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Deep-sea ecosystems represent the largest and most remote biome of the biosphere.
They play a fundamental role in global biogeochemical cycles and their functions allow
existence of life on our planet. In the last 20 years enormous progress has been
made in the investigation of deep-sea microbes, but the knowledge of the microbial
ecology of the soft bottoms (representing >90% of the deep-sea floor surface) is still
very limited. Deep-sea sediments host the largest fractions of Bacteria, Archaea and
viruses on Earth, and potentially, a high diversity. At the same time, available results from
metagenomics suggest that a large fraction of microbial taxa is completely unknown to
science. Estimating the diversity of deep-sea benthic microbes and understanding their
functions are some of the challenges of absolute priority, not only for deep-sea microbial
ecology, but also for the entire research field of life sciences. The achievement of these
goals, given the importance of the deep-sea microbial life for the functioning of the global
biosphere, will open new perspectives for the comprehension of adaptation processes
to the impact of global changes.
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Deep-Sea Microbial Ecology: an Exciting Challenge in Marine
Ecology

Deep-sea environments (the waters and sediments of the ocean interior beneath 200 m depth)
are the largest biome of the world, representing more than 65% of the Earth’s surface and more
than 95% of the global biosphere (Herring, 2001). In the last decades, the deep-sea exploration
has resulted in the discovery of tens of previously completely unknown habitats and ecosystems,
along with thousands of species of organisms inhabiting these remote systems (Gage and Tyler,
1991; Snelgrove, 1999; Teske and Serensen, 2008; Rex and Etter, 2010; Danovaro et al., 2014). As
a result of the development and improvement of the techniques for observing, mapping and sam-
pling the seabed and all of its features, the deep-sea environment is now defined as a highly dynamic
geo- and biosphere. A multiplicity of highly diverse habitats have been recently described, including
canyons, seamounts, ridges, deep-water coral reefs, cold seeps, pockmarks, mud volcanoes, carbon-
ate mounds, brine pools, gas hydrates, fractures, and trenches that host rich and highly diversified
microbial assemblages (Jorgensen and Boetius, 2007; Bartlett, 2009; Ramirez-Llodra et al., 2010;
Danovaro et al., 2014).

Despite the technological advancement, current estimates indicate that only 5% of the
deep oceans has been explored in detail so far, and that less than 0.001% has been sampled
and described in detail in terms of biodiversity (Snelgrove, 1999; Danovaro, 2010; Danovaro
et al, 2014). Even less is known on deep-sea microbes, on their the ecological role and
functioning.
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Although the scientific discovery of the ubiquitous and enor-
mous abundance of microorganisms dates back to the 1860s,
microbes inhabiting the deep sea started to be studied in detail
only in the 1950s, along with the appearance of the first histori-
cal monographs on marine microbiology (e.g., Benecke, 1933). In
the 1950s, deep sea samples that were collected during the Danish
Galathea Deep-Sea Expedition from depths of more than 10,000
meters were shown to host millions of viable bacteria per gram
of sediment, confirming that pressures up to 1100 atmospheres
do not exclude the possibility of life (ZoBell and Morita, 1959).
Further investigations carried out in the ‘80 and ‘90 provided evi-
dence of microbial activity in the deep ocean interior (Jannasch
and Taylor, 1984; Alongi, 1990; Yayanos, 1995).

Although the “Deep-sea Microbial Ecology” is a relatively
young branch of both Ecology and Microbiology, enormous pro-
gresses have been made in the last two decades of deep-sea
investigations, as indicated by the increase of published arti-
cles and citations (Figure 1). Researchers have documented life
everywhere in the deep sea, including the deepest trenches with
active metabolic life from —2 to >150°C, and microbial life
even in sediments at 10,000 m depth and at 1000 m below the
seafloor (Jorgensen and Boetius, 2007). In these benthic ecosys-
tems, biomass is generally dominated by microbes belonging to
the domains of Bacteria and Archaea, and by unicellular eukary-
otes, which are fundamentally important for C cycling and nutri-
ent regeneration and are therefore vital for sustaining oceanic
production (Middelburg and Meysman, 2007; Danovaro et al.,
2014).

Since most of the deep-sea microorganisms, due to their
adaptation to extreme conditions (e.g., oligotrophy, low tem-
peratures, high in situ pressure conditions and in some cases
limited oxygen concentrations) are extremely difficult to cul-
tivate with the current technologies, the number of pure cul-
tures that are available is limited to a few hundreds of species,
and, only in a limited number of cases, the cultivation of
microorganisms under high pressure has been realized (e.g.,

Kato et al., 1995; Nogi et al., 1998; Mikucki et al., 2003; da
Silva et al., 2013). To date, most of the interest from scientists
has been focused on habitats of deep-sea environments such
as hydrothermal vents, cold seeps, and subsurface sediments
where life conditions are even more extreme. However, since
such habitats contribute for a likely negligible fraction to entire
deep-sea floor (in the order of 0.001% of the seafloor, which
is characterized for more than 90% by soft bottom; Danovaro,
2010), this overview will focus on the knowledge on the ecol-
ogy of benthic bacteria, archaea, and viruses of deep-sea “soft
bottoms.”

Recent technological progress in metagenomics is opening
new perspectives for investigating microbial life in deep-sea
ecosystems. The advent of next-generation sequencing technol-
ogy allowed us to investigate and to compare the composition
of microbial assemblages from different deep-sea habitats, and
to provide information even on their metabolic potential (Sogin
etal., 2006; DeLong, 2009; Zinger et al., 2011). A number of chal-
lenges in deep-sea benthic microbial ecology have to be faced
yet, including: the analysis of the composition and functions
of the rare biosphere (i.e., low-abundance high-diversity organ-
isms, Sogin et al., 2006), the estimate of microbial (including
viral) diversity and its link with the functioning of the dark
ocean. The growing interest by the scientific community on
the dark portion of the oceans and the technological improve-
ment of tools for exploring it, hint at a bright future for under-
standing microbial life in the most remote ecosystems of the
globe.

Prokaryotic and Viral Abundances in the
Deep-Sea Sediments

A global estimate of the number of prokaryotic cells (i.e., here
defined as the sum of Bacteria and Archaea) that are present in
the oceans, from the surface to subsurface sediments, revealed
that deep-sea microbes represent the “hidden majority” of all
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FIGURE 1 | (A) Trend of article publication on deep-sea microbes (B) and relative citations per year from 1995 to 2014 (source Web of Science).
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life forms, comprising between 50 and >80% of the Earth’s total
microbial biomass and between 10 and 30% of the Earth’s total
living biomass (Whitman et al., 1998).

In recent years, a much wider portion of the seafloor has been
sampled to investigate deep-sea microbes. The analysis of these
samples has revealed that at least 2.9 x 10%° prokaryotes inhabit
the first few meters of sediment depth (Kallmeyer et al., 2012)
suggesting that half of the microbial cells in the Earth’s oceans are
found in the sediments (Lloyd et al., 2013).

Archaea have been assumed for a long time to be a minor por-
tion of the total microbial community in surface oceans and in
seafloor. Information on benthic archaeal assemblage composi-
tion and distribution in deep-sea surface sediments is limited and
particularly focused on sub-superficial sediments and “extreme”
habitats such as hydrothermal vents and cold seeps (Jorgensen
and Boetius, 2007). Available investigations indicate that archaeal
abundance can equal bacterial abundance or even dominate not
only in deep-sea waters beneath 1000 m depth, but also in subsur-
face sediments (Karner et al., 2001; Biddle et al., 2006; Schippers
and Neretin, 2006; Lipp et al., 2008). Recent studies reveal that
in deep-sea surface sediments the abundance of archaea can be
more relevant than previously thought (ca. 107-10% per gram of
sediment dry weigh), contributing in some cases, up to more than
50% of the entire prokaryotic assemblage (Giovannelli et al., 2013;
Molari et al., 2013).

In quantitative terms, viruses inhabiting the deep-sea ecosys-
tems are by far more important than they were considered just
two decades ago (Danovaro and Serresi, 2000; Danovaro et al.,
2008a). Viruses are the most abundant biological entities of the
biosphere, with current estimates of the global viral abundance
in the order of 10°°~10!, outnumbering prokaryotes by at least
one order of magnitude (Suttle, 2005, 2007). Data reported here
indicate that benthic prokaryotic and viral abundances are high
at all depths in the deep sea, from the shelf-break down to
abyssal depths (up to >5000-m depth), with values similar to
those reported for coastal areas (Danovaro et al., 2008a; Siem-
Jorgensen et al., 2008; Figure 2). In deep-sea surface sediments
viral abundance is also strongly and positively correlated with
prokaryotic abundance (Figure 3A), so that the ratio between
the two abundances seems not to be directionally affected by
depth nor by pressure. When the abundance of prokaryotes and
viruses per m? of surface sediment is multiplied by the extension
of the deep-sea sediments at different bathymetric ranges, the
overall abundance of these microbial components in surface sed-
iments shows a marked increase with water depth, with viruses
outnumbering prokaryotes also at abyssal depths (Figure 3B).

A high viral abundance in deep-sea sediments could be due
to both the supply of viruses adsorbed onto particles sinking
down from the upper water column (Mari et al., 2007) and/or
to the high in situ viral production rates (Danovaro et al., 2008a;
Siem-Jorgensen et al., 2008). However, the downward flux of
viruses associated with settling particles to deep-sea sediments
was demonstrated to be extremely low, when compared to in situ
abundances (Danovaro et al., 2008b).

The first investigations of global trends in the distribution
and abundance of microbial cells showed that the abundance
of cells in surface sediments is usually related to the input of
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FIGURE 2 | Bathymetric pattern of prokaryotic and viral abundances in
the surface sediments (top 1 cm) worldwide (data from Danovaro et al.,
2002; Rex et al., 2006; Danovaro et al., 2008b). Abundances were
multiplied by the extension (in m2) of the deep-sea sediments at different
bathymetric ranges (range of 400 m). Bars represent standard errors.
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FIGURE 3 | (A) Relationship between viral and prokaryotic abundance
in deep-sea surface sediments worldwide (data from Danovaro et al.,
2008b). (B) Pattern of total abundance of prokaryotes and viruses in the
overall seafloor surface (per bathymetric ranges of 400 m).

fresh detritus, rather than to any other oceanographic parame-
ter (Smith et al., 1997; Boetius and Damm, 1998). Despite recent
investigations conducted in different sites of Pacific Oceans in the
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1st meter below the sea floor, suggested that the total microbial
abundance varies between sites by ca. five orders of magnitude
according with mean sedimentation rate and distance from land
(Kallmeyer et al., 2012), it is generally accepted that the abun-
dance and biomass of the microbial components are controlled
by the quantity and quality of the available organic substrates
(Bithring et al., 2006). This applies to most biological components
in the deep-sea (e.g., meiofauna macrofauna, megafauna) and,
since the availability of food and resources typically decrease with
increasing water depth, consequently the biomass of all faunal
components decreases exponentially (Rex et al., 2006). However,
the analysis of the spatial patterns of the different microbial com-
ponents reported here, indicates that the distribution of prokary-
otes and viruses in deep-sea surface sediments does not show
trends similar to those of other benthic components (megafauna,
macrofauna, and meiofauna) and does not significantly decrease
with increasing water depth (Rex et al., 2006).

In the top 10-cm of deep-sea sediments, prokaryotic biomass,
is approximately 160 Pg, which represents ca. 30-45% of the
total microbial carbon on Earth (Whitman et al., 1998). The
huge, nitrogen- and phosphorus-rich, prokaryotic biomass rep-
resents a potentially enormous and high quality food source
for benthic consumers in deep-sea ecosystems, but experiments
conducted in situ suggest that prokaryotic biomass does not
contribute significantly to the food requirements of higher
trophic levels (Witte et al., 2003). The high prokaryotic biomass
(and in many cases activity) in food-limited deep-sea ecosys-
tems represents a paradox of the deep oceans that needs
explanations.

Prokaryotic Activity in Deep-Sea
Sediments

The lack of photosynthetic primary production, and the con-
stantly low temperatures (from ca. —2 to 4°C) together with the
generally reduced inputs of organic matter contribute to set the
limits to benthic microbial activity and secondary production.
However, emerging evidence from different studies is confirm-
ing that the microbial components inhabiting deep-sea ecosys-
tems are more dynamic than previously thought (Danovaro et al.,
2008b; Luna et al., 2012; Molari et al., 2013).

Microbes play a crucial role in deep-sea ecosystems by fun-
damentally contributing to the total fresh biomass (Danovaro
et al.,, 2014), as prokaryotes represent the largest pool of biomass
and biomass production in the world oceans (Whitman et al.,
1998). Microbes (including viruses and unicellular eukaryotes)
have also key roles in organic matter re-mineralization, in nutri-
ent cycling and in the transfer of energy to higher trophic levels.
All of these evidences make these organisms the most important
players in the biogeochemical cycles on a global scale (Nealson,
1997; Mason et al., 2009). However, information on the relative
importance of bacteria and archaea and their biomass in marine
sediments is still limited (Kallmeyer et al., 2012; Xie et al., 2013),
and even less is known on the contribution of viruses to the total
microbial benthic biomass (Anderson et al., 2013; Engelhardt
etal., 2014).

In the surface sediments the main process sustaining the deep-
sea benthic heterotrophs is represented by the downward fluxes
of organic material (Danovaro et al., 2014). These sediments are
generally characterized by a relatively high oxygen content, and
since it is consumed slowly free oxygen can diffuse from centime-
ters to meters down into sediments, representing the dominant
terminal electron acceptor for remineralization (Wenzhofer and
Glud, 2002; Fischer et al., 2009).

Little is still known about how prokaryotes respond to changes
in the distribution, composition, and flux of organic matter in the
oceanic food webs (Azam, 1998), or which microbial species are
responsible for most of the carbon, nitrogen and phosphorous
cycling in deep waters and sediments (Jorgensen and Boetius,
2007; Aristegui et al., 2009). Approximately 1-2% of the organic
carbon supplied from the ocean surface and reaching deep-sea
sediments, is oxidized by benthic microorganisms within a few
days, but re-mineralization rates slow down if the organic mate-
rial ages becoming richer in compounds which are refractory and
difficult to degrade (Lochte and Turley, 1988; Turley and Lochte,
1990). Recent attempts to derive estimates of carbon cycling in
the global ocean suggest that about one-third of the biological
production of CO, in the oceans is due to the microbial activ-
ity from the dark ocean interior (meso- bathypelagic waters; Del
Giorgio and Duarte, 2002; Aristegui et al., 2005). Heterotrophic
C production is potentially high at all depths from ca. 160 m to
5600 m (Figure 4A) and there is evidence that biomass and het-
erotrophic activity are high even at the deepest depths (down to
11,000 m) of the ocean interior (Danovaro et al., 2003; Glud et al.,
2013).

The degradation of organic matter pools containing nitrogen
is a key process in the oceanic nitrogen cycling of deep-sea sedi-
ments (Glud et al., 2009). Nitrification of ammonia to nitrite and
nitrate is largely mediated by microorganisms belonging to both
the Bacteria (i.e., the B-subgroup and y-subgroup of Proteobac-
teria; Swan et al., 2011) and Archaea domains (Konneke et al.,
2005). Previous studies revealed that the oxygen consumption
by nitrification can account for a significant fraction (21-50%)
of the total oxygen demand in organic-rich deep-sea sediments
(Christensen and Rowe, 1984), whereas in sediments character-
ized by high oxygen concentrations that metabolism is limited
by the paucity of available organic substrates (Christensen and
Rowe, 1984).

Deep-sea sediments are also important for the removal of
nitrogen via denitrification (3-12% of the global ocean benthic
denitrification, Brunnegard et al., 2004), particularly in organic-
rich ecosystems, such as continental slopes (Middelburg et al.,
1996). Previous investigations, indeed, suggested that nitrogen
released from continental margins is primarily due to prokary-
otic denitrification, although anammox processes (i.e., the reduc-
tion of nitrites coupled to ammonium oxidation; Thamdrup and
Dalsgaard, 2002) can be also important (Glud et al., 2009).

Nitrification is believed to be one of the main processes
responsible for dark CO, fixation in the ocean interior (Herndl
et al., 2005; Wuchter et al., 2006; Middelburg, 2011; Swan et al.,
2011). In the deep sea chemosynthesis (i.e., chemoautotrophy
based on the use of chemical compounds as energy source) is
the only source of primary production. Chemosynthetic (also
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defined, “chemoautotrophic”) organisms produce organic mat-
ter through the assimilation of inorganic carbon coupled with the
use of reduced chemical compounds as energy source (Swan et al.,
2011). Different studies have suggested that chemoautotrophic
processes that involve aerobic ammonia oxidation in marine
ecosystems are mainly due to archaeal rather than bacterial
assemblages (Francis et al., 2005, 2007; Wuchter et al., 2006; Yaki-
mov et al., 2011; Molari et al., 2013). There is evidence, indeed,
that non-extremophilic ammonia-oxidizing archaea (AOA) are
ubiquitous components of benthic deep-sea ecosystems (Francis
et al., 2005). In particular, Thaumarchaeota inhabiting the upper
layers of marine sediments have been proposed to contribute sig-
nificantly to the reservoir of nitrogen oxides of the oceans (Kon-
neke et al, 2005), thus contributing to their productivity and
autotrophic carbon fixation (Stahl and de la Torre, 2012).
Information on chemoautotrophic production rates in
deep-sea sediments is still very limited, and the overall
contribution of chemosynthetic primary production in deep-sea

terms of biomass, the interactions between viruses and the mem-
bers of the two domains Bacteria and Archaea are considered one
of the most relevant processes driving the ecosystem functioning
on the global scale (Proctor and Fuhrman, 1990; Fuhrman, 1999).

Viral infections in deep-sea surface sediments are responsible
for the abatement from 40 to up to >80% of the overall het-
erotrophic carbon production by bacteria and archaea (below
1000-m depth), causing the release of ~0.37-0.63 Gt C year™!
on a global scale (Danovaro et al., 2008b). These finding sug-
gest that viruses can influence global biogeochemical cycles in
fundamental ways (Corinaldesi et al., 2014; Danovaro et al,
2014).

By killing their hosts, viruses can transform the living biomass
into organic detritus (mostly dissolved organic matter; DOM),
which can then be used again by other microbes stimulating their
growth. This process defined “viral shunt” (Suttle, 2005, 2007),
depending on the balance between the abatement of living cells
and the stimulation of the metabolism of the survivors, can either
fuel heterotrophic and autotrophic production (Corinaldesi et al.,
2012, 2014) and enhancing nutrient regeneration pathways, or it
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can also decrease the efficiency of the carbon transfer to higher
trophic levels (Fuhrman, 1999).

Viral production rates in deep-sea sediments are potentially
high at all water depths in surface sediments (Figure 4B). Sev-
eral studies reported the predominance of the lytic viral cycle
(viral replication strategy resulting in the lysis of the infected
cells and consequent release of virus progeny and other intra-
cellular components) both in deep-sea sediments and in deep-
sea waters (Danovaro et al., 2008b). At the same time, also new
replication strategies could be potentially utilized by viruses as
it was recently demonstrated for some viruses infecting archaea
(Prangishvili et al., 2006; Bize et al., 2009). Analyses of viral and
heterotrophic C production in deep-sea sediment samples at in
situ, decompressed (at 0.1 MPa) and re-pressurized conditions
demonstrated that production rates are not significantly influ-
enced by deep-sea sample recovery (Danovaro et al,, 2008b).
Unfortunately, only a limited number of studies were conducted
under deep-sea in situ conditions so far (Tamburini et al., 2009;
Jannasch and Wirsen, 1973), and it is still difficult to draw general
conclusions on how pressure and sample recovery affect directly
or indirectly, the metabolism and dynamics of microbial com-
munities in deep-sea benthic ecosystems. However, it is clear that
deep-sea viruses, and especially viruses in the sediments, are a
highly dynamic and active component of deep-sea ecosystems,
with high viral turnover, comparable to, or even higher than, that
reported for coastal aquatic ecosystems (Danovaro et al., 2008a;
Siem-Jorgensen et al., 2008).

Viral production is significantly and positively related with
heterotrophic C production. This reflects the theoretical depen-
dence of viral replication on the host abundance and metabolism.
Viral lysis of benthic prokaryotes, indeed, causes the abatement
of 80% of the total heterotrophic C production in deep-sea
sediments. This impact increases with increasing water depth,
from values <20% in the sediments at less than 100 m depth
up to >80% in deep-sea surface sediments (at depths >3000-m;
Figure 4C), indicating that viruses are the main cause of prokary-
otic mortality in deep-sea sediments worldwide (Danovaro et al.,
2008b).

The shunt of most of the heterotrophic carbon production
into organic detritus due to viral lysis is a crucial process for sus-
taining the high prokaryotic biomass of deep-sea ecosystems and
provides an important contribution to prokaryotic metabolism,
allowing the deep-sea ecosystems to cope with the severe organic
resource limitation (Danovaro et al., 2008b).

These findings could help to explain the paradox of deep-sea
ecosystems in which prokaryotic biomass is largely unused by
deep-sea fauna, despite severe food limitation (Witte et al., 2003).

In previous investigations the high virus-induced prokaryotic
mortality observed in different marine ecosystems (Proctor and
Fuhrman, 1990; Suttle et al., 1990) has suggested that viruses can
have a major impact on prokaryotic diversity (Fuhrman and Sut-
tle, 1993; Thingstad et al., 1993). This has been theorized in the
concept of “killing the winner” (Thingstad and Lignell, 1997),
meaning that lytic viruses can keep in check competitive domi-
nants, allowing the co-existence of less competitive taxa and even
sustaining bacterial diversity. This model is supported by the
finding from isolated phage-host systems that phages propagate

as a function of host density and can thus control host abun-
dance (Weinbauer and Rassoulzadegan, 2004). However, results
acquired to date, based on manipulative experiments carried
out on water, are still equivocal and neither the intensity nor
the outcome of this regulation is well-understood (Hewson and
Fuhrman, 2006; Bouvier and Del Giorgio, 2007). Some studies
reported that viral lysis has a limited effect on the composition of
the bacterial assemblages (Hewson and Fuhrman, 2006), whereas
others have suggested that rare bacterial groups, being more
effective in resource exploitation, can be the most susceptible to
viral lysis (Bouvier and Del Giorgio, 2007).

Information on the impact of viruses on microbial diversity
in benthic deep-sea ecosystems is practically inexistent. How-
ever, understanding if the viral component can represent a driver
of the biodiversity and of the functioning in benthic deep-sea
ecosystems is a key issue for the comprehension of the function-
ing of deep-sea ecosystems.

Microbial Diversity

In the last years the application of next generation sequencing
technologies revealed that deep-sea ecosystems host highly diver-
sified bacterial, archaeal, and unicellular eukaryotic assemblages
and contain novel taxa (Sogin et al., 2006; Jorgensen and Boetius,
2007; Lauro and Bartlett, 2008; Zinger et al., 2011). Studies based
on metagenomics, indeed, indicated that the majority of micro-
bial sequences, including those belonging to viruses and unicel-
lular eukaryotes, in deep-sea benthic ecosystems remained unas-
signed (Scheckenbach et al., 2010; Zinger et al., 2011; Yoshida
et al., 2013), suggesting that deep-sea microbial diversity is still
largely unknown.

So far, there is evidence that deep-sea surface sediments har-
bor bacterial assemblages mostly represented by Alpha-, Delta-,
and Gammaproteobacteria, Acidobacteria, Actinomycetes, Chlo-
roflexi, and Planctomycetes (Schauer et al., 2010; Orcutt et al,
2011; Zinger et al., 2011; Parkes et al., 2014). The composi-
tion of such assemblages appears to be dependent on different
environmental factors (e.g., oxygen content, food availability,
geographic barriers, past environmental conditions) and their
interplay (Ramette and Tiedje, 2007; West et al., 2008; Gof-
fredi and Orphan, 2010; Schauer et al., 2010; Jamieson et al.,
2013). Archaeal diversity in oxygenated deep-sea sediments
is generally characterized by the dominance of Crenarchaeota
over Euryarchaeota (Jorgensen and Boetius, 2007; Corinaldesi
et al., 2012; Giovannelli et al., 2013), which instead typically
account for the majority in gas-hydrate-bearing and methane-
bearing sediments due to the exploitation of the methane
released by the seeps (Inagaki et al., 2006; Parkes et al.,
2007).

Previous investigations in deep-sea sediments identified phy-
logenetically distinct lineages of the Marine Group I (MG-I)
Thaumarchaeota, which were different from those of the bot-
tom water (Durbin and Teske, 2010). Generally, MG-1 Thaumar-
chaeota (Brochier-Armanet et al., 2008) accounts for the majority
of the archaeal assemblages in deep-sea surface benthic ecosys-
tems (Durbin and Teske, 2010, 2011; Jorgensen et al., 2012;
Nunoura et al., 2013). However, other archaeal groups, such as
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the Marine Benthic Group B and E, South African Gold Mine
Euryarchaeotal Group, the Miscellaneous Crenarchaeotic Group
and the Deep-sea Archaeal Group can provide significant contri-
bution to the archaeal assemblages of such ecosystems (Vetriani
etal,, 1999; Inagaki et al., 2003; Orcutt et al., 2011; Jorgensen et al.,
2012; Wang et al., 2014).

Microbial eukaryotes (protists) have received much less atten-
tion, and studies have concentrated mainly on a single taxo-
nomic group, the foraminiferans (Gooday, 1999). Information
on eukaryotic microbial diversity in deep-sea surface sediments
is particularly focused on specific habitats as hydrothermal vents,
cold seeps and hypersaline anoxic basins (Edgcomb et al., 2002,
2009; Takishita et al., 2005; Bernhard et al., 2014). Investigations
carried out in three different abyssal plains of the southeastern
Atlantic Ocean revealed that the most abundant phylogenetic
groups in clone libraries constructed with general eukaryotic
primers were Alveolata, Euglenozoa, Heterokonta, and Rhizaria
(Scheckenbach et al., 2010). In addition, a high percentage of
retrieved clones was affiliated with parasitic species and many
others had no close representatives in genetic databases suggest-
ing the presence of novel taxa.

Given the paucity of information, the analysis of micro-
eukaryotic diversity and the estimate of its contribution to the
entire biodiversity of deep-sea benthic ecosystems represent
another key step of future scientific research in deep-sea benthic
systems.

Exploring the genetic diversity of viruses in marine ecosys-
tems is complex due to the difficulty in identifying conserved
genes in the viral genomes (such as the ribosomal genes of bacte-
ria, archaea, and eukaryotes), and because most of the viral hosts
cannot be cultivated (Edwards and Rohwer, 2005; Schoenfeld
et al., 2008). The advent of metagenomic approaches has repre-
sented a novel opportunity for characterizing the viral diversity
as it allow us to capture, to a large extent, the genetic richness of
viral assemblages in marine ecosystems (Edwards and Rohwer,
2005; Suttle, 2007; Rosario and Breitbart, 2011). While a number
of studies have investigated viral diversity in pelagic ecosystems
(e.g., Angly et al,, 2006; Duhaime and Sullivan, 2012; Hurwitz
and Sullivan, 2013), its exploration in benthic ecosystems is still
very scarce. Only very few studies are conducted in deep-sea sed-
iments for investigating viral diversity, but they suggest that these
ecosystems could represent a hotspot of viral diversity (Yoshida
et al., 2013). Benthic viruses of the deep-sea ecosystems are not
only represented by phages, but also by a significant portion of
viruses infecting eukaryotes, allowing us to hypothesize a poten-
tial role of viruses in regulating the abundance and diversity
of (unicellular and multicellular) eukaryotic hosts. Such studies,
indeed, showed the presence not only of double-stranded DNA
phages mainly belonging to the order Caudovirales (i.e., Myoviri-
dae, Podoviridae, Siphoviridae) believed to infect prokaryotes
(Angly et al., 2006; Rosario and Breitbart, 2011; Hurwitz and Sul-
livan, 2013), but also by ssDNA viruses belonging to Circoviridae
infecting eukaryotes (Labonté and Suttle, 2013; Yoshida et al.,
2013). Investigating the host range of viruses, their impact on
benthic eukaryotes and its ecological and evolutionary implica-
tions is another priority for deep-sea microbial ecology in the
future.

Future Perspectives

The marine environment is changing rapidly (Hoegh-Guldberg
and Bruno, 2010; Doney et al., 2012). For many years, it has been
assumed that the deep sea is a stable habitat, buffered from short-
term changes in the atmosphere or upper ocean. However, now
there is growing evidence that deep-sea ecosystems respond to
global climate change over seasonal to annual (Danovaro and
Serresi, 2000; Ruhl et al., 2008; Danovaro et al., 2013) and hor-
bital (multi-millennial) timescales (Hunt et al., 2005; Yasuhara
and Cronin, 2008; Yasuhara et al., 2012). Despite the extensive
research on the potential effects of increasing CO, concentra-
tion and global warming on ecosystems (Hays et al., 2005; Doney
etal., 2009), we know very little about the impact of such changes
on the deep-sea biodiversity over long time-scales (Yasuhara
et al., 2014; Yasuhara and Danovaro, 2014) and even less is
known on the effects of climate change on deep benthic microbial
assemblages.

During the last 10-15 years, seawater temperatures through-
out much of the globe are warmer than ever recorded. A rapid
temperature increase has been also reported for the deep ocean
interior (Bethoux et al., 1990; Levitus et al., 2005). As viral repli-
cation and life cycle are closely linked with host metabolism, tem-
perature changes will likely influence the interactions between
viruses and the hosts they infect. For example, it has been argued
that as the prokaryotic growth rate increases, the duration of
the lytic cycle decreases and burst-size increases (Proctor et al,,
1993; Hadas et al., 1997). However, how virus-host interac-
tions respond to temperature shifts in the deep-sea ocean is still
unknown and such aspect deserves major attention in the next
future.

Since phytoplankton production is also expected to respond
to increasing temperatures and enhanced stratification, biogeo-
chemical models predict a global decrease of the oceanic pri-
mary productivity (Bopp et al., 2001; Steinacher et al., 2010),
and hence a reduction of organic C inputs to the deep seafloor.
However, such an effect can be also opposite on regional scales
(i.e., increase primary productivity and C export to the deep
seafloor; Sarmiento et al., 2004). The consequent changes in the
intensity of organic carbon fluxes from the ocean surface down
to the ocean interior (Ruhl et al., 2008; Smith et al., 2008) can
have downstream consequences on biodiversity and function-
ing of the benthic deep-sea ecosystems (Ruhl and Smith, 2004;
Danovaro et al.,, 2008c), including microbial diversity and virus-
host interactions. Moreover, the viral life strategies could change
as a response to shifts in oceanic productivity. An expected pat-
tern is that the relative importance of lytic infections decreases
as the proportion of lysogens increases (e.g., in response to lower
productivity and lower host metabolic activity; Danovaro et al.,
2011).

Ocean acidification is another major effect of global change
linked to CO; emissions. Since the preindustrial era, the pH of
the ocean surface has decreased from ca. 8.21 to 8.10 (Raven et al.,
2005) and it is expected to decrease by a further 0.3-0.4 pH units
by the end of the century (Orr et al., 2005). The direct effects of
ocean pH changes on marine viruses are difficult to predict, but
the most significant effects could occur on their host organisms
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(i.e., bacteria, archaea, protists, and metazoan) on which viruses
rely.

The potential impact of these global changes (e.g., tempera-
ture increase, decrease of pH, deoxygenation of bottom waters)
can co-occur in time and space with anthropogenic impacts (e.g.,
induced by deep-sea drilling for oil extraction, deep-sea mining),
which act at local and regional scales (Darling and Coté, 2008;
Alsterberg et al., 2014). We cannot predict yet whether climate
changes impacts will be intensified by multiple stressors acting on
deep-sea benthic bacteria, archaea, and viruses. However, there is
increasing evidence that deep-sea microbes interact actively with
the present climate change and are a key biotic component that is
able to influence the processes regulating the reactions of marine
ecosystems to these ongoing changes (Danovaro et al., 2011).

Despite the technological advancements made in the last
decades, the remoteness and technological challenges posed by
deep-sea ecosystems hamper the development of an intense
scientific research, especially in the field of microbial ecol-
ogy (Danovaro et al., 2014). However, stimulating opportuni-
ties are envisaged in the coming years for the exploration and
understanding the biodiversity and functioning of the microbial
components (including viruses) inhabiting deep-sea sediments.
Understanding factors influencing interactions between viruses
and bacteria or archaea, their biogeography and functioning,
even in the light of a changing ocean, is only a part of the outlooks
which could be addressed hereafter.

Deep-sea benthic ecosystems represent the cutting edge of
the marine scientific research, as dark oceans potentially har-
bor mostly gene sequences of yet unknown viruses and uncul-
turable microbes. It can be expected that high-throughput
sequencing will provide an unprecedented opportunity to solve
the paradoxes and finding to response to the main eco-
logical paradigms proposed for these ecosystems (Danovaro
et al., 2014). High throughput sequencing is expected to be
a very powerful tool even for deciphering potential func-
tional signals contained within microbial metagenomes, includ-
ing viromes, which are practically still unknown in deep-sea
benthic ecosystems. Certainly, the discovery of new processes
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