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Nitric oxide (NO) is a second messenger molecule synthesized by the enzyme nitric
oxide synthase (NOS) that requires the molecular chaperone heat shock protein 90
(HSP90) for normal enzymatic activity. Past studies have revealed that both NO and
HSP90 act as negative regulators (repressors) of metamorphosis in a diverse range of
marine invertebrates, including several molluscan species. Here, we test the role of NO
in the metamorphic induction of a Vetigastropod mollusc, the tropical abalone Haliotis
asinina. Specifically, we (1) test the effects of NO-manipulating pharmacological agents,
(2) measure the temporal expression of NOS and HSP90 genes through metamorphosis,
and (3) assess the spatial expression of NOS and HSP90 in larvae. We find that inhibition of
NOS reduces rates of metamorphosis, indicating that NO facilitates, rather than represses,
induction of metamorphosis in H. asinina. The marked increase in NOS expression in
putative sensory cells localized to the anterior foot of competent larvae is consistent
with NO as an inductive molecule for metamorphosis. In contrast to NOS, HSP90
transcript abundance decreases at competence and there is no evidence of NOS and
HSP90 transcript co-localization. This study provides the first evidence of NO as an
inductive facilitator of molluscan metamorphosis. Our experimental data suggest that NO
modulates signals derived from live inductive substrates via the larval foot to regulate
metamorphosis. Inter-specific comparisons of spatial NOS expression in molluscs suggest
that the localized pattern of NOS or its protein product is related to the regulatory action
of NO in metamorphosis.
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INTRODUCTION
The ecological success and stability of marine benthic commu-
nities depends upon the recruitment of larvae. These planktonic
larvae represent the dispersive phase of a biphasic life cycle that
is common among phylogenetically diverse marine invertebrates
(Pechenik, 2004; Heyland et al., 2011). To complete the life cycle,
free-swimming larvae usually must acquire a state of ontogenic
maturation, known as competency (Hadfield et al., 2001), at
which time they are able to settle onto an appropriate benthic
substrate and undergo metamorphosis into the benthic reproduc-
tive form (Hadfield, 1998; Pechenik, 2004). In most species, larval
settlement is dependent on contact with specific environmental
cues (Hadfield, 1998) that include chemical ligands released from
conspecifics, microbial films, and prey species, all of which indi-
cate the suitability of a habitat for post-metamorphic life (Pawlik,
1992).

The ability to discriminate and respond to the appropriate
cue is crucial, because settling in the right place is necessary for
survival, growth, and reproductive success of post-metamorphic
individuals (Rodriguez et al., 1993; Underwood and Keough,
2001). To do so, competent larvae have sensory organs that use
cell surface receptors to bind to the appropriate environment-
derived ligands. The binding of ligands to their receptors activates

conserved biochemical signaling pathways that ultimately coordi-
nate the global morphogenetic events that constitute metamor-
phosis (Hadfield, 2000; Leise and Hadfield, 2000). The applica-
tion of pharmacological agents that activate or inhibit parts of
these conserved signaling pathways can induce settlement and
metamorphosis of many species in vitro (Baxter and Morse, 1987;
Degnan and Morse, 1995; Biggers and Laufer, 1999; Eri et al.,
1999; Amador-Cano et al., 2006).

One pathway of particular interest in marine invertebrate biol-
ogy is the nitric oxide (NO) signaling pathway. NO is a highly
conserved second messenger molecule that regulates diverse phys-
iological responses in all organism (Colasanti and Venturini,
1998; Palumbo, 2005), including the timing of life cycle tran-
sitions in bacteria, fungi, slime mold, plants, and animals (Tao
et al., 1997; Kashiwagi et al., 1999; Wilken and Huchzermeyer,
1999; He et al., 2004; Schmidt et al., 2004; Cáceres et al., 2011).
The main endogenous source of NO is an enzyme, nitric oxide
synthase (NOS), whose normal enzymatic activity requires a
molecular chaperone, heat shock protein 90 (HSP90). Under
stress-free cellular conditions, HSP90 constitutively stabilizes the
functional conformation of NOS, and thus facilitates NO synthe-
sis (García-Cardeña et al., 1998; Song et al., 2001; Yoshida and
Xia, 2003).
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Endogenous NO has been shown to negatively regulate
(repress) the initiation of larval settlement and metamorphosis
in multiple species of marine invertebrate representing diverse
phyla, including chordates, echinoderms, molluscs, annelids and
crustaceans (Froggett and Leise, 1999; Bishop and Brandhorst,
2001; Bishop et al., 2001, 2008; Comes et al., 2007; Pechenik et al.,
2007; Biggers et al., 2011; Zhang et al., 2012; Romero et al., 2013).
In 2003, Bishop and Brandhorst (2003) first hypothesized that
a negative regulatory role of NO is widely conserved in bilate-
rian life cycle transitions, and results from interactions between
NOS and HSP90. This initial hypothesis has since been refined to
account for differing specificities of larval responses to inductive
cues (Bishop et al., 2006; Hodin, 2006). In generalist larvae—
those that can metamorphose spontaneously or in response to a
wide variety of cues—a reduction in NO is sufficient to induce
metamorphosis; that is, NO acts as a direct regulator of meta-
morphosis in generalist species (Bishop et al., 2006; Hodin, 2006;
Romero et al., 2013). On the other hand, in specialist larvae—
those that require very specific inductive cues—a reduction in
NO alone is not sufficient to induce metamorphosis, but it does
enhance larval sensitivity to the specific cue; that is, NO functions
as a modulator of metamorphosis in specialist species (Bishop
et al., 2006; Hodin, 2006; Romero et al., 2013). To date, almost
all empirical studies have supported both the hypothesis of a
negative regulatory role for NO and that of the direct regula-
tory vs. modulatory NO function in generalist vs. specialist larvae
(Froggett and Leise, 1999; Bishop and Brandhorst, 2001; Bishop
et al., 2001, 2008; Comes et al., 2007; Pechenik et al., 2007;
Biggers et al., 2011; Zhang et al., 2012; Romero et al., 2013).
The sole exception so far is a recent report demonstrating a pos-
itive regulatory role for NO in metamorphosis of the solitary
ascidian Herdmania momus (Ueda and Degnan, 2013); whether
this represents a species-specific anomaly or a more widespread
phenomenon awaits further data from a diversity of marine taxa.

Four molluscan taxa have been investigated to date for the role
of NO in metamorphosis. The application of a NOS inhibitor is
sufficient to induce metamorphosis of the generalist larvae of the
mud snail Ilyanassa obsoleta and the slipper shell snail Crepidula
fornicata (Froggett and Leise, 1999; Pechenik et al., 2007). In the
specialist larvae of the nudibranch, Phestilla sibogae, the pres-
ence of a NOS inhibitor enhances the metamorphic response to
a natural inductive cue (Bishop et al., 2008). Recently, Romero
et al. (2013) reported that the direct regulatory vs. modulatory
repressive role of NO in generalist vs. specialist larvae is evident
even within a single species, namely the sea slug Alderia willowi,
which produces both generalist and specialist larvae from a single
spawning (Krug, 2001). Consistent with these results, application
of an NO donor antagonizes the effect of known inductive cues
in I. obsolete, P. sibogae, and A. willowi (Froggett and Leise, 1999;
Bishop et al., 2008; Romero et al., 2013).

Immunohistochemistry assays in molluscs have detected NOS
protein activity localized to the apical sensory organ (ASO)
of I. obsoleta (Thavaradhara and Leise, 2001) and C. fornicata
(Pechenik et al., 2007) veliger larvae, and in putative sensory neu-
rons in the edge of the mantle and foot in I. obsolete veligers
(Thavaradhara and Leise, 2001). The ASO is a larval-specific sen-
sory structure that is thought to function as a sensory structure

to detect inductive cues (Hadfield et al., 2000); it is lost during
or immediately after metamorphosis (Croll and Dickinson, 2004;
Gifondorwa and Leise, 2006; Croll, 2009). In P. sibogae veligers,
NOS expression is detectable in both cerebral and pedal ganglia
(Bishop et al., 2008). At time of writing, complete nucleotide
sequences of NOS genes have been isolated from five mollusc
species and, in all cases, the domain organization of the predicted
protein products resembles the neuronal isoform of mammalian
NOS (nNOS), further implicating a neuro-active role of NO in
molluscs (Korneev et al., 1998; Scheinker et al., 2005; Moroz
et al., 2006; Matsuo et al., 2008; Cioni et al., 2011). These results
together strongly suggest that, in molluscan larval settlement, NO
may process signals from environmentally-derived inductive cues
to regulate the activation of morphogenetic signal transduction
pathways via the sensory nervous system.

Here, we examine the hypothesis of NO as a phylogenetically
conserved negative regulator during the pelagobenthic transi-
tion by using the tropical abalone, Haliotis asinina (Mollusca:
Vetigastropoda: Haliotidae). Abalone have a pelagobenthic life
cycle typical of broadcast spawners; externally fertilized eggs
hatch as trochophore larvae and subsequently develop into
lecithotrophic (non-feeding) veligers (Sawatpeera et al., 2001).
Veligers of H. asinina become competent to settle by 96 h post fer-
tilization (hpf) at 25◦C (Jackson et al., 2005). Haliotis asinina pro-
duces specialist larvae that require the presence of particular natu-
ral substrates for successful settlement and metamorphosis, which
can be induced very effectively (>90%) within 48 h by articulated
coralline algae of the genus Amphiroa (Williams et al., 2008).

To investigate the role of NO in regulating the H. asinina
pelagobenthic transition, we first examine the effects of phar-
macological NOS inhibitors and NO donors on the induction
of settlement and metamorphosis. We complement these behav-
ioral experiments with NOS and HSP90 gene expression analyses
using quantitative reverse transcriptase-PCR by examining NOS
and HSP90 expression temporal profiles through the pelagoben-
thic transition. To address the hypothesis that NO regulates larval
settlement in response to exogenous stimulation of larval sen-
sory cells, we use whole mount in situ hybridization to assess
spatial expression of both NOS and HSP90. A schematic show-
ing the temporal development of H. asinina and our experimental
sampling points is presented in Figure 1.

MATERIALS AND METHODS
H. ASININA LARVAL CULTURE
Reproductively active adult specimens of H. asinina were collected
from Heron Island Reef, Great Barrier Reef, Australia (23◦27′S;
151◦55′E). Detailed protocols for maintenance of collected speci-
mens, spawning, fertilizations, and larval culture were followed in
accordance with Williams et al. (2009a). In brief, eggs and sperm
from at least three males and three females were collected and fer-
tilized on the night of the natural spawning cycle (Counihan et al.,
2001). Embryos and larvae were cultured in 300 mm diameter lar-
val culture chambers with flow-through 10 μm filtered sea water
(FSW) at 25◦C ± 0.5 until the larvae matured to the competent
state (96 hpf) (Jackson et al., 2005). The culture chambers were
treated with 20 μg/L rifampicin for 2 h daily to prevent bacterial
outbreaks.

Frontiers in Marine Science | Marine Molecular Biology and Ecology July 2014 | Volume 1 | Article 21 | 2

http://www.frontiersin.org/Marine_Molecular_Biology_and_Ecology
http://www.frontiersin.org/Marine_Molecular_Biology_and_Ecology
http://www.frontiersin.org/Marine_Molecular_Biology_and_Ecology/archive


Ueda and Degnan NO in abalone metamorphosis

FIGURE 1 | A time course of Haliotis asinina development indicating

experimental strategies employed in this study. Developmental stages
are indicated by hours post fertilization (hpf) for embryonic and larval

development. Post-larval development is indicated by hours post induction
(hpi). All metamorphosis assays were initiated at competency (96 hpf). Gray
shading indicates times at which RNA was sampled.

METAMORPHOSIS ASSAYS USING PHARMACOLOGICAL TREATMENTS
Because variable metamorphic responses to specific NOS
inhibitors have been reported in C. fornicata (Pechenik et al.,
2007) and Capitella teleta (Annelida) (Biggers et al., 2011),
we elected to test several different NOS inhibitors and NO
donors to overcome a potential incompatibility between the
pharmacological agents and H. asinina veligers (Table 1).
As NOS inhibitors, we used L-nitroarginine-methyl-ester (L-
NAME) (Sigma), aminoguanidine hemisulfate (AGH) (Sapphire
Bioscience), and S-methylisothiourea sulfate (SMIS) (Sapphire
Bioscience). To examine the effects of increased NO on meta-
morphosis, we used S-nitroso-N-acetyl-penicillamine (SNAP)
(Sapphire Bioscience) as a direct NO donor. L-Arginine (Sigma),
which is the essential substrate of NOS enzymatic activity, was
also applied as an NO donor, since it theoretically increases the
internal availability of NO (Stuehr, 2004). All chemicals used
here have been shown to affect the rate of metamorphosis in
other marine invertebrates (Froggett and Leise, 1999; Bishop and
Brandhorst, 2001; Bishop et al., 2001, 2008; Comes et al., 2007;
Pechenik et al., 2007; Biggers et al., 2011; Zhang et al., 2012;
Romero et al., 2013).

Stock solutions of 0.5 M L-NAME, 0.5 M AGH, 0.5 M SMIS,
and 0.5 M L-Arginine were prepared in 0.22 μm FSW, stored at
4◦C, and diluted to final experimental concentrations just prior
to the experiments. For SNAP, a stock solution of 0.1 M was
prepared in dimethyl sulfoxide (DMSO) immediately before the
experiment and diluted to final concentrations just prior to use.
To maintain a steady concentration of NO delivered by SNAP
during the metamorphosis assay, the solution was renewed every
6 h (Froggett and Leise, 1999). The final concentrations of each
chemical used in the experiments are listed in Table 1.

Metamorphosis assays were initiated at competency (96 hpf)
(Figure 1) and performed in 6-well 35-mm diameter sterile poly-
carbonate tissue culture dishes with 10 ml of 0.22 μm FSW per
well. The following controls and treatments were included in
experiments with each pharmacological agent: (1) FSW only
(negative control), (2) FSW with living articulated red coralline
algae (CA), Amphiroa ephedraea shards covering approximately
25% of the bottom of the well (positive control), and (3) FSW

containing a pharmacological agent either with or without live
CA shards (treatments). The live CA used for the experiment were
collected from Heron Island reef flat just prior to experimenta-
tion, washed in FSW, cleaned of any epiphytes growing on the
surface and placed in the wells for immediate use (Williams et al.,
2008). Initiation of juvenile shell growth at 24 hpi was used as a
definitive indicator of metamorphosis (Williams et al., 2008).

RNA SAMPLE COLLECTION AND PREPARATION FOR QUANTITATIVE
REVERSE-TRANSCRIPTASE PCR (qRT-PCR)
To investigate temporal expressional patterns of NOS and HSP90
genes in H. asinina, total ribonucleic acid (RNA) samples were
collected during embryonic, larval, and post-larval development
(Figure 1). Embryonic and larval samples were collected from the
culture chambers described above. To collect the post-larval sam-
ples of H. asinina, competent veligers (96 hpf) were exposed to
live CA in 12 cm petri dishes with live CA shards. We only col-
lected those individuals crawling on live CA to ensure a clear
discrimination between still-swimming larvae and post-larvae
that had initiated settlement and metamorphosis.

For all RNA samples, ∼1000 individuals were collected for
each sampling point, and were preserved in TRI reagent (Sigma)
at −80◦C prior to extraction. RNA extraction and comple-
mentary DNA (cDNA) synthesis followed methods described in
Williams et al. (2009a). For the assessment of genomic DNA
contamination, no-RT control samples were prepared from the
0.5 μg DNase-treated RNA for the all RNA samples and tested
by quantitative RT-PCR (qRT-PCR). All synthesized cDNA and
no-RT control samples were stored at −20◦C.

ISOLATION OF HasNOS
We isolated a single NOS gene from H. asinina (HasNOS)
by degenerate PCR. The degenerate primers were designed
from the alignment of NOS derived amino acid sequence
from the following species: Lehmannia valentiana (BAF73722),
Aplysia californica 1 and 2 (AAK83069 and AAK92211, respec-
tively), Branchiostoma floridae (AAQ02989), Nematostella vecten-
sis (XP001631503), Sepia officinalis A and B (AAS93626
and AAS93627, respectively), and Lottia gigantia (JGI223312)
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Table 1 | Summary of chemicals and their concentrations used in metamorphosis assay of Haliotis asinina.

Functions Pharmacological agents Concentrations (mM) Citation(s)

NOS inhibitors L-NAME (L-nitroarginine methylester) 0.001, 0.01, 0.05 Froggett and Leise, 1999; Pechenik et al., 2007; Bishop et al., 2008

AGH (aminoguanidine hemisulfate) 0.001, 0.01, 0.1, 0.25 Pechenik et al., 2007

SMIS (S-methylisothiourea sulfate) 0.001, 0.01, 0.1 Pechenik et al., 2007

NO donors SNAP (S-nitroso-N-acetyl-penicillamine) 0.001, 0.01, 0.05 Froggett and Leise, 1999; Bishop et al., 2008

L-Arginine 0.001, 0.01, 0.1 Bishop et al., 2008

Other molluscan studies assaying these chemicals are noted.

(Figure 2). The degenerate forward (DegF1) and reverse (DegR1)
primers were designed from conserved amino acid sequences
of CNHIKY and CPADWVW, respectively (Figure 2). The lat-
ter amino acid sequence contains a part of the tetrahydro-
biopterin (BH4) binding site, which is a highly conserved region
of metazoan NOS (Andreakis et al., 2011). The DegF1 and
DegR1 sequences were 5′-TGYAAYCAYATHARTAY-3′ and 5′-
CCANACCCARTCNSCNGGRCA-3′, respectively. A touch-down
PCR profile was used: 94◦C for 2 min, 5 cycles at 94◦C for 30 s,
55 to 49◦C (2◦C increment for every 5 cycles) for 30 s, and 70◦C
for 3 min, 25 cycles at 94◦C for 30 s, 47◦C for 30 s, and 70◦C for
3 min, with a final extension of 72◦C for 10 min. Each PCR reac-
tion comprised 1x reaction buffer (Promega), 0.2 mM dNTP, 1 U
Taq polymerase (New England Biolab), and 1 μM of each primer
in a total volume of 20 μL.

The degenerate PCR products were separated and visualized by
1.5 % agarose TAE gel electrophoresis. Products of the expected
size (approximately 500 bp) were excised and gel-purified by a sil-
ica suspension method (Boyle and Lew, 1995). The purified PCR
products were then cloned using the pGEM-T Easy Vector System
1, following the manufacturer’s recommendations (Promega).
Successfully transformed recombinant colonies were picked and
directly added to a second PCR mixture with a final concentra-
tion of 1x reaction buffer (Promega), 0.5 mM MgCl2, 0.2 mM
dNTP, 1.5 U Taq polymerase (New England Biolab), and 0.25 μM
of both M13 forward and reverse primers to amplify inserts.
This second PCR reaction used a profile of 94◦C for 5 min, 35
cycles of 94◦C for 30 s, 55◦C for 1 min, and 72◦C for 1 min,
with a final extension of 72◦C for 10 min. Products were then
separated by 1.5 % agarose TAE gel electrophoresis and those
of correct size were purified using the silica suspension method
(Boyle and Lew, 1995) as described above. The purified PCR
products were Sanger-sequenced using reactions containing 1 μL
of Big Dye Terminator mix v 3.1 (Applied Biosystems), 1x Big
Dye Terminator reaction buffer, 3.2 pmol of primer, and 6–10 ng
in a final volume of 10 μL, as recommended by the Australian
Genome Research Facility (AGRF). The sequenced products were
purified by magnesium sulfate precipitation in accordance with
the AGRF protocol and submitted to the AGRF Brisbane node
(Queensland, Australia). The resulting sequences were compared
to previously-deposited orthologs in the National Center for
Biotechnology Information (NCBI) by tBLASTx queries.

We first isolated a HasNOS fragment of 210 bp, sufficient to
design a primer set for quantitative real-time PCR (qRT-PCR).
To extend the length of the HasNOS sequence, as necessary to

produce an adequate length RNA probe for whole mount in
situ hybridization analysis, we then designed a set of degener-
ate primers from AA sequences of AWRNAPRCIGRIQW (DegF2)
and ALGSKAYP (DegR2) in aforementioned species, except Lottia
gigantia (Figure 2). These amino acid sequences are located in the
functional heme and flavin mononucleotide (FMN) binding sites,
respectively. Andreakis et al. (2011) found both binding sites in all
metazoan NOS orthologs analyzed, showing the highly conserved
nature of these two functional sites. The sequences of DegF2
and DegR2 were 5′-CCNMGNTGYATHGGNMGNATHCARTG-
3′ and 5′-GRTANGCNCKNSWNCCNARNCC-3′, respectively.
This target region is located in the NOS oxygenase domain
and encompasses the previously identified HasNOS nucleotide
sequence. A touch-down PCR cycle was run as above with modi-
fied annealing temperatures from 54 to 46◦C (2◦C increment for
every 5 cycles) and 44◦C for the following cycle. The obtained
PCR product was used to run a nested-PCR with the degener-
ate forward primer and a gene-specific reverse primer (5′-CCC
GAAGACGCTGCTCGTTCTCC-3′) designed from the fragment
of HasNOS nucleotide sequence isolated by the first attempt
of isolation. This overlap in primer sets ensured that the two
sequenced regions were contiguous. Nested PCRs used a profile
of 94◦C for 5 min, 35 cycles at 94◦C for 30 s, 48◦C for 30 s, and
72◦C for 1 min, and 72◦C for 10 min. Resulting products of the
expected size were purified and directly submitted to AGRF for
Sanger sequencing. The obtained sequence was again confirmed
as a fragment of NOS gene by tBLASTx.

The full sequence of the H. asinina HSP90 gene was previously
obtained and named as HasHSP90A (Gunter and Degnan, 2007)
[GenBank: EF621884].

qRT-PCR TO ASSAY HasNOS AND HasHSP90A TEMPORAL
EXPRESSION
To analyze the transcriptional profiles of HasNOS and
HasHSP90A genes during H. asinina development (embry-
onic, larval, and post-larval stages) (Figure 1), we performed
quantitative real-time PCR (qRT-PCR) as described in Williams
and Degnan (2009) with following modifications. About 3.75 ng
cDNA template of each sample was mixed in a 15 μL reaction
mix comprising cDNA, SYBR Green Master mix (Roche),
and 0.17–0.34 μM primer on a Light Cycler 480 (Roche). The
following gene-specific primers were designed manually to
meet criteria of >45% GC content and >60◦C primer melting
temperature: HasNOS forward 5′-TGGGTTTGGACGTCCGGA
AGAGC-3′ and reverse 5′-CCCGAAGACGCTGCTCGTTC
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FIGURE 2 | Multiple sequence alignment of NOS derived amino acid

sequences. Black shading indicate completely conserved residues; gray
shading indicates semi-conserved residues. The locations of amino acid
sequence used to design degenerate primers are indicated by DegF1,
DegF2, DegR1, and DegR2. Homo sapiens neuronal nitric oxide synthase

(HsnNOS) was used for a reference to indicate conserved functional sites:
Heme, BH4 (tetrahydrobiopterin), CaM (calmodulin), and FMN (flavin
mononucleotide). Lv Lehmannia valentiana, So Sepia officinalis, Lg, Lottia
gigantia, Ac Aplysia californica, Bf Branchiostoma floridae, Nv Nematostella
vectensis, and Hs Homo sapiens.
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TCC-3′ and HasHSP90A forward 5′-GTTACCTCCCCTTGC
TGTATTGTCAC-3′ and reverse 5′-TTGTCAGCATCTGCCTTCT
CCTTC-3′.

To normalize the level of transcription for obtaining rel-
ative gene expression values, we used the geometric mean
of two reference genes - Has-nascent polypeptide- associated
complex alpha polypeptide (NACA) (forward 5′-TGTCGCAA
GCCAACGTTTCA-3′ and reverse 5′- GACAGCATGTTCAGCA
CTGGT-3′) and Has-ubiquitin (forward 5′-TGGCAAGCAGT
TGGAAGATGGT-3′ and reverse 5′-CAGTTGTACTTGGAGGCC
AGGAT-3′). These reference genes were previously chosen by
Williams et al. (2009a) from microarray expression data by select-
ing for transcripts showing the least variable expression across
larval and post-larval developmental stages. Their stability within
our experimental sample set was confirmed using Genorm soft-
ware (Vandesompele et al., 2002).

The following qRT-PCR reaction parameters were used: ini-
tial denaturation 95◦C for 10 min (ramp rate 4.4◦C/s), and 40–50
cycles of 95◦C for 5 s (ramp rate 4.4◦C/s), 58◦C for 10 s (ramp
rate 2.2◦C/s), and 72◦C for 20 s (ramp rate 4.4◦C/s). Melt curve
data acquisition was from 55–95◦C with continuous measure-
ment (acquisition/◦C = 5). All samples were run in triplicate.
The purity of PCR product was confirmed by the presence of
only a single peak in the resultant temperature melt curve. For
each primer pair, a standard curve was generated to calculate the
efficiency of qRT-PCR using a dilution series from the calibra-
tor sample, which was a mixture of 4 μl of all undiluted cDNA
samples. In addition to the developmental stages cDNAs, a no-
template (H2O) control and the calibrator sample were included
for each qRT-PCR run and for each primer pair. The efficien-
cies of each primer pair and the cycle threshold of each sample
were calculated by the second derivative method using Roche
Light Cycler 480 software program. Relative expression ratios
were calculated as described in Williams and Degnan (2009).

WHOLE MOUNT IN SITU HYBRIDIZATION (WMISH) TO ASSAY HasNOS
AND HasHSP90A SPATIAL EXPRESSION
To determine spatial localization of HasNOS and HasHSP90A
during larval development, H. asinina veligers were sampled at
48, 72, and 96 hpf (Figure 1); 48 and 72 hpf are precompetent
larvae, and 96 hpf are competent larvae. Fixation and storage of
H. asinina larvae for WMISH were carried out as described in
Williams and Degnan (2009). Dioxygenin (DIG)-labeled anti-
sense RNA probes for HasNOS and HasHSP90A were synthesized
from purified PCR products that were amplified from a mix-
ture of embryonic and larval cDNA collected as described above,
using 10× DIG labeled mix (Roche) following the manufacturer’s
instructions. The HasNOS probe was transcribed from a 702 bp
fragment of nucleotide sequence identified above. The probe for
HasHSP90A was transcribed exactly as described in Gunter and
Degnan (2007). The procedure of WMISH to examine the spa-
tial gene expression was performed as described in Williams and
Degnan (2009).

STATISTICAL ANALYSIS
Data collected from metamorphosis assays were analyzed by One-
Way analysis of variance (ANOVA) with treatment as a factor.

Significant differences among treatments were detected by Tukey’s
HSD post-hoc testing. Prior to ANOVA, all data were arcsine-
transformed to improve the normal distribution of samples.
Levene’s test was performed to ensure homogeneity of variance
among treatments. All statistical analyses were performed in R (R
Foundation for Statistical Computing). An alpha value of 0.05 was
used to determine a significant difference (Zar, 1984).

RESULTS
NOS INHIBITORS SUPPRESS METAMORPHOSIS IN HALIOTIS ASININA,
BUT NO DONORS HAVE NO EFFECT
Pharmacological experiments to test the role of NO in regu-
lating settlement and metamorphosis in the tropical abalone
Haliotis asinina were performed using both NOS inhibitors and
NO donors (Table 1). Because competent veligers of H. asinina
require the presence of coralline algae (CA) to induce metamor-
phosis (Williams et al., 2008), pharmacological experiments were
conducted both with and without live CA. This allowed us to
examine whether application of a pharmacological agent alone
is sufficient to induce metamorphosis or sufficient to inhibit the
inductive capability of live CA. In the absence of live CA that
is already known to be an effective environmental inductive cue
for metamorphosis in H. asinina, none of the pharmacological
treatments—neither inhibitors nor donors—were able to induce
metamorphosis on their own (Figures 3, 4).

In the presence of live CA, however, the application of NOS
inhibitors gave results that are strikingly discordant with any mol-
luscan studies published so far. All of the three NOS inhibitors
examined—L-NAME, AGH, and SMIS (Table 1)—suppressed
the mean percentage of larval metamorphosis in the presence
of live CA, and did so in a concentration-dependent manner
(Figure 3). The mean percent metamorphosis was significantly
less than the positive control in the 0.01 and 0.05 mM L-NAME
(Figure 2A), 0.25 mM AGH (Figure 2B), and 0.1 mM SMIS
(Figure 2C) treatments in the presence of the live CA. In con-
trast, in the presence of live CA, neither of the NO donors—we
tried both SNAP and L-arginine (Table 1)—significantly affected
the mean percentage of larval metamorphosis in comparison
with the positive controls (Figure 4). We do not believe that
our ability to detect an enhanced rate of metamorphosis in
the presence of NO donors was constrained by a ceiling effect,
because our positive CA controls achieved only 50–70% meta-
morphosis in these experiments. In the SNAP experiment, the
mean percentage of larval metamorphosis in the solvent control,
DMSO, also did not significantly differ from the positive control
(Figure 4A).

HasNOS AND HasHSP90A GENES HAVE SIMILAR EXPRESSION
PROFILES THROUGH THE ONSET OF METAMORPHOSIS
As an initial step to analyze the expression of NOS and HSP90
in H. asinina, we used degenerate PCR to isolate the partial NOS
gene sequence, which was used to design specific primers for qRT-
PCR and to synthesize specific probes for in situ hybridization
analyses (see below).

Degenerate PCR yielded a putative 702 bp HasNOS prod-
uct, which was confirmed to be a partial NOS gene sequence
by tBLASTx against NCBI databases. The tBLASTx analysis
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FIGURE 3 | Effect of NOS inhibitors on metamorphosis of Haliotis

asinina. (A) L-nitroarginine methyl ester (L-NAME), (B) aminoguanidine
hemisulfate (AGH), and (C) S-methylisothiourea sulfate (SMIS) were applied
at various concentrations. Filtered sea water (FSW) and Amphiroa
ephedraea (CA) were used as negative and positive controls, respectively.
The application of NO inhibitors alone without CA completely failed to
induce metamorphosis. Data are presented as the mean percentage of
larval metamorphosis ± s.e.m. (n = 3, 30 larvae per replicate). Diamonds
show the actual percentage of larval metamorphosis in each replicate.
Letters above error bars indicate statistically significant differences
(P < 0.05), as determined by one-way analysis of variance and Tukey’s HSD
post-hoc testing.

showed very high sequence similarity to other molluscan
orthologs, including Stramonita haemastoma (FR667655, E-
value: 1e–115), Lehmannia valentiana (AB333805, E-value: 3e–
110), and Crassostrea virginica (GQ844865, E-value: 7e–110). The
Conserved Domain Database (CDD) confirmed that the isolated
HasNOS was part of the NOS oxygenase domain, which was the
intended target region of the degenerate primers. This partial
Haliotis asinina NOS sequence has been named HasNOS and is
available at NCBI [GenBank: KC571824].

Temporal expression profiles of HasNOS and HasHSP90A
through embryonic, larval, and post-larval development

FIGURE 4 | Effect of NO donors on metamorphosis of Haliotis asinina.

(A) S-nitroso-N-acetyl-penicillamine (SNAP) and (B) L-Arginine were applied
at various concentrations. Filtered sea water (FSW) and Amphiroa
ephedraea (CA) were used as negative and positive controls, respectively.
Data are presented as the mean percentage of larval metamorphosis ±
s.e.m. (n = 3, 30 larvae per replicate). Diamonds show the actual
percentage of larval metamorphosis in each replicate. Letters above error
bars indicate statistically significant differences (P < 0.05), as determined
by one-way analysis of variance and Tukey’s HSD post-hoc testing.

(Figure 1) were measured by qRT-PCR (Figure 5). Both genes
are expressed in all developmental stages examined. HasNOS is
low from the egg until 24 hpf (Figure 5A). At 48 hpf, expression
increases and then is maintained relatively stable, except for a
sharp decrease at 84 hpf. The highest expression level among
larvae is found at 144 hpf. Expression of HasNOS in post-larvae
(that have initiated metamorphosis) shows more fluctuation in
comparison with larvae of the same age that have not initiated
metamorphosis. During the early post-larval stages (1–8 hpi), the
expression level gradually declines, but sharply increases by 12
hpi, at which time it shows the highest expression level observed
among samples induced to metamorphose. The expression
pattern for 24 and 48 hpi is similar to that for the corresponding
larval samples of 120 and 144 hpf.

For HasHSP90A, the highest expression is seen at 10.5 hpf
(Figure 5B). Expression then consistently declines through lar-
val development until 97 hpf, followed by gradual increases from
100 to 108 hpf. After 108 hpf, the expression level decreases
quite dramatically by 120 hpf, at which time it shows the lowest
expression level observed among larval samples. Interestingly, the
fluctuation of HasHSP90A expression pattern during post-larval
development is comparable to that of HasNOS expression. The
abundance of HasHSP90A transcript gradually decreases during
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FIGURE 5 | HasNOS (A) and HasHSP90A (B) gene expression through

H. asinina normal development. Transcript abundance was assessed by
qRT-PCR using mRNA purified from a pool of ∼1000 embryos or larvae for
each developmental stage (red circles). Transcript abundance in pooled
samples of post-larvae induced by coralline algae Amphiroa ephedraea is
denoted by blue diamonds. Data are presented as log-transformed mean ±
s.e.m. of three technical replicates.

the early post-larval stages and then increases sharply by 12 hpi,
followed by fluctuations around 24–48 hpi.

WHOLE MOUNT IN SITU HYBRIDIZATION REVEALS THAT
HasNOS—BUT NOT HSP90A—TRANSCRIPTS ARE LOCALIZED TO THE
LARVAL FOOT
Whole mount in situ hybridization (WMISH) was performed
to examine spatial expression of HasNOS and HasHSP90A in
precompetent (48 and 72 hpf) and competent (96 hpf) veligers
(Figure 1). At 48 hpf, HasNOS is localized to the larval retractor
muscle and to a tight cluster of unidentified cells in the right lat-
eral side of the mantle tissue (Figures 6A,B). This unidentified
right mantle expression is maintained in 72 and 96 hpf larvae
(Figures 6C–F). Additionally at this time, HasNOS expression
appears in the cells aligned along the lateral edge of the foot
(Figures 6C–F). By 96 hpf, expression in the foot has expanded
across the pedal sole (Figure 6F). Unlike previous studies of spa-
tial expression in other molluscan species (Thavaradhara and
Leise, 2001; Pechenik et al., 2007; Bishop et al., 2008), no

HasNOS expression is detectable in the larval central nervous sys-
tem (CNS). Schematic representation of HasNOS localizations is
shown in Figure 6G.

HasHSP90A is clearly localized to mantle tissue in 48 hpf
larvae (Figures 7A,B), but by 72 and 96 hpf, transcripts are dif-
ficult to detect above background (Figures 7C,D). These results
are concordant with the transcriptional abundance indicated by
the qRT-PCR assay, in that HasHSP90A continues to decline
through larval development (Figure 4B). Schematic representa-
tion of HasHSP90A localizations is shown in Figure 7E.

DISCUSSION
NITRIC OXIDE FACILITATES THE METAMORPHIC INDUCTION OF H.
ASININA
Past studies so far have reported that NO functions as a nega-
tive (repressive) regulator of metamorphosis in several molluscs,
namely I. obsoleta, C. fornicata, P. sibogae, and A. willowi (Froggett
and Leise, 1999; Pechenik et al., 2007; Bishop et al., 2008; Romero
et al., 2013). Here we reveal a first time contrasting situation, in
which NO does not have a repressive function, but rather appears
to assist in the initiation of larval metamorphosis in the abalone
Haliotis asinina. In the context of the generalist-specialist lar-
vae hypothesis (Bishop et al., 2006; Hodin, 2006; Romero et al.,
2013), our results support the hypothesis for the modulatory role
of NO at the initiation of metamorphosis in specialist larvae.
However, in contrast to larvae of P. sibogae or A. willowi, in which
NO repressively modulates the initiation of metamorphosis, NO
in H. asinina appears to inductively modulate the initiation of
metamorphosis.

Specifically, all NOS inhibitors examined in the current
study—L-NAME, AGH, and SMIS—significantly suppressed
metamorphosis in H. asinina in the presence of live CA
(Figure 3), indicating that NO is a facilitator of metamorphic
induction in this species. Williams et al. (2009b) showed that live
CA induces a significantly higher mean percentage of H. asinina
larval metamorphosis than does dead (bleached) CA, implying
that the biomolecules derived from live CA play a crucial role
in the induction of metamorphosis. We propose therefore that
the application of NOS inhibitors impedes the signaling required
to modulate the biomolecules derived from live CA, resulting in
significant suppression of larval metamorphosis.

Importantly, the failure of NO donors examined in this
study—SNAP and L-arginine—to induce metamorphosis in the
absence of live CA indicates that elevated NO alone cannot act
as an inductive agent (Figure 4). This suggests that the activa-
tion of at least one other morphogenetic pathway by inductive
live CA is required for successful metamorphosis of H. asin-
ina. More than 25 years ago, Baxter and Morse (1987) proposed
the existence of two independent metamorphic pathways in the
red abalone, Haliotis rufescens. One of these, which constitutes
adenylate cyclase cascades coupled with gamma-aminobutyric
acid (GABA) receptors, they named the morphogenetic pathway.
The other, which constitutes chemosensory lysine receptors regu-
lated by G protein signaling complexes, they named the regulatory
pathway. While the sole activation of the morphogenetic pathway
by externally-applied GABA can directly induce metamorpho-
sis of H. rufescens larvae, stimulation of the regulatory pathway
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FIGURE 6 | Spatial expression of HasNOS assessed by whole mount in

situ hybridisation. Right lateral and dorsal views are shown for each
developmental stage. (A,B) 48 hpf pre-competent larvae. Probe
concentration of 1 ng/μl was used. Arrows indicate the larval retractor
muscle and arrowheads are pointing to a cluster of unidentified cells in the
right lateral side of the mantle tissue. (C,D) 72 hpf pre-competent larvae.
Probe concentration of 2 ng/μl was used. (E,F) 96 hpf competent larvae.
Probe concentration of 2 ng/μl was used. In (C–F), arrows indicate the
cells aligned along the bottom of the lateral edge of the foot and

arrowheads are pointing a cluster of unidentified cells on the right lateral
side of veligers. Expansion of HasNOS expression across the sole is
visible in (F). (G) A schematic representation of HasNOS localizations. The
localization of a cluster of unidentified cells in the right lateral side of the
mantle tissue in 48, 72, and 96 hpf larvae is indicated by green. The
localization in the larval retractor muscle in 48 hpf larvae is indicated by
sanded green. The localization in the lateral edge of the foot in 72 and
96 hpf larvae is indicated by red. e, eyespot; f, foot; m, mantle; o,
operculum; vm, visceral mass. Scale bars: (A–F), 50 μm.

alone fails to do so (Baxter and Morse, 1987). Remarkably, how-
ever, the regulatory pathway can significantly amplify the effect of
metamorphic induction by sub-optimal concentrations of GABA,
suggesting that the actual role of the regulatory pathway is to
increase the sensitivity of the morphogenetic pathway (Baxter
and Morse, 1987). The fact that the application of NO donors
alone is unable to induce metamorphosis in H. asinina suggests
that a similar system of dual metamorphic pathways may exist in
H. asinina to that reported in H. rufescens.

AN UP-REGULATION OF HasNOS AT COMPETENCY IS CONSISTENT
WITH NO FACILITATING THE INITIATION OF METAMORPHOSIS
Temporal gene expression profiles of HasNOS and HasHSP90A
in post-larvae exposed to live CA are similar to each other
(Figure 5), tentatively supporting the Bishop and Brandhorst
(2003) hypothesis of NOS-HSP90 interaction at the initiation
of settlement and metamorphosis. However, this support is not
compelling and does not extend to expression profiles during
attainment of competence, nor to spatial localization of tran-
scripts. During larval development, the HasNOS expression has
a sharp decrease to 84 hpf, but then increases again to 96 hpf,
by which time all H. asinina larvae have achieved competency
(Figure 5). As discussed above, NO may be playing a criti-
cal role in processing signals from inductive biomolecules to
regulate the initiation of metamorphosis in H. asinina; there-
fore, we hypothesize that this increased expression around
the time of acquiring competency is a molecular indication
that larvae are developmentally mature enough to be able to
respond to environmental cues that trigger the critical pelagic-
benthic transition. The localization of HasNOS transcripts to
the larval foot by 72 hpf (Figures 6C,D) and their expansion
across the pedal sole by 96 hpf (Figures 6E,F) also supports this

hypothesis (discussed further below). Intriguingly, both HasNOS
and HasHSP90A expression show a second spike of up-regulation
at 12 hpi (Figure 4), suggesting perhaps a different—and cur-
rently unknown—role of NO during post-larval development.

In other molluscs, in which NO acts as a negative regula-
tor of settlement and metamorphosis, NOS expression data is
reported only from the mud snail I. obsoleta (Hens et al., 2006)
and the slipper shell snail C. fornicata (Taris et al., 2009). In
I. obsoleta, the down-regulation of NOS soon after initiation of
metamorphosis (Hens et al., 2006) was considered to be consis-
tent with the hypothesis that endogenous NO is necessary for
retention of the larval state (Froggett and Leise, 1999). In C. forni-
cata, NOS expression was reported to gradually increase through
larval development, again consistent with a negative regulatory
role of NO (Taris et al., 2009). However, NOS expression also
then steadily increased during the first 6 h post metamorpho-
sis, and this was attributed to handling stress (Taris et al., 2009).
In H. asinina, our data also show some fluctuation in HasNOS
expression soon after induction (Figure 5A), and we conclude
that proper interpretation of these fluctuations will require addi-
tional expression analyses in conjunction with detailed descrip-
tions of the cellular and morphological reorganization during
metamorphosis of each species.

H. ASININA LARVAL FOOT AS A PUTATIVE SENSORY STRUCTURE FOR
THE INDUCTION OF METAMORPHOSIS
Past studies have provided evidence that the foot of gastropod
veliger larvae plays a significant role in the induction of metamor-
phosis, as it is a potential source of both chemo- and mechano-
receptors (Chia and Koss, 1988, 1989; Arkett et al., 1989; Jackson
et al., 2005; Stewart et al., 2011). In H. asinina, the localization
of Has-tft1, which is thought to be involved in the recognition of
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FIGURE 7 | Spatial expression of HasHSP90A assessed by whole

mount in situ hybridisation. (A,B) Right lateral and dorsal views of 48 hpf
pre-competent larvae. Probe concentration of 1 ng/μl was used. Arrows
indicate HasHSP90A localisation in mantle tissue. (C) Right lateral view of
72 hpf pre-competent larvae. Probe concentration of 1 ng/μl was used. (D)

Right lateral view of 96 hpf competent larvae. Probe concentration of
1 ng/μl was used. In (C,D) HasHSP90A localisation becomes hardly
detectable. (E) A schematic representation of HasHSP90A localization. The
localization in mantle tissue is indicated by blue. e, eyespot; f, foot; m,
mantle; o, operculum; vm, visceral mass. Scale bars: (A–D), 50 μm.

inductive cues, was detected in the anterior part of the larval foot
(and the cephalic tentacle) in competent larvae (Jackson et al.,
2005). More recently, Has-GABAAR-β transcripts were reported
localized to the lateral edge of the larval foot, and the application
of an anti-GABA receptor protein antibody significantly reduced
percent settlement induced by GABA, providing further evidence
for the larval foot as a sensory structure to modulate the induc-
tion of metamorphosis in competent larvae of H. asinina (Stewart
et al., 2011).

Spatial analysis of HasNOS gene expression (Figure 6) also
provides evidence for a sensory role of the larval foot in H. asinina
metamorphosis. HasNOS transcripts are not localized to the foot
of 48 hpf non-competent veligers; however, localization is appar-
ent in the lateral edge of the foot by 72 hpf and expands across
the pedal sole by 96 hpf, by which time all larvae are compe-
tent to settle (Jackson et al., 2005). At the same times, there is
no indication of HasNOS expression in any components of the
larval CNS (Figure 6), regardless of whether these components

are larval-specific or are retained in the adult CNS post-
metamorphosis. Together, these data on NOS gene expression,
combined with larval metamorphosis assays, strongly suggest that
NO modulates the metamorphic induction of H. asinina larvae
via the larval foot that is putatively functioning as a chemosen-
sory structure to receive and process external settlement cues.
This result differs from previous reports of NOS localization in
the larval CNS (Thavaradhara and Leise, 2001; Pechenik et al.,
2007; Bishop et al., 2008), and we propose below a relation-
ship between these contrasting spatial expression patterns and
contrasting regulatory roles for NO in molluscan metamorphosis.

A HYPOTHESIS TO EXPLAIN THE CONTRASTING REGULATORY ROLES
OF NO IN THE INITIATION OF MOLLUSCAN METAMORPHOSIS
A particularly significant outcome of this study is the unequivocal
demonstration of NO as an essential molecule for the induction
of H. asinina metamorphosis. This is a contrasting situation to
all previously published studies on NO in molluscs. Based upon
the limited comparative data available for NOS transcript and/or
protein localization in gastropod larvae of multiple species, we
present here a hypothesis to explain this contrasting function of
NO in molluscan metamorphosis. Including the current study,
the role of NO in molluscan metamorphosis has demonstrated
three discrete patterns so far: (a) a negative regulatory role,
whereby metamorphosis is induced solely by application of a
NOS inhibitor, as reported in I. obsoleta, C. fornicata, and A. wil-
lowi (Froggett and Leise, 1999; Pechenik et al., 2007; Romero
et al., 2013); (b) a negative modulatory role, whereby induction of
metamorphosis is enhanced by the application of a NOS inhibitor
in combination with an inductive substrate, as reported in P. sibo-
gae and A. willowi (Bishop et al., 2008; Romero et al., 2013); and
(c) an inductive role, whereby metamorphosis is suppressed by
the application of a NOS inhibitor, as reported here for H. asinina.
Very interestingly, these patterns are in accordance with variations
in spatial NOS or NOS expression in these species.

Spatial expression data for the NOS protein or gene are avail-
able for I. obsoleta (Thavaradhara and Leise, 2001), C. fornicata
(Pechenik et al., 2007), P. sibogae (Bishop et al., 2008), and
H. asinina (this study). Both I. obsoleta and C. fornicata express
NOS in the ASO (Thavaradhara and Leise, 2001; Pechenik et al.,
2007), which as previously mentioned is a larval-specific sen-
sory structure thought to function mainly to detect settlement
cues (Croll and Dickinson, 2004; Croll, 2009). In I. obsoleta,
the ASO is completely degraded by programmed cell death by
72 hpi (Gifondorwa and Leise, 2006). Although the fate of the
ASO during and immediately after the metamorphosis of C. for-
nicata has not yet been reported, NOS expression is no longer
detected in older veligers (9 days pre-competent and 23 days com-
petent veligers), suggesting a mitigated function of the ASO as
the veligers age (Pechenik et al., 2007). In P. sibogae, Bishop et al.
(2008) found NOS localized to the cerebral ganglia, pedal gan-
glia, peripheral nervous systems around pedal ganglia, and the
putative sensory cells of the foot. Unlike the ASO, the cerebral
and pedal ganglia of P. sibogae become a part of the adult CNS
after metamorphosis (Croll and Dickinson, 2004). Although the
ASO of P. sibogae is a sensory structure that seems to receive
inductive cues and modulate the initiation of settlement and
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metamorphosis (Hadfield et al., 2000), NOS localization is unde-
tectable in the ASO in this species (Bishop et al., 2008).

In contrast to I. obsoleta, C. fornicata, and P. sibogae, NOS is
localized to neither the larval nervous structure nor the CNS in
H. asinina competent veligers, but instead to the putative periph-
eral sensory system of the foot. Therefore, we postulate that the
means by which NO exerts its effect on metamorphosis of mol-
luscan larvae may be directly related to the localization of NOS
gene or protein with following patterns: (1) when NOS expres-
sion is mainly localized to larval-specific nervous structures that
have a sensory role in the CNS, NO acts as a negative regulator;
(2) when NOS expression is localized to parts of the CNS that are
not larval-specific structures, NO acts as a negative modulator;
and (3) when NOS expression is localized to peripheral sen-
sory systems, NO acts as a facilitator of metamorphic induction.
This hypothesis will be explicitly testable as more, taxonomically
diverse studies on NOS regulation and expression in molluscan
larval metamorphosis become available.

CONCLUSION
By integrating metamorphosis assays with pharmacological treat-
ments and HasNOS and HasHSP90A gene expression analyses
in the tropical abalone H. asinina, we provide the first evidence
for NO acting as an inductive, rather than repressive, agent in
the initiation of molluscan metamorphosis. Elevated NO levels
alone are not sufficient to induce H. asinina metamorphosis, but
NO does appear to modulate substrate-derived inductive signals.
Specifically, we propose that the foot of H. asinina veligers acts
as a site of chemoreception that modulates—via NO signaling—
inductive signals derived from live coralline algae substrates.
Inter-specific comparisons suggest that the variable function of
NO in molluscan metamorphosis as a negative regulator, a neg-
ative modulator, or a facilitator pertains to spatial localization of
NOS in the larval-specific CNS, the non-larval specific CNS, or
the larval peripheral sensory system, respectively.
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