP4 (6JPM) Classic Involved in the recognition of prey host plant volatiles (79, 80)

Orthoptera
Locusta

migratoria
OBP1 (4PT1) Classic N/A (81)
F
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PDB, protein database; N/A, not available; OaC, acetoxy functional group; Ald, aldehyde functional group. * These references are listed in the Supplementary Material.
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food, mates, and other substrates critical for their survival and

reproduction. On the other hand, insects must evolve adaptation

strategies to cope with “delicious poisons”, which are harmful

compounds disguised as attractants. These chemical cues can be

exploited by host plants as a defensive measure, posing survival

challenges for insects (22, 78). Recent studies have demonstrated

that insect OBPs play critical roles in the uptake or release of a

diverse spectrum of molecules due to their stable and compact

structure, high variability in binding affinity, and efficiency

transportation of hydrophobic molecules (79–81). Additionally,

many proteomic and transcriptomic studies focusing solely on

olfactory organs, such as antennae or maxillary palps, may not

identify all OBP-encoding genes within an insect genome. This

suggests that certain OBPs could be exclusively expressed in non-

olfactory organs and/or appendages (2, 82–85). Recently, there are

many integrative reviews of insect OBPs discussing their diverse

expression and functions in chemoreception and beyond (1, 2, 9, 36,

74). Therefore, in this section, our focus will be on the roles of insect

OBPs in communication, host location, and their co-opted

functions in pesticide adaptation.
3.1 Pheromone detection and release

Detection of conspecific and allospecific pheromones are

essential to reproductive success, survival, and overall fitness of

an insect (2, 86–88). Several studies have demonstrated the role and

significance of OBPs in the detection and sensitivity to pheromones

across a variety of insect orders (36, 89–94) since their initial

discovery in the male silk moth, by Vogt and Riddiford in 1981

(16). For example, Bombyx mori BmorPBP1 was suggested to be

essential for the activation of the receptor B. mori BmorOR1 to the

female released sex pheromone bombykol rather than bombykal

(95–97). In the absence of BmorPBP1, only low sensitivity to

bombykol was detected in transgenic drosophila expressing

BmorOR1, however, high sensitivity and ligand specificity

towards bombykol was observed in mutants expressing both

BmorOR1 and BmorPBP1 (96). The affinity of BmorPBP1 to

bombykol is regulated by pH-dependent conformational changes

in PBP, which lead to the release of pheromones under acidic

environment surrounding the OR neurons (64, 65, 89, 98). Besides

BmorPBP1, conformational changes that are integral to pheromone

recognition were also observed in PBPs of several other insect

species (66, 99, 100). For example, in D. melanogaster, it was

observed that LUSH PBP detects and releases the male specific

sex pheromone 11-cis-vaccenyl acetate (cVA) to activate D.

melanogaster OR67d neurons, linking pheromone-induced

behavior with PBP-dependent activation of olfactory neurons (56,

101, 102). Additional studies demonstrated that D. melanogaster

OBP56h influences male courtship behavior. It plays a dual role in

the production of precursors to cuticular pheromones, as its

expression level is linked to the expression levels of several

biosynthesis enzymes (1, 103, 104). One of these cuticular

pheromones, 5-tricosene, is highly expressed in males and can

decrease copulation latency at high levels, potentially preventing
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incidences of male-male courtship (1). In Ap. mellifera, brood

pheromone (b-ocimene) and death pheromone (oleic acid) are

strong ligands for two OBPs, AmelOBP16 and AmelOBP18.

Expression levels of both OBPs were found to be linked with the

degree of hygienicity displayed in bee colonies, suggesting these two

OBPs may play important roles in triggering honey bee hygienic

behavior (105, 106). Additionally, it was found that Ap. mellifera

AmelASP1 and Ap. cerana AcerOBP1 are involved in the

recognition of honeybee queen pheromone (107, 108). Recently,

conserved insect OBPs were identified from various aphid species

and their eavesdropping predators, such as ladybird beetles,

lacewings, and the marmalade hoverfly, demonstrating the

potential functions of OBPs in predator-prey interactions (109–

112). These OBPs play roles in detection of (E)-b-farnesene (EBF),
which is the primary alarm pheromone active component in many

aphid species (Hemiptera: Aphididae) and is used as chemical cue

to signal danger (113–117). For example, in Acyrthosiphon pisum,

knockdowns of ApisOBP3 and ApisOBP7, that are known to bind

EBF, led to the disappearance of repellent behavior caused by EBF

(110, 115). The functions of related ApisOBP3 and/or ApisOBP7

proteins in EBF detection were also characterized in other aphid

species by using behavioral assays, ligand-binding assays, or X-ray

crystal structure examination (110, 111, 114, 118). In

Rhopalosiphum padi, both RpadOBP3 and RpadOBP7 bound EBF

and additionally, RpadOBP3 showed affinity for the ligands, EBF

and several other plant volatiles, while RpadOBP7 was specific to

EBF (114). Most recently, four antennae specific OBPs were

functionally characterized in the aphid natural enemy, Harmonia

axyridis. Among these OBPs, HaxyOBP15 showed a broader

binding profile among various substances, including EBF and

other volatiles (117). Similarly, two lacewing species OBPs,

Chrysoperla sinica CsinOBP1 and Chrysopa pallens CpalOBP10,

were also found to bind to EBF (112, 119).

It has been demonstrated that besides the antennae, OBPs can

also be expressed in the sex glands and various other organs,

participating in both the uptake and release of various

pheromones. A study performed in the diving beetle Cybister

japonicus found two OBPs specifically expressed in the foreleg

and testis of male beetles, which are used for holding a female

during courtship and mating, suggesting potential roles of these

OBPs in chemical communication (120). The sex pheromone for

this species is still unknown, therefore, further research is required

to confirm the functions of these OBPs in pheromone recognition

and secretion (120). Several studies have also found the presence of

OBPs in the seminal fluid of a wide range of insect taxa, that are

transferred to females during mating or are potentially used as

oviposition deterrents on fertilized eggs (121–126). Interestingly,

fruit flies possess OBPs in the seminal receptacle along with an

odorant receptor, displaying the highly adaptable nature of OBPs in

the insect body (121, 127). In a Lepidopteran species, Helicoverpa

armigera, HarmOBP10 was expressed in antennal and reproductive

organs of both sexes, binding to 1-dodecene, a compound reported

as an insect repellent as well as several volatile compounds,

suggesting its dual roles in chemical detection and a carrier for

oviposition deterrents (125).
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3.2 Host location and adaptation

Recognition of odorants that are associated with an insect’s host

is essential for locating nutrients and ultimately reproductive

success (128–130). A living host of a particular insect can vary

greatly based on its life history and feeding guilds, ranging from

plants to other animals or humans. Insect OBPs involved in the

recognition of host semiochemicals are mainly expressed in the

sensillum lymph of the antennae and assist in the adaptation of an

insect to their hosts, which has been demonstrated across a diverse

range of taxa (131–133). For example, it was found that An.

gambiae AgamOBP1 is involved in the recognition and sensitivity

of indole and 3-methyl indole in the antennae, the former aiding in

the location of a human blood host and the latter acting as an

oviposition attractant (20, 134–136). Female A. gambiae subjected

to RNAi mediated silencing of AgamOBP1 caused a significant

reduction in the ability to perceive indole, some individuals even

exhibiting a complete loss of perception (136). Another study

demonstrated that Drosophila sechellia OBP57d and OBP57e are

involved in modulating the differences in taste perception and

behavioral response towards its host plant Morinda citrifolia (28).

The characteristic odor of the ripe fruit is due to the compounds

hexanoic acid and octanoic acid, that have been shown to induce a

repellent effect and cause mortality in other Drosophila species

(137). After inducing the knockdown of OBP57d and OBP57e in D.

melanogaster, it was found that the prior repellent behavior towards

ripe fruit was replaced with attraction, suggesting that both OBPs

participate in the adaptation of Drosophila to a toxic host (28, 138).

In another study, it was found that Nilapavarta lugens NlugOBP11

is secreted during feeding on rice and alters upregulation of the

plant phytohormone salicylic acid in the brown planthopper (139).

Silencing of NlugOBP11 expression resulted in a decrease in feeding

performance and eventual death, but overexpression of NlugOBP11

in the protoplast of rice suppressed the expression of salicylic acid

genes, suggesting the contribution of NlugOBP11 in host plant

adaptation. In contrast to prior reports, a recent study has shown

that host semiochemicals can induce an opposite effect in an insect

in the absence of certain OBPs (140). After RNAi-mediated

silencing of D. helophoroides DhelOBP4, compounds that

previously elicited a strong attractant response induced a sexually

dimorphic inverse effect in this ectoparasitic insect (140). Adult

males no longer elicited a behavioral response and adult females

exhibited a strong repellent to the herbivore induced plant volatiles,

g-terpinene and p-cymene. Although the molecular mechanism was

not determined, these results may indicate the involvement of

DhelOBP4 in host plant volatile recognition and/or protection of

olfactory processes from potential damage by plant volatiles (140).

During the evolution of plants and phytophagous insects, plant

volatiles were used as a defensive strategy to repel these insects and/

or attract their respective parasitoids and predators (141). For

phytophagous insects, plant volatiles are essential cues for food

and oviposition (22). There is increasing evidence suggesting that

plant volatiles can also function as mate-finding cues and/or

stimulate sex pheromone release, which assist insects to find their

mating partners (142, 143). Recently, more functional studies
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suggested it is a common phenomenon that insect OBPs can bind

both sex pheromone components and plant volatiles, including

green leaf and floral volatiles (80, 144–150). Competitive

fluorescence binding assays, for instance, have shown that in the

rice leaffolder, Cnaphalocrocis medinalis, CmedPBP4 could

selectively recognize three sex pheromones and eleven rice plant

volatiles (145). In the geometrid moth Ectropis obliqua, EoblPBP1

bound three sex pheromone components and several green leaf

volatiles that had been demonstrated to attract virgin male E.

obliqua, indicating that green leaf volatiles may act as synergists

to enhance the efficacy of sex pheromones (147). It has also been

found that some non-PBP OBPs play roles in sex pheromone

recognition and plant volatile identification (144, 149–152). For

example, the electroantennogram and competitive fluorescence

binding assays revealed that a Classic OBP in Phthorimaea

operculella, PopeOBP16 was involved in recognizing and binding

several plant volatiles and sex pheromone components (150). In the

Eastern Honeybee, A. cerana, two Classic OBPs, AcerOBP6 and

AcerOBP11 as well as one Minus-C OBP, AcerOBP15, have been

characterized and been linked to recognition of bee pheromones

and floral volatiles, indicating these OBPs may play a dual-role in

sensing various bee pheromones and host odorants (80, 146, 152).
3.3 Pesticide adaptation

Despite the remarkable sensitivity of the insect olfactory system

to detect and differentiate critical odorant cues even at minute

concentrations, it also can act as an attractive target for harmful

plant compounds and environmental toxins (22, 24). Plant volatiles

or anthropogenic toxins pose potential risks to terrestrial insects, as

they can impair the processing of odorant molecules or even cause

physiological damage at high doses (24). Recently, a substantial

amount of evidence emerged, indicating that the gene expression of

certain OBPs undergo changes in response to pesticide exposure.

These OBPs may play a role in pesticide adaptation by binding,

buffering, or sequestration of pesticides that have penetrated the

cuticle (2, 25–27, 79, 153–159). Investigating the mechanisms

underlying OBP-mediated pesticide adaptation will open new

avenues to broaden our understanding of how insects adapt to

their xenobiotic environment and evolution of pesticide resistance

(13, 33, 160).

One of the first studies to demonstrate the potential of insect

OBPs to be involved in insecticide adaptation was conducted in the

diamondback moth, Plutella xylostella (21). The study exposed P.

xylostella larvae to two separate selection treatment regimens: Low

concentrations of permethrin (LC5 of prior generation) only applied

to the upper and center portion of the host cabbage plants and high

concentrations of permethrin (LC50 of prior generation) uniformly

applied across the entire canopy of the cabbage plant (21). It was

found that upon comparing the F1 parental generation to the

selected G25 generation, PxylOBP13 was upregulated in the low

concentration of permethrin treatment group, implying a possible

role in resistance. Lin et al. in 2018 reported that the gene

expression of SlituOBP9 in the tobacco cutworm Spodoptera
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litura, was increased in response to chlorpyrifos and emamectin

benzoate (25). After injection of dsRNA targeting SlituOBP9, the

survival of tobacco cutworm moths exposed to chlorpyrifos for 48

hours was decreased to 7.7%, as compared to 50% in the control

moths, indicating that SlituOBP9 could play a role in chlorpyrifos

adaptation (25). Similarly, it was found that exposure to the

herbicide butachlor caused reduced susceptibility to chlorpyrifos

in the tobacco cutworm in a separate study (156). Gene silencing of

one general OBP, S. litura SlGOBP2, decreased larval tolerance to

chlorpyrifos, suggesting that olfactory recognition of butachlor by

SlGOBP2 may contribute to enhanced chlorpyrifos resistance by

induction of ecdysone synthesis and regulating expressions of

detoxification genes (156). In the Asian citrus psyllid, Diaphorina

citri, the expression of DcitOBP2 was induced in response to

imidacloprid exposure. When DcitOBP2 was silenced via RNAi,

susceptibility to imidacloprid was increased in Di. Citri adults,

suggesting that DcitOBP2 is involved in imidacloprid resistance

(161). Similarly, N. lugens NlOBP3 was associated with nitenpyram

and sulfoxaflor resistance in the brown planthopper (157). Two

PBPs in Athetis lepigone, AlepPBP2 and AlepPBP3, had high

binding affinities to an organophosphate insecticide, phoxim,

indicating that these two PBPs may play roles in the phoxim

adaptation of this polyphagous pest (155). Similarly, a recent

study demonstrated that a G protein coupled receptor, latrophilin

may contribute to insecticide resistance through regulating the

expression of Tribolium castaneum TcOBPC01 and one other

chemosensory gene (27). Additionally, it was also reported that

an increase in larval mortality to dichlorvos and carbofuran was

observed when latrophilin or TcOBPC01 was silenced.

Other than acute effects on target insect pests, chemical

insecticides cause serious negative effects on nontarget insects,

such as parasitoid wasps and pollinators (162). Several studies

reported that the OBP either showed high binding affinity to

insecticides (154, 158) or the binding of OBP to floral volatile was

significantly affected by insecticides (163). These studies implied

that OBPs may contribute to olfaction based behavioral response to

insecticides. In addition to synthetic pesticides, insect OBPs play

roles in adaptation to biopesticides (e.g. essential oils) that are

derived from natural materials, including plants, microorganisms,

and other biological sources. For example, the TCOBPC11 (T.

castaneum) gene expression was induced in response to the

essential oils of Artemisa vulgaris in the late instar larvae (26).

Gene silencing of TCOBPC11 by RNAi led to higher mortality in

larvae compared with the control larvae treated with essential oils,

suggesting that TCOBPC11 may play a role in resistance by

sequestrating of plant essential oils and masking the toxic effects.

Host plant and pesticide adaptation might be linked due to

chemical, evolutionary, and ecological evidence in detoxification

and chemosensory pathways (22, 33, 34, 77, 164–166). It is possible

that the capability associated with OBP-mediated pheromone or

host plant adaptation in herbivorous insects has been co-opted for

pesticide adaptation when they are exposed to pesticides. Most

recently, research reported that insect OBPs can bind sex

pheromone components, plant volatiles and pesticides (79, 153,

159). An OBP (AlepGOBP2) that was functionally characterized in

the polyphagous insect A. lepigone showed high binding affinity to
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two conspecific sex pheromones ((Z)-7-dodecenyl acetate and (Z)-

9-tetradecenyl acetate), two maize plant volatiles (Ocimene and (E)-

b-Farnesene), and two organophosphate insecticides (chlorpyrifos

and phoxim) (79). These results indicated AlepGOBP2 may

facilitate recognition and adaptation to sex pheromones, plant

volatiles, and insecticides all together.

In summary, current studies suggest that insect OBPs

contribute to pesticide adaptation through sequestration and

subsequent masking of the harmful effects of toxic compounds, or

by acting as phase 0 transport proteins and shuttling toxic

compounds across the cell membrane to phase I and/or phase II

enzymes for further processing (27, 167–169). Whether this is

accomplished solely by insect OBPs or through the assistance of

other proteins, such as detoxification enzymes, remains to

be elucidated.
4 Conclusion

While our understanding of insect OBPs was initially centered on

olfaction, recent research conducted over the past decade has unveiled

their involvement in diverse physiological processes, including

communication, host location and adaptation, pesticide resistance,

and reproduction. However, our comprehension of the molecular

mechanisms governing OBP functions beyond olfaction remains

limited due to their substantial diversity across various taxa. Recent

advances in whole genomic sequences, RNA interference, gene

editing, X-ray crystallography, and fluorescent competitive ligand

binding assays, promise to enhance our understanding on the roles of

insect OBPs towards communication and xenobiotic adaptation. This

cutting-edge research will also contribute to unraveling the intricate

and multifaceted mechanisms underpinning the evolutionary

relationship between insects and their environment.
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