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Female Anopheles mosquitoes transmit Plasmodium parasites that cause human malaria.
Currently, vector control is the most widely deployed approach to reduce mosquito
population and hence disease transmission. This relies on use of insecticide-based
interventions including Long-lasting Insecticide-treated Nets (LLINs) and Indoor
Residual Spraying (IRS) where scale-up has contributed to a dramatic decline in malaria
deaths and morbidity over the past decade. Challenges to their effective use include the
emergence and spread of insecticide resistance by malaria vector populations coupled
with the inability to curb outdoor transmission. Under these situations, use of larvicides
through larval source management (LSM) can complement these existing measures. The
need to minimize environmental impact and effect on non-target organisms has spurred
interest in the development of eco-friendly larvicides of natural origin. Here, we review
literature published in the last five years to highlight compounds of natural origin found to
exhibit larvicidal activity against malaria mosquitoes. Specifically, the larvicidal activity of
different classes of compounds is discussed including their effect on non-target
organisms. Additionally, we provide suggestions for future research into mosquito
larvicides including the use of chemical synthesis to improve the bioactivity of known
natural compounds.

Keywords: malaria, larvicides, mosquitoes, natural products, Anopheles

INTRODUCTION

Malaria is an infectious disease caused by Plasmodium parasites which are transmitted between
humans by infected female Anopheles mosquito (1). In 2019, an estimated 229 million cases of
malaria and 409,000 deaths were reported worldwide; of which >90% occurred in sub-Saharan
African (SSA) (1). Of the four parasite species that cause human malaria (Plasmodium vivax,
Plasmodium ovale, Plasmodium malariae and Plasmodium falciperum), P. falciparum is responsible
for the most severe form of the disease and it accounts for ~99% of all cases in SSA (1).

To prevent and reduce malaria burden and transmission, control programs rely mainly on
surveillance, prompt and accurate diagnosis, treatment of the disease and vector control (e.g.
Insecticide Treated Nets (ITNs) and Indoor Residual Spraying (IRS)) (1, 2). According to the WHO,
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scale-up of insecticide-based approaches including LLINs and
IRS, the mainstay of malaria vector control, has seen a dramatic
decline in malaria deaths and morbidity over the past decade.
Challenges to their use include the emergence and spread of
insecticide resistance by malaria vector populations coupled to
the inability to curb outdoor transmission. Under these
scenarios, larviciding through larval source management (LSM)
that target mosquito immature can be a useful method to
complement existing measures.

Most larvicides currently employed in vector control are based
on synthetic insecticides e.g. growth inhibitors such as difubenzuron
and methoprene (3). But because of widespread resistance by
mosquitoes and their negative effect on non-target organisms and
environment, biolarvicides are now a preferred alternative (4).
Some of the commonly sought sources of biolarvicides include
plant, bacteria, algae, lichen and fungus (Figure 1).

This review discusses the bioactivity of larvicidal compounds
isolated from these five natural sources in the last five years.
Their potential effect on non-target organism is also highlighted
and use of chemical synthesis to improve the effectiveness of
larvicidal compounds is discussed.

PLANT-DERIVED COMPOUNDS WITH
LARVICIDAL ACTIVITY

A review of the literature in the last five years showed 52
compounds had been tested for mosquito larvicidal activity
against malaria mosquitoes. Most of the studies were focused
on plants (70%), followed by bacteria (17%) and then fungi
(13%). There was no report of mosquito larvicidal compounds
isolated from algae and lichen (Figure 2A). Within the plant
Kingdom, most studies (24%) were conducted on the Asteraceae
family, followed by Apiaceae (14%) (Figure 2B). Essential oil
(EO) appears to be the primary focus of studies that were
reviewed. Out of the 52 compounds of plant origin identified
in the literature, 42 (81%) were EO (Figure 2C). Notable was the

fact that more than 80% of the compounds were isolated from
the leaves (43%) and seeds (39%) (Figure 2D). Only two
studies (5, 6) investigated plant bark as a potential source of
larvicidal compounds.

Mosquito larvicides are normally applied in an aquatic
environment where conspecific and heterospecific mosquito larvae
are present and thus, they need to have a broad spectrum of activity.
The isolated compounds were screened for activity against larvae of 8
Anopheles species (Table 1). Only piperine, an alkaloid from Piper
nigrum (Piperaceae), was tested for larvicidal activity against larvae of
most Anopheles species: Anopheles arabiensis, An. coluzzii, An.
gambiae, An. quadriannulatus and An. funestus (25). The rest of
the compounds were evaluated for activity against larvae of one or
two malaria vector species. Plant compounds evaluated for their
larvicidal effect against different mosquito species are displayed in
Table 1. Overall, An. stephensi and An. subpictus were the most
common vectors studied (11 and 7 studies, respectively). Very few
studies investigated the larvicidal effect of plant-derived compounds
against dominant Afrotropical malaria vectors such as An. gambiae
(20, 25), An. funestus and An. arabiensis (25).

Isolated compounds are normally preferred because they can
be synthesized for commercial and large scale use. Furthermore,
the pure compounds are generally expected to exhibit higher
activity than crude samples. In the current review, some studies
compared the activity of pure compounds to that of crude
extracts and found the compounds to be more effective. For
example, carvacrol, terpinen-4-ol, (Z)-y-bisabolene, lavandulyl
acetate, bicyclogermacrene, 3-cadinene, calarene and 8-4-carene
were each found to be more effective than the crude EO (10, 15,
17, 21). However, reports of a reduction in larvicidal activity
following fractionation and isolation of pure compounds are also
not uncommon. For instance, eugenol and Z-ligustilide were
found to be less potent than crude EO when tested for larvicidal
activity against An. stephensi (8, 18). In yet another study, two
compounds aurantio-obtusin and obtusin, isolated from Cassia
tora L. (Fabaceae) seed pod were reported to be less potent than
the crude seed extract when evaluated for larvicidal activity
against An. gambiae (20). The observed potency of crude
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FIGURE 1 | Overview of natural sources of compounds with larvicidal activity.
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FIGURE 2 | Proportion of larvicidal compounds (A) isolated from different natural sources, (B) categorized by plant families, (C) proportion of essential and non-

extracts/EO could be due to the synergistic/additive effect of
other compounds in the extract. The potential interaction
between components of whole plant extracts is demonstrated
in a study by Wang et al. (22), where out of the 17 compounds
from Magnolia denudata seeds (Magnoliaceae) tested for activity
against An. sinensis larvae only 12 were found to be more potent
than the crude EO.

Typically, the search for new larvicidal compounds of plant
origin focuses on the use of organic solvent (Figure 3). The use of
plant tissue culture is a rarely explored area in the search for new
larvicidal agent of plant origin. Interestingly, Kumar et al. (6),
isolated the secondary metabolite conessine from the callus
culture derived from the bark of Holarrhena antidysenterica
(Apocynaceae). Subsequent larvicidal bioassays conducted on
the compound revealed a strong larvicidal activity against An.
stephensi with lower doses (12jug/mL) causing a 100% mortality.

BACTERIA DERIVED COMPOUNDS
WITH LARVICIDAL ACTIVITY

Bacteria provide an unexploited yet promising reservoir of novel
secondary metabolites which could be used as lead compounds
for new larvicidal agents. So far, some compounds of bacterial
origin have been isolated and tested for activity against mosquito
larvae. For example, spinosyn A and spinosyn D from the

bacterium Saccharopolyspora spinosa (Actinomycetales) were
shown to have larvicidal activity against various mosquito
species including Anopheles dirus, Anopheles minimus (26),
An. gambiae and An. funestus (27).

Besides solid organic compounds, gases produced during
fermentation by microbes have also been explored as larvicidal
agents against malaria vectors. For instance, hydrogen cyanide
(HCN) produced in larval water by Chromobacterium sp,
Panama isolated from the midgut of Aedes aegypti mosquitoes,
was found to be toxic to An. gambiae larvae (28). Notably,
subsequent treatment of the larval water with a cyanide antidote
hydroxocobalamin eliminated the larvicidal effect (28). HCN
unlike spinosyns is very volatile and potentially toxic to non-
target organisms and these characteristics may make it less ideal
for use as a larvicide.

Some studies have also explored the use of polysaccharides of
microbial origin as larvicidal agents. The marine bacterium
Bacillus licheniformis Dahbl strain isolated from shrimp
intestine was found to produce an exopolysaccharide that
displayed larvicidal activity against An. stephensi (29). The
polysaccharide was extracted using methanol following 72 h
fermentation at 37°C (29). The use of crystal proteins (Cry and
Cyt toxins) produced during the sporulation phase of certain
bacteria e.g. Bacillus thuringiensis var. israelensis has also been
exploited for biological control of mosquito larvae (30, 31). Even
though bacteria toxins are effective in controlling mosquito
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TABLE 1 | Compounds of plant origin tested for larvicidal activity.

Plant family Plant Isolated compounds Vectors Reference
part
Myrtaceae
Syzygium zeylanicum leaves a-humulene and B-elemene An. subpictus (7)
Syzygium aromaticum NA eugenol An. stephensi (8)
Rutaceae
Zanthoxylum monophyllum leaves germacrene D-4-ol a-cadinol An. subpictus )
Orixa japonica root (2)-3-(4-hydroxybenzylidene)-4-(4-hydroxyphenyl)-1-methylpyrrolidin-2-one An. sinensis 5)
bark
Asteraceae
Galinsoga parviflora leaves  (Z)-y-bisabolene An. stephensi (10)
An. subpictus
Echinops grisii roots  5-(3-buten-1-yn-1-yl)-2,2’-bithiophene; o-terthienyl An. sinensis (11)
Blumea eriantha leaves (4E,62)-alloocimene, carvotanacetone and An. stephensi (12)
dodecyl acetate An. subpictus
Artemisia absinthium leaves (E)-B-farnesene, (2)-en-yn-dicycloether and (2)-B-ocimene An. stephensi (13)
An. subpictus
Senecio laetus roots  3-hydroxy-2-methyl-4H-pyran-4-one An. stephensi (14)
Lamiaceae
Origanum vulgare leaves carvacrol and terpinen-4-ol An. stephensi (15)
An. subpictus
Leucas aspera NA (2R,3S)-2-(3,4-dihydroxyphenyl) chroman-3, 5, 7-triol An. stephensi (16)
Apiaceae
Heracleum sprengelianum leaves lavandulyl acetate and bicyclogermacrene An. subpictus (17)
Kelussia odoratissima leaves Z-ligustilide An. stephensi (18)
Ferulago trifida roots  prantschimgin, oxypeucedanin and 6-hydroxymethylherniarin An. stephensi (19)
Fabaceae
Cassia tora L. seed  aurantio-obtusin and obtusin An. gambiae (20)
pods
Schisandraceae
Kadsura heteroclita leaves d-cadinene, calarene and §-4-carene An. stephensi (21)
Magnoliaceae
Magnolia denudata seeds n-hexadecane, 2,4-Di-tert-butylphenol, (+)-limonene, geranic acid, palmitic acid, linoleic An. sinensis (22)
acid, a-terpinene, p-cymene, o-terpineol, nerolidol, y-terpinene and (+)-terpinen-4-ol;
B-caryophyllene, ethyl palmitate, methyl linolelaidate, behenic acid and a-humulene
Magnolia denudata seeds honokiol, palmitic acid and linoleic acid An. sinensis (23)
Zingiberaceae
Curcuma longa leaves ar-turmerone, bisdesmethoxycurcumin, desmethoxycurcumin and curcumin An. quadrimaculatus (24)
Piperaceae
Piper nigrum piperine An. arabiensis (25)
An. coluzzii
An. gambiae
An. quadriannulatus
An. funestus
Apocynaceae
Holarrhena antidysenterica bark  conessine An. stephensi (©6)

NA, Not available.

larvae, it is well known that with continued use, the disease
vector will potentially develop resistance. Hence, there is need to
identify new compounds, with possibly different modes of action,
to be used in rotation with the bacteria toxins.

FUNGAL-DERIVED COMPOUNDS WITH
LARVICIDAL ACTIVITY

Fungal toxin is yet another source of secondary metabolite that
can be explored for new larvicidal agents against malaria vectors.
Fungi are already used widely in agricultural fields as control

agents against plant pathogens (32). Thus, they are more likely to
be perceived as a source of environment-friendly compounds.

A review of the literature shows that, only a few fungal-
derived metabolites have been isolated and tested for activity
against malaria mosquito species. In a study by (33), a novel
isoquinoline, 2-(4-((3E,5E)-14-aminotetradeca-3,5-dienyloxy)
butyl)-1,2,3,4-tetrahydroisoquinolin-4-ol (ATDBTHIQN) was
isolated and characterized from the ethyl acetate extract of a
fungal strain Fusarium moniliforme KUMBF1201 sourced from
paddy field soil. The compound was isolated after 14 days of
fermentation at 28°C and found to exhibit potent larvicidal
activity against the larvae of An. stephensi.
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FIGURE 3 | Schematic of the process for isolating larvicidal compounds from plant material.

The focus in the last five years appear to have been on crude
secondary metabolites rather than individual compounds. In a
study by (34), crude secondary metabolites isolated from the
fungus Metarhizium anisopliae showed a strong dose dependent
larvicidal activity against larvae of An. stephensi mosquitoes. The
fungus was isolated from infected dead Ae. aegypti mosquito
larvae collected from natural traps and the compounds were
obtained after 10 days of incubation at 26°C.

In a separate study, crude secondary metabolites from the
entomopathogenic fungus Beauveria bassiana (Clavicipitaceae),
isolated from an infected grasshopper (Melanoplus sanguinipes),
were shown to have larvicidal activity against An. stephensi
mosquitoes (35). Further analysis by coupled gas chromatography-
mass spectrometry (GC-MS) led to the identification of 9,12-
octadecadienoic acid (ZZ)- (63.2%) as one of the major
compounds in the crude mycelium extract. Although larvicidal
activity of the individual compound was not performed, it had
previously been found to poses larvicidal activity against An.
stephensi mosquitoes (36). Similarly, in the screen for novel
larvicidal agents of fungal origin, crude secondary metabolites from
Aspergillus terreus were found to have larvicidal activity against An.
stephensi (37). Aspergillus terreus was isolated from soil and the
compounds were obtained after 15 days of incubation at 24 + 2°C.

EFFECT OF NATURAL PRODUCT-
DERIVED COMPOUNDS ON
NON-TARGET ORGANISMS

Negative effect of insecticides on the environment and non-target
organism has been a major concern worldwide for decades.
Ecotoxicological effect of larvicidal agents is mainly evaluated on
non-target aquatic organisms. This review revealed the number of
isolated larvicidal compounds tested for safety against non-target
organisms to be limited. Out of the 57 plant compounds identified,
only 13 were evaluated for their toxicity against non-target aquatic

organisms such as aquatic insects/water bugs (Anisops bouvieri,
Chironomus circumdatus and Diplonychus indicus), aquatic
crustaceans (Mesocyclops thermocyclopoides) and larvivorous fish
(Gambusia affinis and Poecilia reticulate) (Table 2).

TABLE 2 | Effect of larvicidal compounds on non-target organism.

Compound Non-target organism  LCso (ng/mL)  Reference
o-humulene G. affinis 1024.95 (7)
B-elemene G. affinis 2073.18 (7)
germacrene D-4-ol G. affinis 414.05 )
a-cadinol G. affinis 635.12 ©)
(4E,62)-allo-ocimene G. affinis 1854.25 (12)
P. reticulata 1656.78 (12)
A. bouvieri 519.97 (12)
D. indicus 845.65 (12)
carvotanacetone G. affinis 2075.07 (12)
P. reticulata 1863.86 (12)
A. bouvieri 631.59 (12)
D. indicus 1051.39 (12)
dodecyl acetate G. affinis 2369.78 (12)
P. reticulata 2065.56 (12)
A. bouvieri, 823.94 (12)
D. indicus, 1483.11 (12)
lavandulyl acetate G. affinis 534 (17)
A. bouvieri 206 (17)
D. indicus 336.17 (17)
bicyclogermacrene G. affinis 1249.54 (17)
A. bouvieri 414 (17)
D. indicus 678.72 (17)
(E)-B-farnesene G. affinis 1751.62 (13)
C. circumdatus 409.13 (13)
A. bouvieri 1247.33 (13)
(2)-en-yndicycloether  G. affinis 4070.98 (13)
C. circumdatus 1019.45 (13)
A. bouvieri 3422.86 (13)
(2)-B-ocimene G. affinis 4525.85 (13)
C. circumdatus 1235.47 (13)
A. bouvieri 3854.72 (13)
conessine M. thermocyclopoides N.P 6)

NP, Not provided.
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TABLE 3 | Larvicidal activity of compounds isolated from natural sources.

TABLE 3 | Continued

Compound (Class & name)

Terpenes
5-(3-buten-1-yn-1-yl)-2,2’-
bithiophene (1)
a-terthienyl (2)
(2)-y-bisabolene (3)

(+)-limonene (4)

geranic acid (5)
a-terpineol (6)
p-cymene (7)
ar-turmerone (8)
o-terpinene (9)
Yterpinene (10)
Nerolidol (11)
(4E,62)-alloocimene (12)

B-caryophyllene (13)
5-(4-isovaleroyloxybut-1-ynyl)-
2,2’-bithiophene (14)
a-humulene (15)

Carvotanacetone (16)

Germacrene D-4-ol (17)
(E)-B-farnesene (18)

3-cadinene (19)
B-elemene (20)
Bicyclogermacrene (21)
a-cadinol (22)
Calarene (23)
3-4-carene (24)
Carvacrol (25)

(2)-B-ocimene (26)

Terpinen-4-ol (27)

Phenols
2,4-Di-tert-butylphenol (28)
(2R,3S)-2-(3,4-dihydroxyphenyl)
chroman-3, 5, 7-triol (29)
Honokiol (30)
Desmethoxycurcumin (31)
Curcumin (32)

Eugenol (33)

Oxypeucedanin (33)
6-hydroxymethylherniarin (35)
Prantschimgin (36)
Alkaloids

Conessine (37)

Piperine (38)

(2)-3-(4-hydroxybenzylidene)-4-
(4-hydroxyphenyl)-1-
methylpyrrolidin-2-one (39)
Pyranones
3-hydroxy-2-methyl-4H-pyran-
4-one (40)

Ether

LCso (ng/mL) (mosquito sp.)

1.4 (An. sinensis)

1.8 (An. sinensis)
2.0 (An. stephensi)
4.1 (An. subpictus)
2.2 (An. sinensis)
2.4 (An. sinensis)
2.8 (An. sinensis)
2.8 (An. sinensis)
2.8 (An. quadrimaculatus)
2.8 (An. sinensis)
2.9 (An. sinensis)
2.9 (An. sinensis)
4.1 (An. stephensi)
6.1(An. subpictus)
4.3 (An. sinensis)
5.4 (An. sinensis)

5.8 (An. sinensis)
6.2 (An. subpictus)
6.2 (An. stephensi)
8.4 (An. subpictus)
6.1 (An. subpictus)
8.1 (An. stephensi)
10.2 (An. subpictus)
8.2 (An. stephensi)
10.3 (An. subpictus)
10.3 (An. subpictus)
10.3 (An. subpictus)
12.3 (An. stephensi)
16.4 (An. stephensi)
21.2 (An. stephensi)
24.1 (An. subpictus)
25.8 (An. stephensi)
30.9 (An. subpictus)
43.3 (An. stephensi)
47.7 (An. subpictus)
3.5 (An. sinensis)

2.2 (An. sinensis)
3.5 (An. stephensi)

7.4 (An. sinensis)

29.7 (An. quadrimaculatus)
32.5 (An. quadrimaculatus)
86.9 (An. stephensi)

116.5 (An. stephensi)
334.7 (An. stephensi)
335.4 (An. stephensi)

1.9 (An. stephensi)

NP (An.arabiensis,An. coluzzi,

An. gambiae, An.
quadriannulatus and An.
funestus)

49.9(An. sinensis)

1.2 (An. stephensi)

Reference

(14)

(Continued)

Compound (Class & name) LCso (ng/mL) (mosquito sp.) Reference

(2)-en-yn-dicycloether (41) 16.2 (An. stephensi) (13)
20.9 (An. subpictus)

Hydrocarbons

n-Hexadecane (42) 1.8 (An. sinensis) (22)

Esters

Lavandulyl acetate (43) 4.2 (An. subpictus) (12)

Ethyl paimitate (44) 5.1 (An. sinensis) (22)

Methyl linolelaidate (45) 5.2 (An. sinensis) (22)

Dodecy! acetate (46) 10.2 (An. stephensi) (12)
12.3 (An. subpictus)

Benzofuran

Z-ligustilide (47) 8.7 (An. stephensi) (18)

Quinones

Aurantio-obtusin (48) 10.0 (An. gambiae) (20)

Obtusin (49) 10.2 (An. gambiae) (20)

Fatty acid

Palmitic acid (50) 2.5 (An. sinensis) 22
47.6 (An. sinensis) 23

Linoleic acid (51)
7.5 (An. sinensis)

(2)
(29)
2.5 (An. sinensis) (22)
(29)
5.5 (An. sinensis) (22)

Behenic acid (52)

NP, Not provided.
Structure of compounds (1)-(52) provided in Figure 4.

Overall, the compounds presented LCs, values that ranged
between ~200 and 5000 ug/mL (Table 2). The most toxic was
lavandulyl acetate from the EO of Heracleum sprengelianum
(Apiaceae) which reported an LCs, that was two-fold higher than
the concentration required to demonstrate larvicidal activity
(100pug/mL) (38). The mechanism of action of this compound
on the non-target organism was however, not investigated. The
least toxic was (Z)-B-ocimene the major constituent of A.
absinthium EO, which had an LCs, value of ~5000ug/mL and
~45-fold higher than the concentration required to demonstrate
larvicidal activity (Table 2).

Among the non-target organisms, fish, G. affinis and P.
reticulate, appeared to be the least sensitive to the compounds
reporting, on average, very high LCs, values (1881.52 and
1862.07ug/mL, respectively). According to Govindarajan
et al. (7), exposure to some of the compounds such as o-
humulene and B-elemene does not affect survival and
swimming activity of G. affinis. Among the water bugs, A.
bouvier was the least sensitive (average LCs, of 1390.05)
followed by C. circumdatus (average LCso - 888.02ug/mL)
and finally D. indicus (average LCso - 879.01ug/mL)
(Table 2). Notably, all the compounds were evaluated for
toxicity against G. affinis making it the most popular model
for ecotoxicological assays. Chironomus circumdatus and P.
reticulate were the least used models with only three
compounds evaluated against them (Table 2).

Interestingly, a review of the literature revealed that pure or
isolated compounds of microbial origin were not evaluated for
toxicity against non-target organisms. Also noted in the literature
was that all the ecotoxicological assessments were based on laboratory
tests. It is well known that in the laboratory, fluctuations in climatic
conditions such as temperature which may affect efficacy of the
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FIGURE 4 | Structures of compounds of natural origin with larvicidal activity against malaria mosquitoes.

compounds tend to be minimized (39). Thus, it is possible for
laboratory results to underestimate the potential effect of the
compounds on non-target organism. This perhaps may explain
why all the compounds reviewed in this study were found to be
generally safer to the non-target organism (LCsy >100ug/mL).

Moreover, assessments of side effects of the compounds on
non-target organisms were based mainly on acute mortality
evaluations. However, for appropriate evaluation, there is need to
assess the sub-lethal effects of the compounds on organisms
surviving exposure.
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STRUCTURE ACTIVITY RELATIONSHIP

The existing literature reveals an enormous potential for use of
natural compounds in the control of mosquitoes. So far, several
secondary metabolites belonging to different classes such as
alkaloids, terpenes and flavonoids have been isolated and
tested against larvae of various mosquito species. These
compounds displayed mixed results, with some showing high
toxicity against mosquito larvae, while others showed moderate
to low activity (Table 3). Most compounds evaluated for
larvicidal activity were terpenes and activity varied across
different classes of compounds.

The most potent compound was 3-hydroxy-2-methyl-4H-
pyran-4-one isolated from the methanol root extract of Senecio
laetus (Asteraceae) and evaluated for activity against the larvae of
An. stephensi. The compound showed 100% mortality at 20 ppm
and the LCsy was 1.22ug/mL after 24 h of exposure period (14).
The second most potent compound was 5-(3-buten-1-yn-1-yl)-
2,2’-bithiophene isolated from the roots of E. grijsii (LCs -
1.4ug/mL) (11). The third was n-hexadecane from M. denudata
seeds (Magnoliaceae) which was tested for activity against An.
sinensis larvae (LCsq - 1.8ug/mL) (22). n-hexadecane however is
a non-polar compound and thus its use will require formulation
with adjuvants to increase its water solubility and bioavailability
to larvae.

Conessine isolated from callus culture derived from the bark
of Holarrhena antidysenterica (Apocynaceae) also revealed a
strong larvicidal activity against An. stephensi with an LCsq
value of 1.93ug/mL (6). This further reveals the potential of
this method in isolation of compounds with larvicidal activity.
Three coumarins, prantschimgin, oxypeucedanin and 6-
hydroxymethylherniarin from root extracts of Ferulago trifida
(Apiaceae), reported an activity greater that 100pg/mL and thus
were considered non-potent against mosquito larvae (19).

Synergistic or antagonistic interaction is a common
occurrence between compounds, yet very few studies evaluate
larvicidal activity of binary or tertiary mixtures of pure
compounds. For instance, in the reviewed studies, none of the
compounds tested for larvicidal activity was further investigated
for possible interaction between compounds of the same or
different classes. Combining metabolites of biological origin
has previously been shown to improve efficacy through
synergistic interactions. For example, combination of two
protein toxins CytlAa and BinA isolated from B. thuringiensis
and Lysinibacillus sphaericus were shown to increase toxicity
against Ae. aegypti, despite the mosquito lacking receptors for
bin proteins (40). Besides increasing potency, synergism of
compounds that display different modes of action can help
delay resistance.

FUTURE PROSPECTS AND
RECOMMENDATION

As highlighted in this review, biological sources such as micro-
organisms and plants contain considerable amounts of mosquito

larvicidal metabolites which could be promising alternatives to
synthetic insecticides. In the last five years, not much has been
done towards screening secondary metabolites of microbial
origin for their larvicidal activity. This could be due to the lack
of established protocols for microbial culture or a narrow scope
of potential sources of microbes. Future efforts can also focus on
mosquito-associated microbiota as an alternative source of new
larvicidal compounds. Even though microbiota are needed for
the healthy development of the mosquitoes some microbes may
produce pathogenic compounds which may be exploited in the
development of new larvicidal agents (41). Additionally,
mosquito breeding habitats can be screened for bacteria species
that produce secondary metabolites that are toxic to mosquito
larvae (42). Another alternative approach would involve
screening existing fungi and bacterial natural product libraries
for potential larvicidal compounds. Most compounds of
microbial origin have been isolated and screened for various
activities including antimicrobial, anti-inflammatory and
antioxidant. This approach could reveal the larvicidal activities
of existing compounds. In addition, reverse chemical ecology can
be used to prepare molecules that specifically block larval
receptors that detect food finding sources or inhibit enzyme
function associated with receptor-chemical interactions.

There is still an urgent need to reduce mosquito populations to
the lowest level and thus prevent malaria transmission. A major
shortcoming of larvicides from natural sources is that they are short
lasting requiring multiple rounds of application to produce desired
effect. Thus, many a time control programs are forced to rely on
synthetic chemicals. Performing, structural modification on
existing natural product compounds can help identify novel
compounds with different modes of action against mosquitoes.
For example, recently, two derivatives of the sesquiterpene lactone
parthenin, isolated from the invasive weed Parthenium
hysterophorus (Asteraceae) in East Africa, including an ethylene
glycol derivative and 20i-azidocoronopilin, were found to be more
potent as mosquito larvicides than parthenin against the malaria
vector An. gambiae (43). This shows that structural transformation
of natural product compounds may be a promising approach to
obtain novel compounds that are effective against mosquitoes.

CONCLUSION

The review reveals most compounds evaluated for larvicidal
activity so far to belong to classes of terpenes and phenols.
Nonetheless, new compounds are required to help augment the
current level of larviciding and to help reduce vector abundance
and consequently disease risk. Improving the efficiency of
secondary metabolites of biological origin through structural
modification is one way of expanding the larviciding agent tool
box, while avoiding impacting negatively on non-target organisms.
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