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Malaria, predominantly caused by Plasmodium falciparum, poses one of largest and most
durable health threats in the world. Previously, simplistic regression-based models have
been created to characterize malaria rapid diagnostic test performance, though these
models often only include a couple genetic factors. Specifically, the Baker et al., 2005
model uses two types of particular repeats in histidine-rich protein 2 (PfHRP2) to describe
a P. falciparum infection, though the efficacy of this model has waned over recent years
due to genetic mutations in the parasite. In this work, we use a dataset of 100 P.
falciparum PfHRP2 genetic sequences collected in Ethiopia and derived a larger set of
motif repeat matches for use in generating a series of diagnostic machine learning models.
Here we show that the usage of additional and different motif repeats in more
sophisticated machine learning methods proves effective in characterizing PfHRP2
diversity. Furthermore, we use machine learning model explainability methods to
highlight which of the repeat types are most important with regards to rapid diagnostic
test sensitivity, thereby showcasing a novel methodology for identifying potential targets
for future versions of rapid diagnostic tests.

Keywords: malaria, Plasmodium falciparum, rapid diagnostic test, machine learning, model explainability
1 INTRODUCTION

There are over 228 million infections of malaria yearly and, in 2018, resulted in 405,000 deaths (1).
Genomics is beginning to bear fruit in abatement of malaria but presents analytical challenges due
to the complexity of the disease and its components (human, Plasmodium spp., and
vector mosquitoes).

In most developing countries, the detection of Plasmodium falciparum and diagnosis of malaria
is often performed using simple rapid diagnostic tests (RDTs). Specifically, these tests are lateral
flow immuno-chromatographic antigen detection tests that are similar in modality to common
at-home pregnancy tests. These tests use dye-labeled antibodies to bind to a particular parasite
ersin.org October 2021 | Volume 2 | Article 7073131
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antigen and display a line on a test strip if the antibodies bind
to the antigen of interest (2). In many parts of Africa, RDTs
are designed to detect the presence of P. falciparum’s histidine-
rich protein 2 (PfHRP2). In fact, PfHRP2-based RDTs accounted
for around 74% of all RDTs used in sub-Saharan Africa in
2016 (3).

If patients are properly diagnosed, P. falciparum infections
may be treated using antimalarial drugs such as artemisinin or
artemisinin combined therapies (ACTs). Unfortunately, the
efficacy of RDTs and artemisinin treatment have diminished in
some settings around world, specifically in locations where the
deletion or mutation of the kelch domain–carrying protein K13
gene are observed as is the case in Ethiopia (4).

In 2005, Baker et al. published a simple linear regression-
based model that purports to predict the detection sensitivity of
RDTs using a small fraction of genetic sequence variants that
code for PfHRP2 (5). While with the data available at the time,
the accuracy of the Baker model was high (87.5%), the
explanation ability of the RDT sensitivity was low (R2 = 0.353).
Enthusiasm for the Baker model has since diminished. In 2010,
Baker et al. published a report in which they concluded that they
can no longer correlate sequence variation and RDT failure with
their model (6). Nevertheless, there is no alternative to the Baker
model and it is still in use.

Given that simple correlation fails to show definitive
relationships between motif repeats and RDT results, we
looked to machine learning as a more advanced alternative. In
this study, our hypothesis is that a model for understanding the
relationship between RDT test sensitivity and sequence variation
can be improved by using a larger set of genetic sequence variants
with better machine learning modeling. Our purpose is to use
molecular datasets and machine learning methods to address the
shortcomings in malaria diagnosis test sensitivity1 and to provide
a novel approach to direct the development of future RDTs using
PfHRP2. In this study, we analyze a collection of genetic data and
metadata from 100 P. falciparum sequences collected from
Ethiopia with the Baker model along with a sweep of other
machine learning models that we generate.

Beyond simply training a better model using more
sophisticated algorithms, our research focus is to allow for
interpretable insights of the machine learning models to be
derived from the “black box”. We have shown previous success
in AI-driven explanations of gene expression underlying drug
resistant strains of Plasmodium falciparum (7, 8). We apply this
model interpretability here to identify which types of histidine-
rich repeats, present in PfHRP2, are most indicative of malaria
test performance.

While our work here only uses a relatively small dataset from
a single African country, our purpose is to showcase the utility of
machine learning model interpretation for the improvement and
design of future RDTs.
1“Sensitivity” here refers to the ability of a RDT to detect a malaria infection
despite genetic variations of the parasite. Elsewhere in this article in relation to
machine learning, this term is used to describe the statistical measure also known
as “true positive rate”.
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2 MATERIALS AND METHODS

2.1 Data Collection
Blood samples and demographic data were collected from
suspected malaria patients greater than five years of age in
various health clinics during both the low and high
transmission seasons in different regions of Assosa, Ethiopia.
Specifically, this health facility-based, cross-sectional study was
conducted in febrile patients seeking malaria diagnosis at four
selected health facilities: Assosa, Bambasi, Kurmuk and Sherkole
from November to December 2018. Note: This work encompasses
the same set of samples as described in Alemayehu et al. (9).

Microscopy and rapid diagnostic testing were performed
within the health clinics, and drops of blood spotted on
Whatman 3MM filter paper were kept in sealed pouches for
later analyses. CareStart™ malaria combination RDTs (lot code
18H61 from Access Bio Ethiopia) were used to diagnose P.
falciparum and to evaluate their performance against
microscopy as a reference test.

The P. falciparum DNA concentration in dried blood spot
samples was analyzed using real-time quantitative PCR (RT-
PCR). The P. falciparum DNA was extracted using phosphate
buffered saline, Saponin, and Chelex (10) and confirmed P.
falciparum positive samples as those whose RT-PCR values
were less than or equal to 37 (11). The null hypothesis was
that RDT testing and the detection of P. falciparum by RT-PCR
will have a strong correlation (e.g., positive RDT samples will
lead to positive RT-PCR and negative RDT samples will lead to
negative RT-PCR). However, early findings have shown
incongruence between the RDT results and RT-PCR (9).

In Tables 1, 2, note the concordance of the qPCR results with
RDT results. Also note, in Figure 1, that parasitemia findings
may also differ from RDT results. This shows that, while effective,
RDTs can be improved.

Using the primers listed in Table 3, an amplicon was
sequenced, including a 600 to 960-bp fragment for Pfhrp2
Exon 2 (5). Each sample was sequenced once, in both forward
and reverse directions to create a consensus sequence for each
sample. Polymerase Chain Reaction (PCR) conditions for Pfhrp2
Exon 2 are also shown in Table 3. The DNA amplicon quality
was observed by means of agarose gel electrophoresis and the
bands visualized in a UV transilluminator. PCR products were
cleaned with 10 units of Exonuclease I (Thermo Scientific) and
0.5 units of shrimp alkaline phosphatase (Affymetrix) at 37°C for
1 h followed by a 15 min incubation at 65°C to deactivate the
enzymes. PCR products were sequenced with ABI BigDye
Terminator v3.1 (Thermo Fisher Scientific) following the
manufacturer’s protocol using the conditions of (1) 95°C for
10 s, (2) 95°C for 10 s, (3) 51°C for 5 s, (4) 60°C for 4 min, and (5)
repeat steps 2-4 for 39 more cycles. The samples were cleaned
using Sephadex G-50 (Sigma-Aldrich) medium in a filter plate
and centrifuged in a vacufuge to decant.

The samples were reconstituted with Hi-Di Formamide
(Thermo Fisher Scientific) and the plates were placed on the
ABI 3130 Sequencer. Sequence trace files from all samples and
repeat samples were imported into CodonCode Aligner
(CodonCode Corporation). The bases were called for each
October 2021 | Volume 2 | Article 707313
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sample. The ends of the sequences were trimmed by the
application when possible and manually when necessary. All
sequences were examined and evaluated on both the forward and
reverse strands, with manual base corrections and manual base
calls occurring when necessary. This resulted in 102 usable
sequences, of which 100 had a corresponding and conclusive
RDT and qPCR results.

2.2 Data Preparation
All Pfhrp2 exon 2 nucleotide sequences were exported from
CodonCode Aligner (CodonCode Corporation) and individually
pasted into the ExPASy Translate tool (Swiss Institute of
Bioinformatics Resource Portal). Both forward and reverse
DNA strands were translated using the standard NCBI genetic
Frontiers in Tropical Diseases | www.frontiersin.org 3
code. The six reading frames of the amino acid sequence
produced were examined. CodonCode’s default parameters
were used for clipping the ends and a visual check was
performed of each sequence to ensure base calls were correct,
and trimmed further as needed.

For each nucleotide sequence, the amino acid sequence
presenting the fewest number of stop codons was selected for
further analysis. If two or more of the reading frames appeared to
produce sequences with an equally minimal number of stop
codons, the reading frame that produced a sequence exhibiting
the previously recognized pattern in prior sequences was selected
for further analysis. While most of the sequences had a clear,
single best translation, 11 of the sequences required further
editing. In these 11 sequences, the sequence portion before or
after the stop codon which exhibited a pattern similar to prior
sequences was used in analysis, while the portion of the sequence
preceding or following the stop codon, which did not exhibit the
recognized pattern, was discarded. Nucleotide sequence input
into the ExPASy Translate Tool (Swiss Institute of Bioinformatics
Resource Portal) was repeated and verified for accuracy of amino
acid sequences. The verified sequences were compiled. For a
visual representation of this process, see Figure 2.

This process resulted in a final dataset of 74 qPCR-positive
samples, of which 12 (16%) were RDT-negative and 62 (84%)
were RDT-positive. Though the RDTs in this study have an
accuracy of 84% (when using qPCR as the ground truth, see
October 2021 | Volume 2 | Article 707313
TABLE 3 | PCR conditions and primer sequences from (12).

Gene Primer Direction Sequence ‘5—3’ PCR Program

Pfhrp2
Exon2

pfhrp2_ex2_F_Parr Forward ATTCCGCATTTAATAATAACTTGTGTAGC 95°C×15 min; 40 cycles of 94°C×1 min

pfhrp2_ex2_R_Parr Reverse ATGGCGTAGGCAATGTGTGG 59°C×1 min, 72°C×1 min; 72°C×10 min
TABLE 1 | Confusion matrix of conclusive RDT results versus qPCR results.

qPCR Result Totals

+ (id: 1) - (id: 2)

RDT Result + 62 4 66
(id: 1) True Positives False Positives Total RDT Positives
- 12 22 34
(id: 2) False Negatives True Negatives Total RDT Negatives

Totals Totals 74 26 100
Total qPCR Positives Total qPCR Negatives Total Conclusive Results
TABLE 2 | Derived statistics from Table 1 with regards to RDT performance
compared to qPCR validation. Note that the term “sensitivity” here refers to the
statistical measure of the true positive rate.

Statistic (%)

Accuracy 84.0%
Sensitivity 83.8%
(True Positive Rate)
Specificity 84.6%
(True Negative Rate)
F1 Score 88.6%
FIGURE 1 | Boxplot showing the distribution of parasitemia among the 100 samples used in this study. Blue points represent RDT-positive cases and orange points
represent RDT-negative cases. Note that there are some RDT-positive samples that with zero parasitemia.
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Table 2), there is still room for improvement in malaria cases
with lower levels of parasitemia or distant clones of P.
falciparum. As shown in Table 4, there is a statistically
significant relationship between the RDT results and the
qPCR results.

2.2.1 Motif Search
A motif search was performed across 24 different types of
histidine-based repeats. These repeat types, listed in Table 5,
were originally defined by Baker et al. (6). This search was
completed using the motif.find() function in the bio3d package
in R (13). Specifically, each amino acid sequence was searched for
each of the 24 repeat motifs and the count of matches was
reported back into the data. See Table 6. The breakdown of
match frequencies by location is shown in Figure 3.
Frontiers in Tropical Diseases | www.frontiersin.org 4
2.3 Machine Learning
In this work, three machine learning experiments were created
on different sets of features: 1.) using only the types that are in the
original Baker model (Types 2 and 7), 2.) using all motif repeat
type counts (Types 1 through 24), and 3.) using only the features
found to be important in the experiment with all motif repeat
types (Types 3, 5, and 10). Note that the PfHRP2 column in
Table 6 is treated as the dependent variable in which a “1”
represents a positive RDT result for malaria and a “2” represents
a negative RDT result. The motif repeat types are used as the
independent variables and the PfHRP2 column is treated as the
dependent variable.

We used the Microsoft Azure Machine Learning Service
(14, 15) as the tracking platform for retaining model
performance metrics as the various models were generated. For
FIGURE 2 | Breakdown of P. falciparum samples used in this study. 100 of the final 102 sequences have corresponding and conclusive RDT and qPCR results and
thus were used in the machine learning analysis.
October 2021 | Volume 2 | Article 707313
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this use case, multiple machine learning models were trained
using various scaling techniques and algorithms. Scaling and
normalization methods are shown in Table 7. We then created
two ensemble models of the individual models using stack
ensemble and voting ensemble methods.

The Microsoft AutoML package (16) allows for the parallel
creation and testing of various models, fitting based on a primary
metric. For this use case, models were trained using Decision
Frontiers in Tropical Diseases | www.frontiersin.org 5
Tree, Elastic Net, Extreme Random Tree, Gradient Boosting,
Lasso Lars, LightGBM, RandomForest, and Stochastic Gradient
Decent algorithms along with various scaling methods from
Maximum Absolute Scaler, Min/Max Scaler, Principal
Component Analysis, Robust Scaler, Sparse Normalizer,
Standard Scale Wrapper, Truncated Singular Value
Decomposition Wrapper (as defined in Table 7). All of the
machine learning algorithms are from the scikit-learn package
(17) except for LightGBM, which is from the LightGBM package
(18). The settings for the model sweep are defined in Table 8.
The Monte Carlo cross validation by default takes 10% of the
initial training data set as the validation set. The validation set is
then used for metrics calculation.

For the experiment using only Types 2 and 7, 35 models were
trained. For the experiment using Types 1 through 24, 35 models
were trained. For the experiments using Types 3, 5, and 10, 31
models were trained. This variation in the number of models
trained is a factor of the automated model and parameter
selection process. When an assumed optimal model and
parameter set is found, the algorithm stops training individual
models and then performs ensembling of the various singular
models that were trained.

Two ensemble models (voting ensemble and stack ensemble)
were created and tested for each experiment. The voting
ensemble method makes a prediction based on the weighted
average of the previous models’ predicted classification outputs
whereas the stacking ensemble method combines the previous
models and trains a meta-model using the elastic net algorithm
based on the output from the previous models. The model
selection method used was the Caruana ensemble selection
algorithm (19).

For a visual representation of this analysis process, see
Figure 4 below.
TABLE 5 | PfHRP2 and PFHRP3 repeat motif types as defined by Baker et al. (6).

Type Sequence PfHRP2 PfHRP3

1 AHHAHHVAD + +
2 AHHAHHAAD + +
3 AHHAHHAAY + –

4 AHH + +
5 AHHAHHASD + –

6 AHHATD + –

7 AHHAAD + +
8 AHHAAY + –

9 AAY + –

10 AHHAAAHHATD + –

11 AHN + –

12 AHHAAAHHEAATH + –

13 AHHASD + –

14 AHHAHHATD + –

15 AHHAHHAAN – +
16 AHHAAN – +
17 AHHDG – +
18 AHHDD – +
19 AHHAA + –

20 SHHDD + +
21 AHHAHHATY + –

22 AHHAHHAGD + –

23 ARHAAD + –

24 AHHTHHAAD + –
TABLE 4 | c2 statistics comparing the relationship of qPCR results with RDT results and predicted machine learning model results (with p-values are shown in parentheses).

qPCR

RDT 32.668
(1.093e-08)

Machine Learning Model Voting Ensemble Extreme Random Trees

Types 2 and 7 7.1373 7.1373
(0.00755) (0.00755)

Types 1 thru 24 8.963 9.9844
(0.002755) (0.001579)

Types 3 and 5 and 10 10.338 10.866
(0.001303) (0.0009797)
October 2021 |
TABLE 6 | Example data format with counts of types 1 through 24 matches in the amino acid sequence. In the PfHRP2 column, a “1” represents positive cases and a
“2” represents negative cases of malaria.

id dna_sequence aa_sequence Type_1 Type_2 … Type_24 PfHRP2

HAss14 AATAAGAGAT… NKRLLHETQA… 9 9 … 0 1
HAss42 ATAAGAGATT… KRLLHETQAH… 0 0 … 0 2
… … … … … … … …

LShr5 TATTACACGA… LHETQAHVDD… 0 0 … 0 1
Volume 2 |
 Article 707313
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3 RESULTS

Metrics from the three experiments’ machine learning models
(one each for the best ensemble model and a best singular model)
are reported in Table 9. The precision-recall curves for these
models are shown in Table 10 and the receiver operating
characteristic (ROC) curves are shown in Table 11. The ideal
scenario is shown as a dash-dot-dash (-.-) line. The best model
overall is the Extreme Random Trees model using only Types 3,
5, and 10. This was determined by looking at the overall model
metrics and the generated curves. Note that many models were
generated for each experiment, some of which have equal overall
performance. The best ensemble model and most simplistic
singular model are shown here, but all model runs can be
found in the Supplementary Data.

c2 tests were performed to evaluate the relationship between
the individual machine learning model results, by Type set, and
qPCR results. See Table 4. The Extreme Random Trees model
using only Types 3, 5, and 10, has the best significance and shows
the most significant relationship between the predictions and the
qPCR results. Though all of the machine learning result
Frontiers in Tropical Diseases | www.frontiersin.org 6
comparisons are statistically significant at the a = 0.05 level,
the use of Types 3, 5, and 10 results in the best concordance with
qPCR results.

3.1 Feature Importance
Feature importances were calculated using mimic-based model
explanation of the voting ensemble model for Types 1 through
24. The mimic explainer works by training global surrogate
models to mimic a black box model (20). The surrogate model
is an interpretable model, trained to approximate the predictions
of a black box model as accurately as possible (21). See Figure 5
and Table 12.

In the Voting Ensemble model using Types 1 through 24,
Types 3, 5, and 10 were found to have non-zero importance.
Types 3, 5, and 10 were then selected to train a more
parsimonious model, which resulted in the best overall
performance, as shown in above Tables 10, 11.

3.2 Repeat Type Prevalence
As shown in Figure 5 and Table 13, many of the repeat types
described by Baker et al. (6) (Table 5) are represented in the
TABLE 7 | Scaling function options in the machine learning model search Microsoft (2019b).

Scaling and Normalization Description

StandardScaleWrapper Standardize features by removing the mean and scaling to unit variance
MinMaxScalar Transforms features by scaling each feature by that column’s minimum and maximum
MaxAbsScaler Scale each feature by its maximum absolute value
RobustScalar This scales features by their quantile range
PCA Linear dimensionality reduction using singular value decomposition of the data to project it to a lower dimensional space
TruncatedSVDWrapper This transformer performs linear dimensionality reduction by means of truncated singular value decomposition.

Contrary to PCA, this estimator does not center the data before computing the singular value decomposition.
This means it can efficiently work with sparse matrices.

SparseNormalizer Each sample (each record of the data) with at least one non-zero component is re-scaled independently of other samples so that its
norm (L1 or L2) equals one
FIGURE 3 | Type frequencies by location.
October 2021 | Volume 2 | Article 707313
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Ethiopian sequences analyzed in this study. Specifically, Types 1-
10, 12-14, and 19 were found among these isolates. This is in
general agreement to a similar report by Willie et al. (22) using
samples collected from Papua New Guinea. They report that
Types 1, 2, 6, 7, and 12 were present in almost all (≥ 89%)
sequences, Types 3, 5, 8, and 10 were present in most (≥ 56%)
sequences, and Type 4, 13, and 19 were seen in ≤ 33% of
sequences. In contrast, we see a higher prevalence of Types 4
Frontiers in Tropical Diseases | www.frontiersin.org 7
and 19 and a lower prevalence of Type 12 than in the
previous study.

Another study by Bharti et al. (23) that used samples collected
from multiple sites in India, reported that Types 1, 2, 7, and 12
were seen in 100% of their sequences. However, in our sequences
from Ethiopia, we see multiple examples where these repeats are
not present, especially Type 12.
4 DISCUSSION

Our work here is not to replace PCR-based testing, which
is still reliable and accurate, but to use machine learning
to propose specific updates to RDTs. Given that RDTs are
useful in remote settings and are quicker and cheaper than
PCR-based tests, their accuracy is crucial in the diagnosis of
malaria and in the epidemiological understanding of the spread
of the disease.
FIGURE 4 | Analysis process flow.
TABLE 8 | Parameter settings for the model searches.

Parameter Value

Task Classification
Training Time (hours) 3
Primary Metric Precision score weighted
Validation type Monte Carlo cross validation
Validation Size 20%
Validation Runs 10
October 2021 | Volume 2 | Article 707313
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Furthermore, our claim here is not that this preliminary
machine learning model should be used across the globe or
even in Ethiopia without further validation. Instead, we are
proposing that the derivation of feature importance from
ensembled machine learning models may prove beneficial in
the understanding of RDT sensitivity as a factor of complex
Frontiers in Tropical Diseases | www.frontiersin.org 8
polymorphic variations of genes. A limitation of this study is that
only 100 samples were used from 4 locations in Ethiopia and this
study only asserts the utility of RDTs based on a single gene
(Pfhrp2). This does not assess RDT sensitivity for other P.
falciparum genes, isolates without the Pfhrp2 gene (gene
deletion), or the cross-reactivity of RDTs against the Pfhrp3
TABLE 10 | Precision-recall curves for the best singular model and voting ensemble model for each experiment.

Voting Ensemble Extreme Random Trees

Types 2 and 7

Types 1 through 24

Types 3, 5, and 10
TABLE 9 | Model metrics for the best singular model and voting ensemble model for each experiment.

Types Algorithm Precision Recall Accuracy AUC F1

Types 2 and 7 Only Voting Ensemble 0.73129 0.68571 0.68571 0.65833 0.64136
Extreme Random
Trees

0.73129 0.68571 0.68571 0.65833 0.64136

Types 1 through 24 Voting Ensemble 0.80245 0.82857 0.82857 0.62500 0.79982
Extreme Random
Trees

0.80245 0.82857 0.82857 0.61667 0.79982

Types 3, 5, and 10 Voting Ensemble 0.83816 0.85714 0.85714 0.70000 0.82839
Extreme Random
Trees

0.83816 0.85714 0.85714 0.70000 0.82839
October 202
1 | Volume 2 | Article
 707313

https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles


Ford et al. Modeling RDT Sensitivity With ML
TABLE 11 | ROC Curves for the best singular model and voting ensemble model for each experiment.

Voting Ensemble Extreme Random Trees

Types 2 and 7

Types 1 through 24

Types 3, 5, and 10
Frontiers in Tropical Disease
s | www.frontiersin.org 9
FIGURE 5 | Local feature importance of the top 5 features. Note that only the top 3 have non-zero importances from the Voting Ensemble model using Types 1
through 24. Class “1” (orange dots) represents positive cases and class “2” (blue dots) represents negative cases of malaria.
October 2021 | Volume 2 | Article 707313
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gene. Thus, there is a need to use larger datasets to increase our
confidence in any machine learning model that is created and to
sufficiently validate any model’s findings with additional data
from a similar parasite population.

Here we show the utility of machine learning in the
identification of important factors in malaria diagnosis.
Previous modeling by Baker et al. (5) had shown that
the parasitic infection can be diagnosed by looking at the
prevalence of particular types of amino acid repeats. The
original regression-based model may no longer by valid for
this region of Ethiopia and, in this study, we show that even
modeling Types 2 and 7 using more sophisticated machine
learning algorithms fails to produce a reliable model of
Frontiers in Tropical Diseases | www.frontiersin.org 10
sensitivity. However, the usage of all Types 1 through 24
proves to make effective models that better characterize test
performance to detect P. falciparum infections in our dataset.
Furthermore, the usage of machine learning model explainability
helps to pinpoint particular features of interest. In this case,
Types 3, 5 and 10 reveal better diagnostic sensitivity for these
malaria isolates collected from regions of Ethiopia.

Several studies have indicated that the Type 2 repeat
(AHHAHHAAD) and Type 7 repeat (AHHAAD) have been
described as possible epitopes targeted by monoclonal antibodies
used to detect PfHRP2 (6, 24). The highest frequency Types 2, 4,
and 7 are also observed in some African countries (25). This is in
agreement with our findings in this work for the Types that have
a high prevalence frequency (between 85%-100%). However, our
analysis here may reveal better diagnostic sensitivity for Types 3,
5, and 10, which have lower frequencies (between ~28%-70%)
among the malaria isolates collected from our study area in
Ethiopia. These Type prevalences by region are shown
in Table 13.

When comparing the prevalences of Types in our Ethiopian
samples (as shown in Table 13) to samples in other HRP2/3-
based studies from other regions, there are often many
differences in the breakdown of Types. For example, in the
Type prevalences across the Indian samples in Kumar Bharti
et al. (26) (see Supplementary Data), we see that Types 2, 6, 7,
and 12 are almost always seen and that the Types that are less
pervasive (which seem to be important in understanding RDT
sensitivity) vary drastically from the Ethiopian samples used in
our study. Interestingly, in samples from a Papua New Guinea
study by Willie et al. (22), we see that Types 2, 7, and 12 are
almost always seen and that Types are 3, 5, and 10 are less
prevalent, similar to the findings in this study.

These comparisons support the argument that regional
models must be created as a “one size fits all” approach to
modeling RDT sensitivity will not be adequate given the global
variability in the parasite. While some Types are quite common
globally, the key to RDT sensitivity may lie in the Types that are
less ubiquitous, as is shown in our study and is exemplified by the
waning utility of Types 2 and 7 despite their common prevalence.

In future work, additional genetic factors need to be taken
into account so that isolates without PfHRP2/3 are detected as
well. It has been shown that a substantial portion of Ethiopian
isolates experience PfHRP2 deletion in some regions (for
example, over 62% of isolates in Eritrea) and, as such, this
necessitates the evaluation of other genes when designing
RDTs (27). RDTs will only be able to test for a finite set of
features, so we should ensure any modeling is performed on data
that represents the entire diversity in a given region. This activity
should be performed at a regional or smaller level as worldwide
parasite diversity will be infeasible to capture in a small enough
set of features that can be implemented in a single RDT. Our
purpose here is to showcase this innovative methodology for
highlighting such features in genetic data. Furthermore, we show
an example insight that Types 3, 5, and 10 could be used in future
RDTs upon further in vitro testing and validation.
TABLE 12 | Global and local feature importances of all features with non-zero
importance (Types 3, 5, and 10) from the voting ensemble model using types 1
through 24.

Global Importance Local Importance

Type 3 0.15547 Min: -0.22644
Average: -4.14E-19
Std. Dev: 0.16433
Max: 0.22644

Type 5 0.48787 Min: -0.60532
Average: -1.66E-18
Std. Dev: 0.49919
Max: 0.60533

Type 10 0.28736 Min: -0.48132
Average: -2.49E-18
Std. Dev: 0.31516
Max: 0.48132
TABLE 13 | Overall prevalence of each repeat type by location.

Type Asosa Bambasi Kurmuk Sherkole Overall

1 85.71% 97.06% 84.62% 97.92% 95.10%
2 85.71% 97.06% 84.62% 91.67% 92.16%
3 57.14% 61.76% 69.23% 66.67% 64.71%
4 100.00% 100.00% 100.00% 100.00% 100.00%
5 28.57% 50.00% 61.54% 62.50% 55.88%
6 71.43% 97.06% 84.62% 93.75% 92.16%
7 85.71% 100.00% 92.31% 93.75% 95.10%
8 71.43% 82.35% 76.92% 77.08% 78.43%
9 71.43% 82.35% 76.92% 77.08% 78.43%
10 57.14% 67.65% 53.85% 77.08% 69.61%
11 0.00% 0.00% 0.00% 0.00% 0.00%
12 14.29% 8.82% 38.46% 25.00% 20.59%
13 28.57% 55.88% 61.54% 62.50% 57.84%
14 0.00% 8.82% 7.69% 10.42% 8.82%
15 0.00% 0.00% 0.00% 0.00% 0.00%
16 0.00% 0.00% 0.00% 0.00% 0.00%
17 0.00% 0.00% 0.00% 0.00% 0.00%
18 0.00% 0.00% 0.00% 0.00% 0.00%
19 85.71% 100.00% 92.31% 97.92% 97.06%
20 0.00% 0.00% 0.00% 0.00% 0.00%
21 0.00% 0.00% 0.00% 0.00% 0.00%
22 0.00% 0.00% 0.00% 0.00% 0.00%
23 0.00% 0.00% 0.00% 0.00% 0.00%
24 0.00% 0.00% 0.00% 0.00% 0.00%
Values represent the percentage of samples in which the repeat type was found.
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5 CONCLUSION

In this work, we show the utility of employing broad machine
learning modeling on various genetic features and then deriving
the important features from top performing models to hone in
on potential targets for future RDTs. This work posits the idea
that RDTs can be revised to accommodate the genetic differences
seen in today’s P. falciparum infections and malaria cases. While
this study focuses on a small region of Ethiopia, we can conclude
that HRP2 variants may not correlate with RDT accuracy at a
global level. Future versions of RDTs may be improved using our
novel methodology for identifying genetic variants of interest to
improve test sensitivity on a regional level. Though more work is
to be done to empirically validate these findings, this in silico
simulation may direct where to take experimental testing next.
Also, while this work showcases important histidine-rich repeats
of Types 3, 5, and 10, this is specific to the Ethiopian sequences
used in this study and other P.falciparum strains in other regions
may result in different results. Furthermore, training machine
learning models on sets of malaria sequences from other areas
such as Papua New Guinea, India, or other areas of Africa may
reveal that different repeats are important in those areas, likely
suggesting the RDTs may need to be region-specific due to
variations in P. falciparum across the globe.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
colbyford/pfHRP_MLModel, GitHub.
Frontiers in Tropical Diseases | www.frontiersin.org 11
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Addis Ababa University and The University of
North Carolina at Charlotte. Written informed consent to
participate in this study was provided by the participants’ legal
guardian/next of kin.
AUTHOR CONTRIBUTIONS

GA and LG designed and performed the patient recruitment and
sampling. GA, LG and DJ managed ethical approval, funding,
and visas. GA, KL, KB, and CD performed the DNA extractions,
RT-PCR, PCR, and sequencing of the samples under the
direction of LG, DJ, and EL. KB and DJ performed the DNA
to amino acid translations. CF performed the motif search for
repeat types and performed all the machine learning and model
interpretability work. All authors contributed to the article and
approved the submitted version.
FUNDING

The field data collection portion of this work was funded in part
by Addis Ababa University Thematic Research.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://github.com/colbyford/pfHRP_MLModel
REFERENCES

1. World Health Organization. Fact Sheet About Malaria. (2020).
2. WHO. How Malaria Rdts Work. (2015).
3. WHO. World Malaria Report. (2016).
4. Ouattara A, Kone A, Adams M, Fofana B, Maiga AW, Hampton S, et al.

Polymorphisms in the K13-Propeller Gene in Artemisinin-Susceptible
Plasmodium Falciparum Parasites From Bougoula-Hameau and
Bandiagara, Mali. Am J Trop Med Hygiene (2015) 92:1202–6. doi: 10.4269/
ajtmh.14-0605

5. Baker J, McCarthy J, Gatton M, Kyle DE, Belizario V, Luchavez J, et al.
Genetic Diversity of Plasmodium Falciparum Histidine-Rich Protein 2
(Pfhrp2) and Its Effect on the Performance of Pfhrp2-Based Rapid
Diagnostic Tests. J Infect Dis (2005) 192:870–7. doi: 10.1086/432010

6. Baker J, Ho M-F, Pelecanos A, Gatton M, Chen N, Abdullah S, et al. Global
Sequence Variation in the Histidine-Rich Proteins 2 and 3 of Plasmodium
Falciparum: Implications for the Performance of Malaria Rapid Diagnostic
Tests. Malaria J (2010) 9:129. doi: 10.1186/1475-2875-9-129

7. Davis S, Button-Simons K, Bensellak T, Ahsen EM, Checkley L, Foster GJ,
et al. Leveraging Crowdsourcing to Accelerate Global Health Solutions. Nat
Biotechnol (2019) 37:848–50. doi: 10.1038/s41587-019-0180-5

8. Ford CT, Janies D. Ensemble Machine Learning Modeling for the Prediction
of Artemisinin Resistance in Malaria. F1000Research (2020) 9:1–22.
doi: 10.12688/f1000research.21539.5

9. Alemayehu GS, Lopez K, Dieng CC, Lo E, Janies D, Golassa L. Evaluation of
Pfhrp2 and Pfldh Malaria Rapid Diagnostic Test Performance in Assosa Zone,
Ethiopia.Am J TropMedHygiene (2020) 103:1902–9. doi: 10.4269/ajtmh.20-0485
10. Miguel RB, Coura JR, Samudio F, Suárez-Mutis MC. Evaluation of Three
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