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The Triatominae subfamily (Reduviidae) harbors some hematophagous insect species that
have been firmly connected to the transmission of Trypanosoma cruzi, the causative agent of
Chagas disease. Triatomines not only host and transmit trypanosomatids, but also coexist
with a variety of symbiotic microorganisms that generally reside in the insect’s intestinal flora.
The microbiome has profound effects on the physiology, immunity, fitness and survival of
animals and plants. The interaction between triatomines and bacteria has been investigated to
some extent and has revealed important bacteria symbionts. In contrast, the range of viral
species that can infect triatomine insects is almost completely unknown. In some cases,
genomic and metatranscriptomic approaches have uncovered sequences related to possible
viral genomes, but, to date, only eight positive single-strand RNA viruses, namely Triatoma
virus and Rhodnius prolixus viruses 1 - 7 have been investigated in more detail. Here, we
review the literature available on triatomine viruses and the viruses-insect host relationship.
The lack of broader metagenomic and metatranscriptomic studies in these medically relevant
insects underscores the importance of expanding our knowledge of the triatomine virome
both for surveillance purposes as well as to possibly harness their potential for insect vector
population control strategies.

Keywords: Triatomine, virus, microbiome, metatranscriptome, Chagas disease
INTRODUCTION

Hematophagous insect species belonging to the Triatominae (Reduviidae) sub-family are primary
vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease. This life-threatening parasitosis
affects 6-7 million people in South and Central America (1) and is mainly transmitted by insect
species belonging to three Triatomine genera: Rhodnius, Triatoma and Panstrongylus. However,
more than 150 Triatomine species can support T. cruzi infections in laboratory settings or in the
wild and therefore are potential vectors of the disease (2, 3). Triatomines are widely distributed in
the Americas, from South Argentina to the South of USA causing concern in areas where Chagas
disease is not endemic, but it is introduced by the increasing population mobility (2, 4, 5). Among
triatomine species, Rhodnius prolixus has been extensively studied since the early 1900s proving an
excellent model system to investigate several physiological and biochemical processes in insects
(6–9). For instance, seminal studies by Sir V. B. Wigglesworth shed light on the hormonal control of
oogenesis (10, 11) as well as the role of the juvenile hormone in metamorphosis (11). In recent years,
the sequencing and partial assembly of Rhodnius genome has spun novel genetic and genomic
ersin.org February 2022 | Volume 3 | Article 8287121
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studies, which have started to unveil the molecular mechanisms
underlying triatomine development, reproduction, immunity and
evolution (6, 12–18). Substantial progress has also been achieved in
the characterization of the triatomine microbiome, where a special
focus was placed on symbiotic bacteria. Triatomines are a reservoir
of bacteria like Serratia marcescens, a Gram-negative bacteria that
causes severe infections in humans and Rhodococcus rhodnii, the
first symbiotic bacteria found in the triatomine gut (3, 19, 20).
Because of space constraints, we refer the reader to excellent reviews
on this topic as well as on the interaction between triatomines and
T. cruzi (3, 13, 18, 21). Instead, here we focus on the virome of
triatomine insects, a research area that is still in its infancy.
Metagenomic approaches have helped uncover a wealth of viral
species in arthropods especially in those of medical interest like the
mosquito Aedes aegypti (22). Currently, 1,445 RNA viruses divided
in more than 20 families clustered in 16 clades have been identified
in insect tissues (23). Viral infections can prove harmless for the
host or affect its survival and reproduction, while a few cases of
beneficial virus-host interactions have been reported (24–27).
Paradigmatic among the entomopathogenic class of viruses, the
Slow Bee paralysis virus (SBPV) and related viral species (Deformed
wing virus, Israeli acute paralysis virus, etc) are known to impair the
development of bees (28), induce anterior leg paralysis (29) and
malformations in wings and abdomen in the host (30, 31). SBPV is
in fact responsible for the collapse of bee hives around the world
causing large economic losses (32). Viruses however can represent
beneficial symbionts in some cases (33). For instance, the plant virus
Barley Yellow Dwarf Virus (BYDV) was shown to increase the
fecundity and promote trophic facilitation of phytophagous vector
species like the aphids Rhopalosiphum maidis and Rhopalosiphum
padi (34). For the vast majority of the insect viruses however the
characteristics of their interactions with the insect hosts are
unknown. Despite the clinical relevance of some triatomine
species, very little is known about their virome. Contigs related to
viral genomes were independently identified in transcriptomic
analyses of the salivary glands, fat bodies and testes of triatomine
species like Rhodnius prolixus, Panstrongylus megistus and
Panstrongylus lignarius (35–37). Viral sequences were also
reported after sequencing the genome of Rhodnius prolixus (12).
These observations however were not explored further and almost
all that we know about triatomine viruses stems from the study of
Triatoma virus (TrV) (38–40). TrV was discovered in a colony of
field-collected Triatoma infestans (38, 40). Only recently, our group
identified and characterized 7 novel viruses, namely Rhodnius
prolixus virus 1-7 (RpV1-7), while investigating stage-specific de
novo transcriptome assemblies in ovarian tissues of Rhodnius
prolixus (16, 17). This review aims to describe the (limited)
information available on triatomine viruses and underscore the
importance of investing in this neglected area of scientific research.
TRIATOMA VIRUS

Triatoma virus (TrV) is a non-enveloped virus that displays a
positive single strand RNA (+) ssRNA) genome and was first
Frontiers in Tropical Diseases | www.frontiersin.org 2
identified in the abdominal contents of infected T. infestans as
small spherical particles about 30 nm in diameter (38). Due to its
unique capsid structure, TrV originated a new genus within the
Dicistroviridae family, namely the Triatovirus genus (PDB ID:
3NAP and 1B35, respectively) (41–43) (Figure 1). The TrV
genome is 9010 nt and harbors two open reading frames (ORFs)
(44). ORF1 (549-5936 nt) encodes motifs characteristic of viral
RNA-dependent RNA polymerases (RdRp), cysteine proteases
and RNA helicases, while ORF2 encodes capsid proteins
(Figure 1). The two ORFs are separated by 172 nt of non-
coding RNA (44). Two putative internal ribosomal entry sites
(IRESs) in the TrV genome were identified: the 5’UTR IRES of
548 nt and the intergenic region (IGR) IRES of 172 nt (45). The
TrV capsid displays icosahedral symmetry with pseudo-
triangulation number P = 3 and is formed by 60 protomers
comprising the three major VP1, VP2 and VP3 and one minor
(VP0) structural polypeptides (40, 41, 46, 47). The capsid shows
spikes forming a crown commonly present in members of the
Dicistroviridae family (48). The exposed amino acid residues in
those projections were proposed to exert a role in the interaction
with the host (47). Infections by TrV were shown to induce
97.6% mortality rates in blood-fed fifth instar nymphs, delay the
molting process (39, 49) and impair oogenesis (49). In
accordance, the oviposition rate in adult T. infestans females
infected with TrV drops by ~80% compared to uninfected
females (49). Fifteen triatomine species have been shown to
support TrV infections in laboratory settings, where the virus
was inoculated via intrahemocelic injection or artificial ingestion
of purified viral particles (50). In an artificial TrV infection
experiment, fecal suspensions parenterally inoculated into
uninfected triatomines killed all insects (n= 515) within 36 h
(51), whereas viral particles could be detected at fecal samples
from 5th instar Triatoma infestans fed in an artificial feeder with
TrV-contaminated human blood (52). T. infestans also becomes
infected with TrV when feeding on contaminated chickens (51).
Some triatomines infected with TrV were collected in the field.
For instance, Triatoma sordida from the Chaco province (53),
Psammolestes coreodes in nests in a region endemic for Chagas
disease (54) and Triatoma breyeri in sylvatic habitats mainly in
the arid Chaco and Monte ecoregions in Argentina (50). Field-
collected Triatoma patagonica (55), Rhodnius neglectus, an
autochthonous Brazilian species, and Meccus longipennis could
also be artificially infected by TrV (56). However, only 10% of
Triatoma infestans from sylvatic populations from Argentine
were found to harbor TrV infections (39). The discrepancy
between the infection rates in wild-caught and colony-raised
insects mostly likely lies on the variety of viral transmission
routes like cannibalism, coprophagy and transovarial
transmissions and their specific contribution to the spread of
the virus in the population (39). Rearing conditions in the
laboratory are particularly favorable for fecal-oral transmission,
because insects are artificially overcrowded during feeding (51).
The presence of a pheromone in feces freshly deposited by
nymphs (57) attracts unfed nymphs while arresting the
locomotion of fed ones. Hence, this phenomenon might also
favor the spread of the TrV in the insectaries (58).
February 2022 | Volume 3 | Article 828712
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Unlike some arboviruses that are capable of infecting both
invertebrates and vertebrates like Dengue Virus and Zika Virus
among others, Insect-Specific Viruses (ISVs) display a host range
restricted to insects (59). TrV inoculation in different insect cell
lines such as Sf9, Sf21 (from Spodoptera frugiperda), High Five
Frontiers in Tropical Diseases | www.frontiersin.org 3
(H5) and C6/36 (Aedes albopictus) resulted in signs of infection
or cytopathic effect (CPE) after 24-48 h (60). However, this
phenotype disappeared after successive passages. These results
were confirmed with three independent approaches:
transfection, direct inoculation of the purified viral particles or
A

B

FIGURE 1 | Phylogenetic analysis and genome structure of the triatomine viruses. (A) Phylogenetic tree constructed from RdRp sequences of the (+) ssRNA
viruses, TrV and RpV 1-7. Neighbor-Joining method with 1000 bootstrap replicates was used in the phylogenetic analysis. Bootstrap values are displayed in tree
branches. Triatomine viruses belong to four different families: Dicistroviridae, Iflaviridae, Permutotetraviridae and Solemoviridae. (B) Genome organization of the TrV
and RpVs displaying their structural and non-structural domains. CRPV_capsid, Cricket Paralysis Virus capsid protein, RdRp, RNA-dependent RNA Polymerase,
RNA helicase, rhv-like, Picornavirus/Calicivirus coat protein, Peptidase domain, RT_like, Reverse Transcriptase_like. Adapted from Brito, et al. (16).
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inoculation of the purified viral particles with trypsin (61). Thus,
TrV appears to be a triatomine-specific entomopathogenic virus.
This characteristic led to propose TrV as a possible biological
tool for the control of Chagas disease Triatomine vector
populations (39, 40).
RHODNIUS PROLIXUS VIRUSES

Recently, our group expanded the variety of viral species in
triatomines by describing 7 unique viral genomes in Rhodnius
prolixus (16). The RpVs are (+) single strand RNA viruses
classified in three different families: Iflaviridae (RpV1 and
RpV2), Permutotetraviridae (RpV3, RpV4 and RpV7) and
Solemoviridae (RpV5 and RpV6) (16) and do not share any
similarity with TrV (Figure 1A and Table 1).

RpV1 has the longest contig found (9.6 Kilobases) and it
exhibits two main ORFs with amino acid sequence identity
36.99% and 40.88% with the proteins encoded by ORF1 and
ORF2 of the Nesidiocoris tenuis virus 1 (NtV-1), respectively
(16). NtV-1 has been classified in the Iflavirus genus, even
though its genome revealed two different ORFs (62). ORF1 of
RpV1 encodes putative structural capsid proteins related to
Cricket Paralysis virus (CrPV) and Picornavirales order specific
proteins such as RhV-like (Figure 1B). ORF2 instead encodes
putative non-structural proteins such as the RdRp enzyme and a
Frontiers in Tropical Diseases | www.frontiersin.org 4
RNA helicase (16). ORF1 and ORF2 of RpV1 display a 1-nt
overlap typical of the Iflavirus genus, which results in a -1nt
frame-shift (Figure 1B). The RpV2 genome (contig ~8.9Kb)
encodes a single polyprotein (2,890 amino acids) and it also
seems to belong to the Iflavirus genus like RpV1 (16). The
putative polyprotein of this virus shares ~70% amino acid
sequence identity with the polyprotein of the Slow Bee
Paralysis Virus (SBPV). For both viruses, the RhV-like and the
CrPV structural capsid proteins are located at the N-terminal
region, while the RdRp enzyme is at the C-terminal (16, 63).
SBPV can be transmitted to Apis mellifera adult bees and pupae
by the mite Varroa destructor (64). SBPV infections induce
paralysis of the anterior legs and high mortality rates (29).
Additionally, the bees that survived from one season to the
next and were infected by Deformed Wing Virus (DWV) or
SBPV showed a decrease in the infection rate by mite, suggesting
equilibrium between entomopathogenic viruses and the mite
(65). The large mite population can promote a starvation
condition for the honeybee favoring condition-dependent
SBPV virulence which was demonstrated in artificial infection
assays in the Bombus terrestris pollinator (26). Since we first
detected it in our ovarian RNA-seq datasets produced in 2014,
RpV2 seems to have been lost to our colony (16). It is tempting to
speculate that the pathogenicity of this virus might have
eliminated the infected animals, eventually causing its
disappearance from the colony. We cannot rule out however
TABLE 1 | GenBank database accession numbers from all sequences used in the phylogenetic tree.

Name Genome RdRp localization

Apis dicistrovirus KY354239.1 ARO50048.1
Kashmir bee virus NC_004807.1 NP_851403.1
Acute bee paralysis virus NC_002548.1 NP_066241.1
Thosea asigna virus NC_043231.1 YP_009665207.1
Bat iflavirus NC_033823.1 YP_009345906.1
Atrato Sobemo-like virus 6 MN661101.1 QHA33729.1
Yongsan sobemo-like virus 1 MH703049.1 AXV43879.1
Vespa velutina associated permutotetra-like virus 1 MN565051.1 QGL51734.1
Culex permutotetra-like virus LC505019.1 BBO25553.1
Tribolium castaneum iflavirus MG012488.1 AUE23905.1
Amygdalus persica iflaviridae MN823678.1 QKQ15124.1
Amygdalus persica sobemo-like virus MN831439.1 QKI29238.1
RpV1 MZ328304.1 QYC92628.1
RpV2 MZ328305.1 QYC92629.1
RpV3 MZ328306.1 QYC92630.1
RpV4 MZ328307.1 QYC92632.1
RpV5 MZ328308.1 QYC92635.1
RpV6 MZ328309.1 QYC92637.1
RpV7 MZ328310.1 QYC92638.1
Triatoma virus AF178440.1 AAF00472.1
Drosophila A virus NC_012958.1 YP_003038595.1
Cricket paralysis virus NC_003924.1 NP_647481.1
Formica exsecta virus 1 NC_023021.1 YP_008888535.1
Plautia stali intestine virus NC_003779.1 NP_620555.1
Nesidiocoris tenuis iflavirus 1 KY969634.1 AVI05074.1
Slow bee paralysis virus NC_014137.1 YP_003622540.1
Atrato Sobemo-like virus 5 MN661107.1 QHA33865.1
Hubei permutotetra-like virus 6 KX883442.1 APG76931.1
Hubei permutotetra-like virus 8 KX883453.1 APG76960.1
Shuangao permutotetra-like virus 1 KX883439.1 APG76925.1
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that RpV2 might still be circulating in the insectary, but at
threshold viral levels below the sensitivity of our assays.

RpV3, RpV4 and RpV7 belong to Alphapermutotetravirus genus,
Permutotetraviridae family and they exhibit a genome around 5Kb
long. The putative RdRp enzymes of RpV3, RpV4 and RpV7 share
~42% to ~47% amino acid sequence identity with proteins from
Shuangao and Hubei permutotetra-like viruses (16). Only two
Alphapermutotetravirus are classified by Taxonomy in the
International Committee on Taxonomy of Viruses (ICTV):
Euprosterna elaeasa virus and Thosea asigna virus. In a large assay
analyzing invertebrate RNA viruses from several metatranscriptome
libraries, thirteen Hubei permutotetra-like viruses and one Shuangao
permutotetra-like virus were found in different arthropods (23). The
host range of Hubei permutotetra-like viruses seems to be broad,
including different host species like Coleoptera sp., Aedes sp., Culex
quinquefasciatus, Abraxas tenuisuffusa, Anopheles sinensis, Aedes
albopictus, Aedes aegypti, Paracercion melanotum, Gryllidae sp.,
Neoscona nautica, Scutigeridae sp. and Spirurida sp1 (23, 66).

RpV5 and RpV6 (contigs ~2.8Kb for both) belong to the
Sobemovirus genus and their encoded proteins share amino acid
sequence identity ranging from 41% to 66%, respectively, when
they were compared with Atrato sobemo-like virus. RpV5 and
RpV6 also harbor two ORFs: ORF1 encodes Peptidase and ORF2
the RdRp enzyme (16) (Figure 1B). The Sobemovirus genus
comprises some plant viruses whose natural host range is
relatively narrow. Several sobemoviruses like the Rice Yellow
Mottle Virus (RYMV) are of special interest as they infect crop
plantations causing large economic losses (67). The main
transmission route of sobemoviruses is through host plant
wounds that can be caused by insects such as the beetle
Ceratoma trifurcota (67, 68). Although sobemoviruses can
infect invertebrates as beetles, aphids, mirid bugs, moths,
grasshoppers and sucking bugs, the interaction of viruses with
invertebrates has been poorly explored. It was recently shown
that R. prolixus can feed on artificial sugar meals or even cherry
tomatoes in laboratory settings, even though triatomines have
been considered strictly hematophagous for over a century (69,
70). It is therefore possible that RpV5 and RpV6 infected the
insects that originated our colony while they were feeding on the
phloem of some plant.

Both RpVs and TrV are vertically transmitted to progeny,
which likely contributes to establish persistent infections (16, 39).
Vertical transmission is of special interest as it has been linked to
the emergence of seasonal pandemics of some arboviroses like
Dengue and Zika (71, 72). Furthermore, DWV and other viruses
that infect honeybees were found in the queen’s ovaries and
transmitted to the offspring including eggs and young larvae
(24). Additional transmission routes have been demonstrated for
TrV, but they remain still unexplored for the RpVs. For these
viruses, also the host range restriction needs to be addressed in
the future.

Because only one virus was known until recently, the
investigation of antiviral systems in triatomines is also lagging
behind. It has been suggested that haemocytes, phenoloxidase
and nitric oxide might provide defense mechanisms against viral
infections in these insect species (18), but this hypothesis has not
Frontiers in Tropical Diseases | www.frontiersin.org 5
been tested yet. However, the discovery of viral small interfering
RNAs against the RpVs and the evolutionary conservation of
key RNAi players in Rhodnius prolixus ovaries demonstrates
that a RNAi-based antiviral system is active in triatomines and
might keep the viral load below lethal levels (15–17). It will be
interesting to explore these mechanisms especially in embryos,
where the viral titers appear to be several orders of magnitudes
lower than in other stages of Rhodnius prolixus early
development. Recently, another class of small non-coding
RNAs, namely the Piwi-interacting RNAs or piRNAs, was
implicated in antiviral activity in Aedes mosquitoes (73, 74).
Viral piRNAs can originate from viral sequences, known as
Endogenous Viral Elements (EVEs), harbored in the genome
of the insect (73). However, we did not identify either piRNAs or
EVEs related to the RpVs in R. prolixus ovary (16). In the
absence of similar studies in other Triatomines, it is therefore
likely that the piRNA pathway does not contribute to antiviral
defenses in ovarian tissues of Triatomine insects.
DISCUSSION

Triatomine insect species are of public health importance since
they can vector the protozoan T. cruzi, the etiologic agent of
Chagas Disease. Surprisingly, the characterization of the virome in
these insects is still in the embryonic phase mostly due to the lack
of broad unbiased metagenomic and metatranscriptomic studies.
The metatranscriptomic studies from different Triatomine species
including field-captured bugs together with functional assays for
viral pathogenicity are some of the strategies which might be used
to better understand the Triatomine virome diversity. This goal is
of paramount importance and might be achieved by including the
analysis of viral small interfering RNAs (vsiRNAs), which not only
provide valuable information on the antiviral systems acting in the
insect, but can also be employed for the assembly of the genome of
new viruses (16, 75). If some triatomines are capable of
transmitting T. cruzi to vertebrates and humans, we cannot rule
out that they might also be competent vectors capable of
transmitting pathogenic viruses (3). This hypothesis receives
some support by the observation that most of the human sera
samples from patients with Chagas disease in the Argentine,
Bolivia and Mexico were positive for anti-TrV antibodies (76).
The vectorial competence of triatomines has been tested with HIV
and HBV, which were not able to replicate in the insect tissues or
be transmitted to mammalian hosts (77, 78). To our knowledge
however the interaction between triatomines and arboviruses like
Dengue, Zika and Chikungynya viruses has not been tested yet.
Conversely, some triatomine ISVs might be harnessed as
biological tools for the control of insects of economic and
medical relevance. When applied to triatomines, these strategies
might lead to the control of triatomine vector populations in the
wild and therefore, the reduction of Chagas disease diffusion.
Finally, TrV Viral-Like Particles (TrV-VLPs) have been proposed
to act as a vaccine adjuvant by enhancing the humoral immune
response against T. cruzi chimeric antigens (79). A thorough
characterization of the triatomine virome, its interactions with
February 2022 | Volume 3 | Article 828712
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the insect host and host range restriction are therefore a challenge
of paramount importance for the next future.
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