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Coral reefs are considered among the most diverse ecosystems on Earth, yet little
is known about the diversity of plankton in the surrounding water column. Moreover,
few studies have utilized genomic methods to investigate zooplankton diversity in any
habitat. This study investigated the diversity of taxa by sampling 45 stations around three
reef systems in the central/southern Red Sea. The diversity of metazoan plankton was
investigated by targeting the 18S rRNA gene and clustering OTUs at 97% sequence
similarity. A total of 754 and 854 metazoan OTUs were observed in the data set for
the 1380F and 1389F primer sets respectively. The phylum Arthropoda dominated both
primer sets accounting for ∼60% of reads followed by Cnidaria (∼20%). Only about
20% of OTUs were shared between all three reef systems and the relation between
geographic distance and Jaccard Similarity measures was not significant. Cluster analysis
showed that there was no distinct split between reefs and stations from different reefs
clustered together both for metazoans as a whole and for the phyla Arthropoda, Cnidaria
and Chordata separately. This suggests that distance may not be a determining factor in
the taxonomic composition of stations.
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INTRODUCTION
Coral reefs are known for harboring some of the highest biodi-
versity of benthic fauna and fish (Roberts et al., 2002). However,
little is known about the planktonic diversity in the water col-
umn associated with coral reefs. This is particularly true in the
Red Sea, a narrow, semi-confined sea that combines high tem-
perature (ranging from 25 to 32◦C), a deep basin (maximum
depth of about 2300 m), oligotrophic conditions and high salin-
ity (Raitsos et al., 2013). This combination of parameters makes
the Red Sea an ideal case study for understanding how future cli-
matic conditions may affect zooplankton communities. However,
in the Red Sea zooplankton studies have been mainly limited to
the northern regions and especially the Gulf of Aqaba (Echelman
and Fishelson, 1990; Cornils et al., 2005; El-Sherbiny et al., 2007).

One of the challenges presented by subtropical communities is
that of high biodiversity. Due to similarities in morphology the
identification of zooplankton, following a traditional taxonomic
approach, is complicated and time-consuming (Ji et al., 2013).
For organisms, especially juveniles, to be classified, experts for
each taxonomic group are required to undertake a taxonomically
broad environmental study (McManus and Katz, 2009). This lim-
its the spatial and temporal resolution of zooplankton community
studies.

The advent of molecular techniques has enabled greater res-
olution to taxonomic identification, allowing single organisms to

be compared using DNA sequencing. Other molecular techniques
for this purpose include DNA fingerprinting such as restriction
fragment length polymorphisms (RFLP), utilized for example
by Lindeque et al. (1999) and Wang et al. (2006) to determine
the identity of Calanus species at different developmental stages.
Multiplexed species specific PCRs have also been used to inves-
tigate the distribution of Calanus (Hill et al., 2001) and bivalve
larvae (Hare et al., 2000) in the North Atlantic. Extraction of bulk
environmental DNA and the amplification of suitable genes, such
as the nuclear small subunit (SSU) rRNA gene, has enabled whole
communities to be studied. Originally this was via the construc-
tion of clone libraries and the subsequent Sanger sequencing of
the inserts (Machida et al., 2009). This technique though was
limited to relatively few sequences from which evaluations of
species composition and richness were made. It was not until
“high throughput” second generation sequencing technologies
became readily available that large-scale environmental diver-
sity studies could be undertaken without the need for cloning.
This allowed for community DNA to be sequenced directly and
to a greater depth of coverage than previous molecular tech-
niques achieved. High throughput sequencing has been utilized
in the marine community mainly to study the diversity of bacteria
and archaea (Sogin et al., 2006; Brazelton et al., 2010), although
marine eukaryotes have also been studied including microbial
eukaryotes (Cheung et al., 2010; Logares et al., 2012), metazoa
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(Fonseca et al., 2010; Lindeque et al., 2013) and fish (Thomsen
et al., 2012). It is a technique with the potential to greatly sim-
plify comprehensive studies in areas of complex diversity and
taxonomy such as coral reefs.

In this study, we examine the diversity and biogeography
of zooplankton in three different reef systems in the cen-
tral/southern Red Sea, using high-throughput sequencing of SSU
rRNA amplicons. In particular we investigate the similarity in
the taxonomic composition of the reefs and whether there is any
trend between similarity in stations and geographic distance.

METHODS
SAMPLING
Sampling was undertaken at three reef systems in the cen-
tral/southern Red Sea. Samples were taken at 12 sites around
Al-Lith (sampling 5th–7th March 2012), 10 sites at Al-Qunfadah
(sampling 1st–3rd March 2012) and 23 sites at Farasan Islands
(sampling 18th–27th February 2012) (Figure 1). Details of the
sampling positions and dates are provided as supplementary
information (Table S1). Plankton samples were obtained using a

0.5 m diameter net with a 150 µm mesh size. The net was towed
for 15 min at 1.5 knots at a depth of 0.5 m. Samples were stored in
100% ethanol.

DNA EXTRACTION
Ethanol stored samples were centrifuged at 21000 × g for 15 min.
DNA was extracted based on the methods described in Bucklin
(2000). Ethanol was removed and the pellet resuspended in ATL
lysis buffer (Qiagen). The sample was transferred to a pestle
and mortar and crushed until liquefied. The resulting cell sus-
pension was incubated overnight at 55◦C with 20 µl proteinase
K (20 mg/mL) to ensure cell lysis. An equal volume of phe-
nol:chloroform:isoamyl alcohol was added to the sample, mixed
and centrifuged for 5 min. The aqueous layer was removed and a
second round of phenol extraction undertaken. An equal volume
of chloroform:isoamyl alcohol was added to the resulting aqueous
layer. The samples were centrifuged at 4◦C for 5 min. The aque-
ous layer was removed and DNA precipitated using 2.5 volumes
ethanol and 0.1 volumes sodium acetate at −20◦C. DNA was
washed in 70% ethanol and then resuspended in MilliQ water.

FIGURE 1 | Map illustrating the sampling points around the three different reef systems in the southern/central Red Sea. Produced with Ocean Data
View (ODV) (Schlitzer, 2014).
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PCR AMPLIFICATION AND SEQUENCING
Amplification of eukaryotic DNA was achieved using the general
eukaryotic primer sets designed by Amaral-Zettler et al. (2009).
Two forward primers 1380F and 1389F were used in combination
with a single reverse primer, 1510R. All primers had a Roche 454
tag as well as a 10 bp barcode. PCRs were undertaken in duplicate
on all samples using both primer sets. PCR amplicons were gen-
erated in duplicate 50 µl reaction volumes containing 2.5 U Taq
polymerase (Invitrogen), 1X Taq reaction Buffer, 200 µM dNTPs
(Invitrogen), 1.5 mM MgSO4, 0.05 mg Bovine Serum Albumin
(BSA) and 0.2 µM of each primer. PCR conditions were adapted
from Amaral-Zettler et al. (2009). An initial denaturation step of
3 min at 94◦C was followed by 30 cycles of 94◦C for 30 s, 57◦C
for 45 s and 72◦C for 45 s. This is followed by a final extension at
72◦C for 10 min. A negative no template control was run for each
primer pair.

PCR products were checked using agarose (1%) gel elec-
trophoresis. Duplicated PCR reactions were combined and the
PCR band excised from the gel and purified using Qiagen’s
gel extraction kit. Purified samples were pooled according to
barcode. Pools contained a combination of up to 15 samples
with unique barcodes. The two forward primers were not mul-
tiplexed together. Multiplexed samples were analyzed for purity
using an Agilent 2100 bioanalyzer machine. Emulsion PCR was
undertaken using Roche’s protocols. Library construction was
achieved using the Roche XLR70 kit and each pooled sample
was sequenced on a ¼ run on a Roche GS FLX system at the
KAUST core facility. Raw reads have been submitted to the NCBI
Sequence Read Archive (study acession SRP043020).

BIOINFORMATICS
Flowgram data (SFF-files) for each sample was processed using
modified settings (minflows = 200) for the RunTitaniumFast
script of AmpliconNoise (Quince et al., 2011). Denoised and
chimera-filtered sequences were concatenated, the reverse primer
removed and the sequence truncated using QIIME (Caporaso
et al., 2010a). Additional reference-based chimera filtering was
also carried out using UCHIME (Edgar et al., 2011), with
the SilvaRef111 used as a reference dataset. Sequences were
subsequently aligned and hierarchically clustered (using max-
imum linkage) using the NDist and FCluster programs of
AmpliconNoise, allowing operational taxonomic units (OTUs) to
be defined at four different cutoffs (90, 95, 97, and 99% sequence
identity), and picking the most abundant sequence from each
OTU as a reference. OTUs appearing in only one sample (includ-
ing singletons) were removed from further analysis as well as
samples containing fewer than 2000 total reads.

In order to verify OTU clustering results, UPARSE (Edgar,
2013) was also used as an alternative clustering method for
all amplicons resulting from the 1389 primer. All sequences
were extracted from SFF flowgram data using the sfffile pro-
gram of the GS Data Analysis Software package (Roche) to split
datasets according to barcodes followed by sff_extract from the
seq_crumbs package in order to convert data to FASTQ format.
An inhouse script was thereafter used to crop primer sequences
and remove all reads not matching the 1389F primer exactly
and directly adjacent to the barcode. A final crop length of 150

nt, max errors <0.5 and 97% similarity cutoff and removal of
singletons were used as parameters for UPARSE and the result-
ing OTU richness was compared to the corresponding value for
AmpliconNoise 97% OTUs for each sample, as well as for each
metazoan order-level taxon of the composite community.

Taxonomic assignment of resulting reference sequences was
carried out using CREST with the SilvaMod database as reference
(Lanzén et al., 2012) (default parameters, except for min. bitscore
100). Sequences with no hits against the SilvaMod database were
reanalyzed against the Silva_111 database in QIIME and the
taxonomy appropriately updated. In addition, the 10 most abun-
dant OTUs were taxonomically classified using BLASTn (Altschul
et al., 1990) alignment to the NCBI nucleotide database and
manual inspection to avoid unclassified sequences.

All OTUs with undefined taxonomy or non-metazoan assign-
ments were removed from further analysis. OTU tables were
constructed in QIIME (make_otu_table.py) and used as a basis
for further analysis. Unique and shared OTUs were identified
from the OTU table and plotted using VennDiagram (Chen,
2013) in R (R development core team, 2014). The species accu-
mulation curve (Ugland et al., 2003) was produced using the
specaccum pipeline in vegan (Oksanen et al., 2013). Summaries
of taxonomic composition were produced in QIIME (summa-
rize_taxa_through_plots.py) and plotted in R. Jaccard Similarity
indices were produced using PAST (Hammer et al., 2001).
Reference sequences were aligned against the Silva_111 database
using PyNAST (Caporaso et al., 2010b) and UCLUST pairwise
alignment incorporated in the align_seqs.py script in QIIME.
Weighted and unweighted UniFrac distance matrices (Lozupone
and Knight, 2005) were produced in phyloseq (McMurdie and
Holmes, 2013) based on the OTU table and phylogenetic tree
constructed in QIIME. Non-metric multidimensional scaling
(NMDS) plots were plotted in R using phyloseq and statistical
analysis of the distance matrices was undertaken using Analysis
of Similarity (ANOSIM) in vegan.

RESULTS
SEQUENCE ANALYSIS
After filtering, denoising and chimera filtering over 893,000 reads
from the primer 1389F and 608,000 from 1380F were retained
(see Table 1). OTU clustering at 90, 95, 97, and 99% maximum
linkage resulted in between 456 and 854 OTUs classified as meta-
zoa for the composite dataset using 1389F and 355–795 for 1380F
(Table 2).

To compare results with an alternative approach to denois-
ing and OTU clustering, UPARSE (Edgar, 2013) complemented

Table 1 | Number of reads remaining after denoising and reference

based chimera filtering.

Denoising method # Reads

AmpliconNoise UPARSE

Primer 1380F 1389F 1389F
Raw 1,142,781 1,497,905 1,497,905
AN cleaned 610,191 893,857 –
UCHIME filtered 608,553 893,303 935,577
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by UCHIME was also employed to the datasets resulting from
primer 1389F, leaving a slightly higher number of sequence reads
(Table 1), but a lower total metazoan OTU richness from the
total community (538 at 97% similarity, see Table 2). As expected
total OTU richness within most identified phyla (Table 3) and
orders (Figure S1) was lower for UPARSE. However, the num-
ber of UPARSE OTUs appearing in each dataset was consistently
higher than for the default analysis (see Figure S2).

The amplicon length utilized in this study was only about
∼160 bp, with the consequence that small differences in sequence
reads (due to either natural variation or sequencing error) could
have significant effects on the clustering results. It was observed
that there was a greater proportion of reads from the 99%
clustering which were removed during the filtering of single-
tons (Table 2). This observation led to the adoption of the 97%
clustering level to be utilized for further analysis.

GENERAL TAXONOMIC COMPOSITION
A rarefaction curve (with 95% confidence limits) was produced
for the metazoan diversity in the central/southern Red Sea.
Figure 2 shows the number of metazoan OTUs obtained using

Table 2 | Number of Metazoan OTUs present after removal of

singletons and those OTUs only appearing in a single station.

Cluster (%) Method Metazoan OTUs

90 95 97 99

1380F primer AmpliconNoise 355 656 754 795

1389F primer AmpliconNoise 456 812 854 738

1389F primer UPARSE – – 538 –

Table 3 | Number of 97% OTUs attributed to each metazoan phyla.

Denoising method AmpliconNoise UPARSE

Primer 1380F 1389F 1389F

Arthropoda 453 518 279

Cnidaria 64 60 52

Chordata 60 57 30

Mollusca 60 71 49

Chaetognatha 32 28 22

Annelida 28 44 44

Echinodermata 24 24 20

Platyhelminthes 13 20 16

Ctenophora 8 10 7

Bryozoa 3 1 2

Nemertea 2 5 5

Hemichordata 2 1 3

Echiura 1 2 2

Branchiopoda 1 3 3

Tardigrada / 1 /

Sipuncula / 1 2

Mesozoa / 1 /

Porifera / / 2

Unclassified 2 1 0

the 1389F primer plotted against the number of sampled sta-
tions (2 out of 45 stations were removed for the 1389F primer set
because they did not meet the criteria of >2000 reads). From the
analysis species richness started to plateau around 800 OTUs sug-
gesting the sampling strategy was sufficient to reveal the majority
of the planktonic metazoan diversity associated with coral reefs
in this area. However, the diversity within each reef, especially Al
Qunfadah and Al Lith were only partially sampled.

A comparison between the two primers sets was undertaken
by merging all stations with >2000 reads in both primer sets.
Stations, with fewer reads were excluded from this analysis.
Multiple rarefactions (n = 100) at even depth (545,000 reads)
for each primer resulted in an average of 753 and 848 metazoan
OTUs for the 1380F and 1389F primers respectively. The phylum
Arthropoda dominated the zooplankton communities associated
with coral reefs in the central/southern Red Sea accounting for
60.2 and 61.1% for the 1380F and 1389F primer sets respectively
(Table 3).

Although the two primers sets gave slightly different results in
terms of diversity the overall trends were similar, thus the 1389F
primer set (which had a higher overall alpha diversity and breadth
of taxa) was used for the illustration of further diversity analysis.

TAXONOMIC COMPOSITION OF THREE REEF SYSTEMS IN THE
CENTRAL/SOUTHERN RED SEA
Total reads for each reef were rarefied multiple times (n = 100)
to an even depth of 59,000 reads in order to compare the domi-
nant taxa in each system. For the rarefied reef data an average of
580 OTUs were observed. The Farasan reef was found to have the
highest species richness with an average of 388 OTUs. Based on
average values 24.2% of the OTUs were shared between the three

FIGURE 2 | Rarefaction curve (with 95% confidence limits) showing the

number of metazoan OTUs observed with increasing number of

sampling stations for the 1389F primer set.
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reefs (Figure 3). The highest number of OTUs unique to a single
reef were observed in the Farasan Islands (135) with the highest
proportion of reads shared between two reefs occurring between
the two most geographically distant reefs (Al-Lith and Farasan
Islands).

Arthropoda was the dominant phylum across all three reef
systems (Figure 4), mainly composed of the class Maxillopoda
although a small proportion (up to 9%) of reads were tax-
onomically linked to the class Malacostraca. The Maxillopoda
reads were dominated by those relating to Calanoid cope-
pods whilst, those in the Malacostraca were mainly classified
in the Eumalacostraca. Significant contributions to the diver-
sity of the reefs were also made from the phyla Chordata
(class Appendicularia) and Cnidaria (class Siphonophora and
Trachylina). Mollusca although having a high number of OTUs
only accounted for a minor proportion (1%) of the reads (see
Table S2 for the proportion of each metazoan class found in
each reef).

To assess the taxonomic identification of the dominant OTUs
in each reef the number of reads for each station were rarefied
multiple times (n = 100) to 2000 (lowest number of reads in a
station). OTUs were ranked by the number of combined reads
of the stations present in each reef. For taxonomic classifications
the top BLAST hit against the NCBI nr database (environmental
sequences removed) was used. The Cnidarian Muggiaea sp. AGC-
2001 was dominant in Al-Qunfadah and Farasan whilst it was
second in Al-Alith. Calanus heglolandicus (OTU 677) was most
abundant in Al-Lith with another calanoid (OTU706) being the
second most abundant OTU in the other two reefs (Table 4).

A total of 4 were shared between all the reefs. The taxo-
nomic affiliations of these OTUs corresponded to Muggiaea sp.
AGC-2001, Calanus helgolandicus and Acartia longiremis. The

FIGURE 3 | Number of unique and shared OTUs observed across the

three reefs.

majority of OTUs present in the top 10 were related to copepods.
There were also representatives of cnidarians, chaetognatha,
ctenophores and tunicates.

Comparisons between the rarefied reef OTU tables showed
high levels of similarity based on weighted Unifrac values
(Table 5). The highest level of similarity was observed between
Farasan and Al-Qunfadah.

SPATIAL VARIABILITY IN THE TAXONOMIC COMPOSITION OF
INDIVIDUAL STATIONS
To investigate the taxonomic composition of metazoans present
in individual stations all stations for the 1389F primer set were
rarefied multiple times (n = 100) to two thousand reads and the
results averaged. Although this will not reveal the total diver-
sity of metazoans in the reef system it allows a comparison of
the dominant groups present in each station. Arthropoda were
the major component of most stations accounting for between
3.2 and 99.4% (average 60.8%) of the reads. The number of
Arthropoda OTUs ranged from 20 to 79, with an average of 38.
Cnidaria accounted for the next highest proportion of reads with
an average of 21.7% across all stations. The number of OTUs
ranged from 0 in Farasan3 to 12 (Al-Lith6) with an average of
4. Cnidarians accounted for the majority of reads in stations Al-
Lith10, Farasan9 and 14 and Al-Qunfadah2 and 3 (Figure 5).
Chordata were the third phyla in terms of contribution to the
number of reads. On average chordates accounted for 9.4% of
reads in the stations however they dominated the metazoan com-
munity in station Al-Lith13 with 61.5% of the reads. On average
there were 6 OTUs attributed to Chordata per station with the
number ranging from 2 to 15.

Jaccard Similarity measures were plotted against distance
between the stations in order to test the effect of distance on sim-
ilarity. Only a very slight negative trend was observed based on a
Mantel test (R = 0.16, p < 0.01, 999 permutations) (Figure 6).

Similarity between reef assemblages was investigated using
weighted and unweighted UniFrac distance matrices at different
taxonomic levels. For the weighted UniFrac results, there was no
differentiation of stations based on reefs for Metazoa, Arthropoda
and Cnidaria (Figures 7A,B,D). This was statistically confirmed
using the ANOSIM routine (Table 6). However, Chordata did
show a degree of separation based on the reef factor (R = 0.17,
p = 0.014) with most of the Farasan samples clustering apart
(Figure 7C). For the unweighted UniFrac distance matrices, there
was a significant effect of the factor reef for Metazoa (R = 0.2828,
p = 0.001) and Chordata (R = 0.1657, p = 0.003). NMDS plots
suggest that in both cases the stations belonging to Farasan are
clustering apart from Al-Lith and Al-Qunfadah (Figures 8A,D).
For Arthropoda and Cnidaria there is no significant clustering
according to the reef, which is in agreement with the ANOSIM
results (Figures 8B,C; Table 6).

DISCUSSION
To our knowledge this is the first study that utilizes high through-
put amplicon sequencing to undertake a study of the metazoan
community structure around coral reefs. Although there were dif-
ferences between the two primer sets in terms of the number of
OTUs detected within a taxa, both primer sets showed similar
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FIGURE 4 | Proportion of reads assigned to metazoan taxa across 3 reef systems in the southern Red Sea.

Table 4 | Ranking of OTUs (only top 10 of each reef) based on abundance for the three reefs for the 1389F primer.

OTU Top 10 Rank Taxonomy % ID E -value Length

Al-Lith Al-Qunfadah Farasan CREST taxonomy Top BLAST hit

11 / 9 / Sagittidae Aidanosagitta neglecta 99 3.00E − 67 148

18 / / 8 Siphonophora Resomia dunni 100 1.00E − 61 132

40 8 / / Copepoda Candacia bispinosa 89 1.00E − 36 134

44 / 5 3 Calanidae Subeucalanus pileatus 100 1.00E − 60 130

49 / / / Mertensiidae Lampocteis cruentiventer 100 1.00E − 60 130

72 4 3 5 Acartia longiremis Acartia longiremis 100 1.00E − 60 130

103 3 / / Liriope Liriope tetraphylla 100 7.00E − 64 136

133 / / 10 Copepoda Calanopia elliptica 97 6.00E − 69 119

195 / / 7 Calanoida Acartia longiremis 94 1.00E − 46 130

363 5 7 / Appendicularia Oikopleura sp. 92 5.00E − 45 135

379 / 10 / Calanidae Calanus helgolandicus 98 3.00E − 57 130

425 9 / / Beroe ovata Beroe ovate 99 6.00E − 59 130

540 10 / / Oikopleuridae Megalocercus huxeyi 100 1.00E − 61 132

677 1 8 4 Calanidae Calanus helgolandicus 100 1.00E − 60 130

706 6 2 2 Calanidae Calanus helgolandicus 95 1.00E − 50 131

1316 7 / 9 Oikopleura dioica Oikopleura sp. 100 2.00E − 63 135

1574 2 1 1 Calycophorae Muggiaea sp. ACG-2001 100 1.00E − 61 132

2777 / 6 6 Copepoda Corycaeus speciosus 100 1.00E − 60 130

2828 / 4 / Acartia longiremis Acartia longiremis 99 6.00E − 59 130

The taxonomic identitiy based on the CREST classification and top BLAST hit (excluding enivonmental samples), its percentage identity and E-value and length of

coverage for each OTU are detailed.

patterns. Arthropoda OTUs were the most abundant with consid-
erable numbers of OTUs related to the phyla Chordata, Cnidaria
and Mollusca. Although it was not possible to test this theory in
the current study, it is reasonable to use the number of reads as

an approximation of biomass, as supported by previous studies.
For example, Lindeque et al. (2013) found that using conversion
factors for decapod and bivalve larvae there was a suggestion that
the number of sequence reads was more related to biomass than
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number of individuals. Further studies, using conversion factors
for other taxa, especially copepods, would be required to make
this relationship clearer.

Another problem to consider with genetic approaches is the
present day limitations of genetic databases which contain lim-
ited reference sequences for planktonic organisms. Several OTUs
with the largest number of reads had top BLAST hits against
Calanus helgolandicus. This species, although abundant in the
Atlantic and Mediterranean (Fleminger and Hulsemann, 1977),
has not been recorded in the Red Sea. However, other species
of the genus Calanus have been observed in the Red Sea (Khalil
and Elrahman, 1997). Stereo microscope analysis of several repli-
cate samples from this study, indicate that Calanus helgolandicus
was not present in the samples. However, two other Calanoid
species Canthocalanus pauper and Undinula vulgaris were abun-
dant in the samples. The latter does not have a representative 18S
rRNA gene sequence in the NCBI database. Similar findings in
this study were also observed for the genus Acartia; A. amboinen-
sis was morphologically identified in the samples but there is
no 18S rRNA reference sequence in the NCBI database. As seen
in Table 4, the more conservative classification method used in
this study (CREST), appeared to successfully avoid false clas-
sifications to taxa where insufficient reference sequences were

Table 5 | Weighted Unifrac matrix between the 3 reefs for the 1389F

primer.

Al-Qunfadah Al-Lith

Al-Lith 0.22 0

Farasan 0.13 0.19

available, albeit at the cost of reduced resolution. The paucity
of molecular data for zooplankton is not unique to the fauna of
the Red Sea. Lindeque et al. (2013) found that using morpho-
logical analysis Oncaea dominated the Copepoda during January
off the south west coast of the UK. However, due to a lack of
molecular data in the databases any reads related to this genus
were subsequently classified as unknown. Likewise for the genus
Oithona where only half of the species known to persist in the
local area had molecular data attributed to them. This problem
is likely to increase in taxa, which have received less interest.
In areas, such as the Red Sea, where the understanding of the
diversity of zooplankton is extremely limited, there could be a
high number of novel species which have yet to be described.
Secondly the V9 region of the 18S rRNA gene may not be able
to reliably produce classifications at the species level. Other genes,
such as mt COI or 12S rRNA gene have been proposed to dis-
tinguish diversity at species level (Bucklin et al., 2011). Böttger
Schnack and Machida (2011) suggested that the SSU 12S rRNA
gene was more suitable for the identification of oncaeid cope-
pods at species level than mt COI. This highlights one of the
problems still to be addressed with the development of molec-
ular databases. The creation of universal primer sets, especially
for the shorter length required for high throughput sequencing
technologies is often problematic and either a combination of
primers (as used in the current study) or a multigene approach
may be required to target as large a breadth of taxa as possi-
ble. With the growth of databases and an increasing knowledge
of the diversity present in the marine system, the develop-
ment of suitable primers will quickly improve. As an example,
recently a set of primers targeting a 313 bp stretch of mt COI
has been developed to target gut contents of fish (Leray et al.,
2013).

FIGURE 5 | Proportion of reads assigned to metazoan taxa across all stations for the 1389F primer dataset in the central/southern Red Sea.
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Our approach revealed a relatively high diversity in terms of
OTU richness, with over 800 metazoan OTUs encountered in
total among all stations. However, this number cannot be directly
compared with species diversity as determined by traditional tax-
onomic approaches and is expected to be affected substantially by
experimental parameters such as primers, sequencing technology

FIGURE 6 | Diversity (Jaccard similariy) plotted against distance for all

stations (R = 0.16, p < 0.01, 999 permutations).

and algorithms used for de-noising and clustering of resulting
sequence data. The two forward primers evaluated in this study
(1380F and 1389F) resulted in highly comparable results, how-
ever. Similar OTU richness values were also observed for the
alternative denoising and clustering method evaluated, namely
UPARSE. Whereas AmpliconNoise uses a maximum likelihood
model specific to pyrosequencing technology and PCR error
rates in order to correct errors, UPARSE, applies a more sim-
plistic heuristic algorithm. Both rely on the assumption that
more abundant sequences are less likely to be erroneous, com-
pared to highly similar sequences. Interestingly, UPARSE resulted
in a lower total number of OTUs, although those were more
evenly distributed across stations, giving each station a higher
OTU richness compared to AmpliconNoise (Figure S1). This
is likely a consequence of UPARSE operating on the total
dataset whereas AmpliconNoise was run for each station dataset
individually. However, it is challenging to determine which
approach performed better, both in terms of merging sequence
reads resulting from taxa with actual sequence differences and
leaving OTUs containing exclusively erroneous sequence data.
Most importantly, both methods agreed in terms of diversity
trends between datasets and taxa, as well as similar total OTU
richness.

FIGURE 7 | NMDS plot based on weighted UniFrac distance matrices for (A) Metazoa (B) Arthropoda (C) Cnidaria, and (D) Chordata.
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FIGURE 8 | NMDS plot based on unweighted UniFrac distance matrices for (A) Metazoa (B) Arthropoda (C) Cnidaria, and (D) Chordata.

Table 6 | R and p-values for ANOSIM results (permutations = 999) for

weighted and unweighted Unifrac distance matrices at various

taxonomic levels.

UniFrac distance R p

METAZOA

Weighted 0.01211 0.393

Unweighted 0.2828 0.001

ARTHROPODA

Weighted 0.003424 0.465

Unweighted 0.08779 0.062

CHORDATA

Weighted 0.1702 0.014

Unweighted 0.1657 0.003

CNIDARIA

Weighted −0.07906 0.877

Unweighted −0.01813 0.592

High throughput amplicon sequencing can be considered a
less mature method for environmental monitoring and diver-
sity studies, lacking standardization that would allow studies by

different groups to be compared. However, it is important to con-
sider its efficiency. This study was undertaken for 45 different
stations, which would be challenging and certainly more costly
following a traditional taxonomic approach. This is especially true
as molecular laboratory skills are more abundant than taxonomic
expertise meaning fewer delays in the analysis pipeline and could
move management away from biodiversity indicators toward a
total biodiversity approach (Ji et al., 2013).

A high diversity of holoplanktonic organisms can be expected
in warm subtropical systems (Rombouts et al., 2009), but the
observed diversity also reflects the contribution of meroplank-
tonic larvae from the coral reef. As an example we found a
high number of Mollusca OTUs (similar to that of Cnidaria and
Chordata), whilst having a significantly lower proportion of reads
throughout the study. Considering the number of reads as a proxy
to biomass, the results suggest that the Mollusca OTUs belonged
to larval stages. The variation in developmental stage and the
corresponding differences in size could account for the varia-
tion between the number of OTUs and the number of reads.
Larval and juvenile stages are often hard to identify based on mor-
phology (McManus and Katz, 2009) and genetic approaches may
contribute to improve our knowledge of larval dispersal at the
species level.
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The genetic approach was also sufficient to explore spatial
patterns and differences between reefs. Although the decline in
Jaccard similarity with distance was not significant we could
explore the structure in the community composition related to
the different reefs. Stations from different reefs clustered together
suggesting that there is either a significant amount of transfer
of planktonic species between reefs in this area or that there is
a common pool of species supplying all of the reefs. The pos-
sibility of transport of planktonic organisms between the three
reefs or from a common source is reinforced by circulation data
from the Red Sea, which suggests the presence of a cyclonic
eddy approximately covering the area between the Farasan Islands
and Al-Lith (Raitsos et al., 2013). The higher OTU richness
observed at Farasan, which could explain the significant clus-
tering of reefs for the unweighted UniFrac results, could be due
to an influx of species through the Gulf of Aden. This result
is in agreement with previous findings for the Red Sea with
peaks in diversity/biomass in southern stations in the Red Sea
being reported for zooplankton (Schneider et al., 1994; Böttger
Schnack, 1995).

This study highlights the ability of environmental genomics
projects to undertake diversity studies on a large scale. There
are current limits to the taxonomic information obtained from
genetic approaches, especially from short read lengths. However,
this will likely improve as the amount of genetic information
for type species increases. Bucklin et al. (2011) found that only
3580 of 47217 described Arthropoda had a mt COI sequence
deposited in databases and a similar paucity of coverage would be
expected for the 18S rRNA gene utilized in this study. A definitive
database matching up morphological data with sequence data will
be required in order to take full advantage of the rapidly expand-
ing sequencing capabilities (Jenner, 2004). As has occurred in
microbial studies an OTU approach allows differences in genetic
diversity to be studied without knowledge of taxonomy. Genetic
approaches have the ability to compensate for the problems of fre-
quently being unable to accurately assign taxonomic categories to
larval and juvenile stages. The ability to identify larval and juve-
nile stages will help to expand our knowledge of connectivity in
marine ecosystems.
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