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The ReFuGe 2020 Consortium—using
“omics” approaches to explore the
adaptability and resilience of coral
holobionts to environmental change

ReFuGe 2020 Consortium '

Human-induced environmental changes have been linked directly with loss of
biodiversity. Coral reefs, which have been severely impacted by anthropogenic activities
over the last few decades, exemplify this global problem and provide an opportunity to
develop research addressing key knowledge gaps through “omics”-based approaches.
While many stressors, e.g., global warming, ocean acidification, overfishing, and coastal
development have been identified, there is an urgent need to understand how corals
function at a basic level in order to conceive strategies for mitigating future reefloss. In this
regard, availability of fully sequenced genomes has been immensely valuable in providing
answers to questions of organismal biology. Given that corals are metaorganisms
comprised of the coral animal host, its intracellular photosynthetic algae, and associated
microbiota (i.e., bacteria, archaea, fungi, viruses), these efforts must focus on entire coral
holobionts. The Reef Future Genomics 2020 (ReFuGe 2020) Consortium has formed
to sequence hologenomes of 10 coral species representing different physiological or
functional groups to provide foundation data for coral reef adaptation research that is
freely available to the research community.

Keywords: coral reef ecosystem, global environmental change, adaptation, resilience, Great Barrier Reef, Red
Sea, holobiont, metaorganism

Overview

Scleractinian or stony corals are a foundation species of reef ecosystems, as their carbonate
skeletons provide the structural habitat complexity necessary to maintain millions of vertebrate
and invertebrate marine organisms (Reaka-Kudla, 1997). Over 500 million people and billion-
dollar industries, including fisheries and tourism, depend on healthy reef ecosystems (Cesar, 2002).
Increases in atmospheric CO; concentrations place reef-building corals at risk due to potential rises
in water temperatures and ocean acidity. While research focusing on adaptability and response of
corals to “future ocean” conditions is steadily increasing (Kleypas et al., 2006; Hoegh-Guldberg
et al., 2007a; Csaszar et al., 2010; Hofmann et al., 2010; Iguchi et al., 2011; Voolstra et al., 2011;
Sawall et al., 2015), these studies typically focus on ecosystem scale consequences of environmental
change or study the effect on distinct coral compartments.

Relatively few studies target the entire coral holobiont (ie., the coral metaorganism
consisting of the coral animal host, its intracellular algae, and other microbiota) as the
functional unit, potentially missing important interactions among members of the holobiont
association that contribute to stress tolerance. However, a growing number of studies are now
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emphasizing the validity of the metaorganism concept (McFall-
Ngai et al, 2013), with functional studies elucidating these
fundamental interactions also in aquatic and marine organisms
(Bolnick et al., 2014; Franchini et al., 2014; McFall-Ngai, 2014).
These studies commonly focus on bacterial-host interactions and
demonstrate how bacteria fundamentally alter host organism
development, ecology, and evolution (Bosch and McFall-Ngai,
2011). An exception is the study of coral-algal symbioses.
Symbiodinium sp., the photosynthetic algal symbiont of reef-
building corals was formally described in 1962 (Freudenthal,
1962), and the partnership between the coral animal host and
its algal symbiont has long been recognized to provide the
foundation of coral reef ecosystems. Whereas the algal symbionts
provide energy to their hosts in the form of photosynthates, the
coral animal provides a sheltered, light-rich environment and
inorganic nutrients (Muscatine and Cernichiari, 1969; Falkowski
et al., 1984). Currently, there is an urgent requirement for
understanding coral resilience and their capacity to adapt in
a holobiont framework to provide threshold values for coral
reef stewardship (sensu Steffen et al., 2015). The long history of
research detailing the intricacies of the coral-algal symbiosis and
more recent studies on bacterial interactions can now provide the
building blocks to understand coral metaorganism function using
the new suite of genomic-based approaches.

Although we focus here primarily on coral species from
Australia’s Great Barrier Reef, our considerations are likely
to apply to all coral reefs. We use the term “resilience”
in reference to the capacity of an ecosystem or organism
to absorb and recover from a perturbation (e.g., toxic
agricultural runoffs or temperature spikes) and “adaptability” in
reference to the capacity for a lineage or species to adjust to
(rapidly) changing circumstances (e.g., a higher average ambient
temperature), including potential changes to the composition
of the ecosystem. In this context, resilience and adaptation
can result in the ecosystem maintaining critical functions and
services.

Rather than defining a set of “critical” species to investigate,
we define a set of signature genera that represent different
physiological or functional coral groups that together form the
core of the ecosystem. We acknowledge that coral reefs are highly
complex systems in which mechanisms of resilience may not
be obvious (e.g., Bellwood et al., 2006), but we also believe that
modern genomic approaches may provide equally important
insight to the ability of corals to respond to climate change
(e.g., Shinzato et al., 2011). We provide an overview of how
contemporary genomic tools can be used to provide information
pertinent to better understanding how corals function at a basic
level, which we expect to be helpful in informing management
and conservation of coral reefs. Specifically, we highlight how
such tools can be used to explore genetic diversity within and
among these species, the genetic basis of relevant traits and their
patterns of inheritance, and the dynamic changes that occur
during acclimation and adaptation.

This article is structured into four parts: (1) strategic
considerations of the composition of complex ecosystems and
selection of core functional coral groups; (2) insights from
pioneering studies on adaptation in Drosophila, stickleback fish

and other species groups that might inform similar research on
corals; (3) description of coral ecosystems and the threats arising
from environmental change; and (4) a case study on genomic
approaches to understand adaptability of corals.

Strategic Considerations and Approach

Environmental change may intensify selective pressures acting
on organisms. Although our overall concern is the resilience of
a given ecosystem as a whole, it is more practical to consider the
responses of individual component species, especially those that
play key roles in the ecosystem. Understanding which species
can or cannot cope will provide a baseline (i.e., which species
might be expected to persist) and constrain models of ecosystem
function that depend on the sum of individual responses and the
synergies among them. “Foundation species”, those that provide
habitat for others and simultaneously facilitate higher diversity,
are increasingly recognized as significant factors at the ecosystem
level (Bruno et al., 2003). The heritable effects of genes in
these foundation species extend to higher levels, contributing to
ecosystem phenotypes that other species may rely on (Whitham
et al., 2006). In the example at hand, the coral is a metaorganism
consisting of the coral animal, photosynthetic dinoflagellate
symbionts, and species-specific assemblages of microorganisms,
collectively referred to as the coral holobiont (Rohwer et al.,
2002). Population and quantitative genetic analyses of the
coral holobiont allow us to elucidate heritable components of
ecosystem phenotypes and provide an evolutionary framework
in which to understand the effect of climate change on organisms
that in turn affect ecosystem processes. In this regard, it
is important to incorporate knowledge about metaorganism
function from ecological and evolutionary studies, since an
important aspect of coral resilience might lie in understanding
how the coral-algae-microbe symbioses co-evolved and how this
in turn connects genomes and phenotypes (Bosch and McFall-
Ngai, 2011). In other words, an increased understanding of
the evolutionary forces that shape metaorganisms and their
hologenomes will help to assist and mitigate detrimental effects
of environmental change on corals and their reef ecosystems,
and support efforts of building coral resilience through assisted
evolution (van Oppen et al., 2015).

The primary question is how to identify the species that
are likely to be most informative for assessing resilience and
adaptability of the ecosystem in question, and thus should be
prioritized for study. We posit that there exist certain core
coral genera that reflect distinct physiological groups, which
should become the initial focus, but will be expanded as the
ability to gather data advances. Given the above, the criteria
for selection should be (i) genera or species that occur (or
have very close relatives) in equivalent ecosystems around the
world, and are thus generally typical and representative of
that type of ecosystem; and (ii) among these, species that
are amenable to experimental assessment and manipulation in
enclosed environments (i.e., aquaria). Given the ongoing advance
of sequencing technology, selecting species with relatively small
genomes (for efficiency of assembly and analysis) is not a primary
criterion, but might be considered downstream in the selection
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process. Compromises will have to be made, and known and
unknown blind spots accepted, if we are to make a start and
not be inhibited by the scope of the problem and our current
ignorance.

For the experimental component, we propose a three-
pronged approach: (i) identification of genomic, epigenomic,
and transcriptomic variation across natural clines of the
environmental factor of interest; (ii) experimental assessment
of the ability of variants from each end of the clines to
withstand a controlled progression to the other extreme and
determine how time-sensitive and reversible this response may
be; and (iii) genome-scale sequencing to examine the genomic,
epigenomic, and transcriptomic changes that may have occurred
as part of an adaptive response and how they correspond
to the variation that is observed naturally. In making these
suggestions, we note the enormous recent increase in DNA-
sequencing capacity, and the corresponding reduction in cost,
that make large-scale surveys increasingly feasible. We suggest
that any strategy must be tractable, yet scalable to benefit from
ever-improving sequencing technologies. Further, although there
are many sequencing projects underway, the concerted work of
a group of researchers will facilitate coordination, and thus helps
to streamline and channel sequencing efforts. For instance, the
Global Invertebrate Genomics Alliance (GIGA) was formed to
coordinate current efforts generating and analyzing invertebrate
non-arthropod genomic data (GIGA Community of Scientists,
2014). This becomes especially important in conducting down-
stream comparative analyses and providing a data infrastructure
that allows easy access and retrieval of genomic baseline data.

The Genetics of Adaptation: Insights from
the Fruit Fly Drosophila and Other Model
Systems

Studies on various other species groups including the fruit
fly Drosophila, the rockcress Arabidopsis, stickleback fish
Gasterosteus, and other model organisms have been particularly
informative in understanding the heritability of different traits
and the response of different species to environmental change
and selection at the genetic and genomic levels. The Drosophila
work was initiated in D. melanogaster and has focused
on environmental gradients, particularly latitudinal climatic
gradients (see Schmidt et al., 2005; Hoffmann and Weeks, 2007).
Genetic analyses along gradients have been used to identify genes
and genetic polymorphisms that appear involved in evolutionary
adaptation to different climates (e.g., Schmidt et al, 2005;
Paaby et al, 2010; Telonis-Scott et al., 2011). Some of these
polymorphisms are shifting in response to recent climate change
(Umina et al., 2005). Regions of the genome that have diverged
between the ends of climatic gradients have been identified
(Gonzdlez et al., 2010; Fabian et al.,, 2012), and transcriptomes
from gradient ends have also been compared (Chen et al., 2012).
Environmental gradients have been used to link adaptation to
genetic polymorphisms in many other species; notable examples
include polymorphisms affecting salinity in Gasterosteus (Barrett
et al., 2008) or flowering time in Arabidopsis (Caicedo et al.,
2004).

Although great progress has been made in understanding
the genetic basis of adaptive variation in Drosophila and other
organisms, it remains difficult to make direct connections
between genetic polymorphisms and traits associated with
climate adaptation (Chung et al, 2014). The effects of
candidate genetic polymorphisms identified from different types
of experiments and/or clinal analysis need to be tested on
randomized genetic backgrounds to assess their impact on
traits that vary along gradients (Lee et al, 2011). This is
facilitated by tools available in model organisms, including
D. melanogaster, which allow the expression of specific genes
to be modified, and effects of polymorphisms to be assessed
in controlled backgrounds. A combination of approaches has
allowed the adaptive significance of particular genetic changes
to be identified: for instance, expression of the ebony gene
affects body pigmentation (Pool and Aquadro, 2007; Telonis-
Scott et al,, 2011), which in turn may influence fitness under
different climatic conditions (Parkash et al., 2008) and shows
clinal patterns (Telonis-Scott et al., 2011); a set of polymorphisms
in the regulatory region influences expression of this gene
(Takahashi and Takano-Shimizu, 2011).

The genus Drosophila itself and related genera contain an
enormous range of species adapted to different climatic regions.
It is now possible to map traits that influence climate adaptation
onto Drosophila phylogeny to develop a detailed understanding
of limits to climate adaptation, controlling for environmental
effects by rearing the species in a common environment
(Strachan et al., 2011; Kellermann et al.,, 2012). Clear links
have been established between traits and species distributions
including resistance to desiccation, cold, and heat. There is strong
phylogenetic signature in these traits, and clades can be identified
that seem to lack evolutionary potential because all the related
species show a similar stress response (e.g., desiccation resistance
in D. birchii and other species from wet tropical environments
(Hoffmann et al., 2003; Kellermann et al., 2009). To understand
why trait evolution might be limited within particular species
and clades, candidate genes and genetic processes are being
mapped onto phylogenies (Reis et al., 2011). Within Drosophila
phylogenies, evolutionary responses to environmental factors
appear related to gene duplication and gene loss within particular
gene families (Zhong et al.,, 2013). De-novo evolution of genes
seems to be a rich source for adaptive evolution in Drosophila
lineages (Chen et al, 2010). While immediate responses to
selection under climate change may depend on standing genetic
variation, genomic changes might nevertheless contribute to
adaptive changes across a few decades (Izutsu et al., 2012).
Genetic adaptation will also depend on other factors like patterns
of gene flow that can be maladaptive and limit local adaptation
(Magiafoglou and Hoffmann, 2003) and/or maternal effects that
can result in the transmission of stress resistance from mothers
to offspring (Jenkins and Hoffmann, 1994).

Coral Reefs and Environmental Change

Phylogenetic constraints outlined in species of Drosophila are
likely to occur in many other species groups, particularly
for upper thermal limits (Araujo et al, 2013). This is of
particular significance as most corals live close to their thermal
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tolerance limits, and hence may be severely affected by global
warming and increasing sea surface temperatures (SST). To
better understand the consequences of environmental change for
coral reefs, a closer look at the ecology of coral organisms is
needed.

Over the past century, coral reefs have been in global decline—
more than 50% of extant reefs are severely degraded and most
of the remainder are under serious threat (Hoegh-Guldberg,
1999). The causes of reef loss are varied and complex, but a
major current concern is that global changes in climate may
drive increasingly more frequent and widespread coral bleaching
events and thus exacerbate reef loss (Hoegh-Guldberg, 1999).
Reefs flourished in pre-industrial times, when the pH of the
ocean was around 8.1, but the advent of the industrial period
has led to increasing atmospheric CO;, and the oceans have
become both warmer and more acidic. Average SSTs in the
tropical oceans have increased by around 0.6°C over the past
century, and much greater changes are forecast to occur in
the twenty-first century if present rates of emission continue
(Bindoft et al., 2007). Mass coral bleaching events, resulting in
widespread mortality, are a consequence of thermal anomalies
that are likely to increase in frequency and extent as a function
of higher ocean temperatures (Hughes et al., 2003). This effect
may be compounded by the decreases in pH that occur as
atmospheric CO, equilibrates with seawater, as calcification
becomes increasingly more energetically costly under more acidic
conditions (Anthony et al., 2008).

Although corals may be able to adapt to a changing world,
the main concern is that they may be unable to do so rapidly
enough to keep pace with current rates of change, which are
orders of magnitude more rapid than occurred during ice age
transitions (Hoegh-Guldberg et al., 2007b). Corals have relatively
long generation times (10-100 years), and thus evolve on far
longer timescales than, for example, fruit flies. Factors that
can potentially mitigate the slow evolutionary rate include high
levels of genetic diversity and the large effective population
sizes in at least some species. Moreover, the coral holobiont
as a metaorganism may evolve much more rapidly than can
the coral animal because the symbiotic dinoflagellates and
microorganisms associated with corals are themselves highly
variable and have short generation times, provided that there is
enough flexibility in these associations. Of note, the contribution
of phenotypic plasticity in corals, i.e., the development of
different phenotypes from a single genotype depending on
the environment, might be an important contributor to the
response to environmental change, and hence, coral resilience
(Todd, 2008). While light and water movement are recognized
important variables in determining coral shape and form, it was
recently shown that seawater acidification can also cause a shift
in coral skeleton morphology, in concert with and probably
to evade the consequences of a decrease in coral calcification
rates (Tambutté et al., 2015). As such, plastic responses in corals
(including all holobiont compartments) might in themselves
be adaptive and improve fitness, i.e., growth, reproduction, or
survival (Gotthard and Nylin, 1995). Availability of large-scale
gene expression data will make it possible to study plasticity from
a molecular perspective, e.g., determining how many and which

genes vary in expression between different phenotypes of a plastic
trait, thereby helping to uncover the cellular mechanism(s)
involved (Aubin-Horth and Renn, 2009).

Genetic diversity within a location may also provide scope
for selection for change in local thermal tolerance. For instance,
recent work on Acropora hyacinthus has shown that within
a single site, local acclimatization and adaptation contribute
equally to thermal tolerance (Palumbi et al., 2014). Importantly,
this was reflected in patterns of gene expression, providing
a direction for further studies. However, our understanding
of genetic diversity within coral populations is generally at
an early stage, leaving a large series of unanswered questions
including (i) which species will be most sensitive to the predicted
change in sea surface temperature and ocean acidity; (ii) where
resistant genotypes might be found for potential use in captive
breeding, translocation, or assisted migration programs, and
for DNA banks; (ili) what is the natural level of gene flow
among populations within a reef system, e.g., along the Great
Barrier Reef; (iv) the expected rate of adaptive response, if any,
in different species; and (v) how differences in the microbial
communities associated with a coral affect its capacity for
phenotypic response, and how heritable that might be. We can
begin to address these questions within an initial set of signature
genera as further outlined below.

Case Study: Genomic Approaches to
Assess Adaptability of Corals to Climate
Change

Building on insights into the genomic bases of adaptation in
model organisms including Drosophila, genome science has the
potential to rapidly advance our understanding of the adaptive
capacity of reef-building corals (Stapley et al., 2010; Shinzato
et al, 2011). While we acknowledge the inherent differences
between fruit flies and corals, development and testing of
hypotheses in model organisms can act as a springboard to
inform coral biology (Baumgarten et al., 2015). Given the urgency
of the problem and decreasing costs of sequencing technologies,
the authors of this paper have formed the Reef Future Genomics
2020 Consortium (ReFuGe 2020), within which our “Sea-quence”
project has identified a framework of molecular datasets that we
anticipate will provide novel insights into the adaptive landscape
of reef-building corals, their dinoflagellate symbionts, and the
associated microbial communities (http://refuge2020.com/).

For the Sea-quence project, we have initially selected 10
species of tropical corals from a diverse set of genera for deep
genomic and transcriptomic sequencing of all coral holobiont
compartments, ie., de-novo genome and transcriptome
sequencing of the coral host, associated Symbiodinium
types, and microbial (including viral) metagenomes and
metatranscriptomes for each selected coral species. We included
corals that are broadly distributed across environmental
gradients, physiologically diverse, and easily identified in
the field. While it is impossible to cover the full diversity
of the order Scleractinia, we selected species within genera
that represent different physiological groups, e.g., thermally
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TABLE 1 | Selection of 10 initial coral species and organismal attributes targeted for hologenome sequencing in the ReFuGe 2020 Consortium.

Morphological group Coral species Coral temperature Coral growth rate* Symbiont transmission Symbiont
tolerance mode* diversity
Massive corals Porites lutea High Slow Vertical C types
Goniastrea aspera High Slow Vertical/Horizontal® C, D types
Branching corals Stylophora pistillata* Low Slow Vertical A, C types
Acropora millepora** Low Fast Horizontal C, D types
Porites cylindrica High Intermediate Vertical C types
Tabular corals Acropora hyacinthus Low Fast Horizontal C, D types
Foliaceous corals Montipora aequiturbiculata LowP Intermediate Vertical C, D types
Encrusting corals Montipora spumosa Unknown Intermediate Vertical N/A
Solitary corals Fungia fungites Moderate® Slow Assumed vertical C, D types
Non-symbiotic corals Madrepora oculata Lowd/Highe Slow N/A N/A

Species selection will be expanded in the course of the work of the Consortium (http.//refuge2020.con).

*Symbiont transmission data based on Baird et al. (2009).

#Growth rate based on slow <15mm/year, intermediate 15-30 mm/year, fast >30 mm/year.

**De-novo sequencing complete (Miller/Ball/Foret and Voolstra/Aranda labs).
aAccording to Sakai (1997).

bAccord/ng to Marshall and Baird (2000).

¢According to Hoeksema (1991).

9According to Naumann et al. (2014).

¢According to Roder et al. (2013).

susceptible as well as tolerant genera (e.g., Porites and Acropora)
(Marshall and Baird, 2000). We also considered the mode of
reproduction, extent of existing resources and datasets, ease
of collection and cultivation, and diversity and transmission
mode of the symbiont. The 10 species are broadly distributed
across the Indo-Pacific and occupy a wide range of thermal
environments, making it likely that the results will be broadly
applicable (Table 1). We anticipate the initial species selection
will be expanded in the course of the work of the ReFuGe 2020
Consortium. A current overview is available on the ReFuGe
2020 webpage (http://refuge2020.com/our-research/research-
progress). At the time of writing of this manuscript, genomic
DNA from several coral holobionts has been sequenced (data are
accessible at https://ccgapps.com.au/bpa-metadata/gbr/).
Availability of de-novo reference genome sequences of 10 coral
genomes and associated microorganisms will be instrumental
in providing answers to basic and specific questions of coral
biology. For instance, the provision of annotated holobiont gene
sets will allow the elucidation of the metabolic, immunological,
and physiological capacities encoded in coral metaorganisms
as well as the determination of a core set of orthologous
genes that allows deciphering the mechanistic underpinnings of
coral biology. The availability of reference genomic resources is
invaluable for informing downstream experimental approaches,
such as transcriptional, protein, and epigenetic profiling. As
described above for Drosophila, we aim to explore genomic,
epigenomic, and transcriptomic variation along latitudinal
gradients to uncover acclimation and adaptation potential of
selected genera. For instance, along the 1000-km north-south
gradient of the Great Barrier Reef water temperatures differ
by about 2°C. Along this transect, experiments have revealed
that corals from the southern Great Barrier Reef are much
more susceptible to thermal stress than are those from the
northern region (Ulstrup et al, 2006; Cooper et al., 2011).

Complementing such data with analyses of selected target
or similar species from “extreme” environments (“extreme
phenotype sequencing”), e.g., the Red Sea (Arif et al., 2014; Sawall
et al., 2014) or Arabian Gulf (Hume et al., 2013, 2015), provides
the opportunity to determine how standing genetic variation,
phenotypic plasticity, population size, and genomic architecture
translate into adaptability of coral organisms and resilience of
reef ecosystems. In combination with manipulative experiments,
genetic variability can potentially be partitioned into that
relating to tolerance to water temperature vs. the many other
environmental factors that co-vary with it. Understanding which
elements are associated with “climate change tolerant” coral
species will present opportunities for management strategies
aiming to preserve the resilience of coral reef regions. Generation
of holobiont genome reference data is not an end (Richards,
2015), but rather the foundational necessity for research targeting
resilience and adaptability of coral holobionts. As such, it
substantiates, rather than replaces, other efforts of coral reef
research.

Conclusions

Here we have outlined a genomics framework focusing on
signature coral genera for which hologenomes will be generated
to better understand resilience and adaptability of coral
holobionts and by extension reef ecosystems. Under the “Sea-
quence” project the ReFuGe 2020 Consortium generates and
analyzes a set of genomic reference data to interrogate the
adaptive potential of different functional groups. Our approach
leverages the enormous scope and capacity of sequencing
technology to query genetic diversity and to profile real-time
genomic responses to environmental stress. On this road we
have adopted lessons from adaptation research in Drosophila and
other species. Our approach is an important first step to generate
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foundation data for coral reef adaptation research, freely available
to the research community, to make better predictions about
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