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Diatoms are often a major food source for zooplankton and contribute significantly to

vertical POC flux through sinking of dead cells, aggregates and zooplankton fecal pellets.

The silica content of diatoms varies among different species and within a species growing

under different environmental conditions and physiological status. However, to-date

there has been no investigation of the effect of diatom silica content on zooplankton

grazing, growth and reproduction. We conducted a series of experiments using the

diatom Thalassiosira weissflogii with different silica content achieved by growth under

high and low light and these cells were fed to a copepod, Parvocalanus crassirostris. Our

results show that this copepod strongly preferred cells with low silica content over high

silica-containing cells, with the ingestion rate on low silica diatoms being 2–3 times higher

than that on high silica diatoms. Fecal pellet production rate was significantly higher for

copepods feeding on highly silicified cells. Furthermore, copepod growth rate (measured

as an increase in wet weight), egg production rate and hatching success were all severely

compromised under a high silica diatom diet. Females of P. crassirostris feeding on a low

silica diatom diet produced an average 90 eggs during a 1 day incubation, while those fed

with high silica diatoms produced only 11 eggs per day. Similarly, the hatching success

during a 3-day period was 82 ± 17 and 23 ± 36% for the low and high silica diatom

treatments, respectively, with zero success observed in ∼65% of the females feeding

on high Si diatoms. Our findings have important ecological implications for the biological

pump and may alter our previous view of the role of diatoms in planktonic food webs and

the role of the degree of silicification in controlling amount of POC flux to deeper waters.
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INTRODUCTION

Carbon uptake by marine phytoplankton, and its export as organic matter to the interior of the
ocean (i.e., the “biological pump”), lowers the partial pressure of carbon dioxide (pCO2) in the
upper ocean and facilitates the downward diffusive flux of atmospheric CO2. Among different
groups of phytoplankton, diatoms are one of the most important; they generate about as much
organic carbon as all the terrestrial rainforests combined (Nelson et al., 1995; Field et al., 1998).
However, unlike much of the carbon generated by trees, the organic carbon produced by diatoms is
consumed rapidly and serves as a food and energy source for marine food webs. Diatoms dominate
the export flux of carbon and contribute significantly to the long-term sequestration of atmospheric
CO2 in the ocean’s interior (Smetacek, 1999).
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Diatoms are themost diverse group of phytoplankton, ranging
in size from a few micrometers to a few millimeters and exist
either as single cells or chains of cells (Kooistra et al., 2007).
Diatoms tend to dominate phytoplankton communities in well-
mixed coastal and upwelling regions, as well as along the sea-
ice edge, where sufficient light, inorganic nitrogen, phosphorus,
silicate, and trace elements are available to sustain their growth
(Armbrust, 2009). They form spring blooms in the temperate
and polar seas and after artificial or natural iron inputs in high
nitrate low chlorophyll (HNLC) regions (Ducklow and Harris,
1993; Boyd et al., 2007). Diatom blooms are also observed
in mesoscale and sub-mesoscale eddies in oligotrophic oceans,
which play a very important role in bringing nutrients from
nutrient-rich deep waters to the euphotic layer (Benitez-Nelson
et al., 2007; Benitez-Nelson and McGillicuddy, 2008). Pigment
and microscopic analyses of samples after the passing of the
Hawaiian Lee cyclone revealed that the bloom within the eddy
was dominated by large diatoms and they accounted for almost
85% of the total phytoplankton biomass (Brown et al., 2008; Rii
et al., 2008).

All diatoms have siliceous cell walls (frustules) made of
polymerized silicic acid (biogenic silica, bSi), but there is
considerable variation in the Si content among different species
(Parsons et al., 1961; Harrison et al., 1977; Paasche, 1980;
Brzezinski, 1985; Conley et al., 1989). Within a given species,
the bSi content can vary by up to an order of magnitude
(Taylor, 1985; Claquin et al., 2002) and is a function of cell size
(Paasche, 1973; Durbin, 1977) the cell cycle (Brzezinski et al.,
1990) or sexual reproduction (Harrison et al., 1977; D’Alelio
et al., 2010), as well as due to external factors, such as light,
temperature, salinity, nutrients, and trace metals (Furnas, 1978;
Martin-Jézéquel et al., 2000; Claquin et al., 2002; Vrieling et al.,
2007). For example, Saito and Tsuda (2003) reported that diatoms
in the Oyashio region off the east coast of Japan, increased their
Si:N ratio (i.e., their Si content) during the spring bloom, possibly
due to slow growth induced by light limitation resulting from
self-shading due to high cell numbers during the bloom.

One important aspect in the diatom—copepod food chain
that has not been investigated is whether the variation in the
level of diatom silicification affects ingestion by copepods and
the subsequent biological, physiological and biogeochemical
implications for carbon flux to depth. While one recent study
(Pondaven et al., 2007) showed a grazing-induced increase in
the cell wall silicification of a diatom, which can be viewed
as an adaptive reaction to high grazing pressure, there are no
direct studies on the opposite effect, i.e., how do diatoms with
different silica content affect copepod grazing. Smetacek (1999),
and others (e.g., Raven and Waite, 2004) speculated that thick
shells will reduce the number of grazers that are capable of
consuming diatoms, but no direct experimental support has been
reported so far.

Our objective was to test the hypothesis that the silica content
of a diatom affects the feeding of copepods, and consequently
their growth and reproduction. In order to exclude other factors
that can affect zooplankton feeding selectivity, such as cell size,
we used a single diatom species, Thalassiosira weissflogii, with
high and low silica content achieved by growth under low and

high light and the calanoid copepod, Parvocalanus crassirostris,
to investigate how a copepod responds to a diatom with different
cellular silica content.

MATERIALS AND METHODS

Culturing T. weissflogii to Produce
Different bSi Content
Initially, we tried to generate low and high bSi T. weissflogii
cells by growing them in Si replete (f/2) and Si deplete (f/2-Si)
media, but surprisingly there was no significant difference in the
Si content (data not shown).We then used different light levels to
produce fast and slow growing cells that generated T. weissflogii
with different silica content. Cultures were maintained in f/2
medium at 23.5◦C and 14:10 L:D cycle under four different
light intensities (17, 66, 116, and 199 µmol photons m−2 s−1;
measured with a Biospherical Instruments Inc. Model # QSL-
100 light meter) achieved by using neutral density screening
and adjusting distances from the light source. Cultures were
acclimated to the light intensities for least 5 cell divisions
before the experiment was initiated. Cell concentrations were
monitored daily and cell volume was determined at the end
of the experiment using a Coulter Counter (Beckman Coulter,
Z2 Coulter Particle Count and Size Analyzer). Duplicate 20 ml
samples were taken every day (every 2 days for the culture at the
lowest light level because it grew much slower) for biogenic silica
analysis. bSi was measured on day 6 after transferring to new
medium for the lowest light level and on day 4 for the remaining 3
light levels. Based on the bSi data, cultures with 116 and 17 µmol
photons m−2 s−1 were used for further grazing experiments and
hereafter referred to as high and low light cells, respectively.
Cellular carbon and nitrogen content was also measured for
diatoms grown under high and low light by filtering 20–30 ml of
culture onto a pre-combusted GF/C filter, and particulate organic
carbon and nitrogen was determined with a Perkin Elmer model
2400 CHNS elemental analyzer.

Biogenic Silica Measurement
A modified version of Paasche (1980) was used to measure
bSi. Cells were collected on a 1 µm polycarbonate filter (47
mm diameter) and washed with 10 ml autoclaved seawater and
0.01 M HCl during filtration to remove the intercellular silicate
pools. The folded filter was immediately placed into a 15 ml
polypropylene tube and stored at −80◦C. Hydrolysis was carried
out when 4 ml 0.2 M NaOH was added and digested at 98◦C for
40 min. After cooling in a water bath, 1.0 ml of 1 M HCl was
added to each tube to neutralize the sample and the concentration
of silicic acid was analyzed colorimetrically following Grasshoff
et al. (1999). bSi per surface area was calculated by assuming a
spherical shape using the ESD estimated by the Coulter Counter.

Copepod Grazing Experiments
Copepods were collected by a net tow with 200 µm mesh from
the pier at Port Shelter, Hong Kong. The dominant species,
Parvocalanus crassirostris, was used as the grazer; females were
selected under a dissecting microscope, rinsed at least three times
to remove other prey and placed in freshly filtered seawater for
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1 h before being transferred to the feeding experiments. Two
feeding experiments were conducted. In the first experiment, 10
copepods were added to each triplicate 600 ml PC bottle (i.e., 1
copepod per 60 ml) and T. weissflogii cells with high and low
bSi (i.e., high and low light cells) were added at approximately
the same density (185 cells ml−1; i.e., 1 copepod with 11,100
cells). Duplicate bottles with the same density of diatoms but no
copepods, were set up as the control. The second experiment was
also conducted in triplicate with the same no copepods control.
Thirty copepods were added to 1.2 L bottles (i.e., 1 copepod per
40 ml) and the prey concentration of high and low silica cells was
approximately 385 cells ml−1 (i.e., 1 copepod with 15,400 cells).
The incubation lasted for 5 h for both experiments with gentle
manual stirring done hourly and concentrations of T. weissflogii
were determined at the beginning and end of the incubation by
a Coulter Counter (Beckman Coulter, Z2 Coulter Particle Count
and Size Analyzer). Duplicate aliquots of culture were also filtered
onto a 1.0 µm, 47 mm GE polycarbonate membrane filter and
stored in polymethylpentene centrifuge tubes in a−80◦C freezer
for bSi analysis. Copepod fecal pellet production rate was only
measured in the second experiment.

Copepod Growth, Egg Production, and
Hatching Success
A number of active females of Parvocalanus crassirostris were
collected from the same location as used in the previous feeding
experiments and were sorted under a dissecting microscope soon
after the tow for initial body weight measurements. They were
then maintained in a 2-L flask at 24◦C at two different light
levels as described above. High and low silica cells were added
as food at a high concentration of 5000 cells ml−1. Duplicate
10 ml samples of the diatom cultures were filtered onto a 2
µm PC membrane for initial bSi analysis. The copepods were
transferred to new containers with the same prey concentration
(5000 cells ml−1) and environmental conditions to ensure that
the prey concentration was nearly constant during the growth
experiment. To compare the body condition of P. crassirostris
grown on cells with different silica content, the wet weights of
P. crassirostris were measured after 2 and 3 days of incubation
with high and low silica prey. A number of copepods were
pooled together on a pre-weighted membrane and weighed by
an electronic balance.

For copepod egg production experiment, a total of 18 females
were incubated in three 6-well plates, with 1 copepods in each
well, containing the same culture medium (15 ml) and diatom
food concentration. The plates were placed in the same previous
high and low light for 24 h and the fitness and activity of the
copepods was monitored during the incubation. At the end of
the incubation, the copepod’s body wet weight was determined
and the number of eggs and hatched egg shells in the plates were
counted under an inverted microscope. In order to measure the
egg hatching rate, the eggs remaining in the plates were incubated
for a further 72 h.

Statistical Analysis
Statistical analyses were performed with SigmaPlot 12.5 (Systat
Software). Student’s t-test (2-tailed) and one-way analysis of

variance (ANOVA) were performed with significance levels of
p < 0.05.

RESULTS

Diatom Cellular Silica Content Affects
Copepod Grazing Rate
T. weissflogii grown at the lowest light contained nearly three
times higher silica than cells grown in higher light (Figure 1).
No significant difference (one-way ANOVA) in cell volume
was observed among all 4 light levels (data not shown). A
further comparison of cultures grown at high (116µmol photons
m−2 s−1) and low (17 µmol photons m−2 s−1) light showed
no significant difference in equivalent spherical diameter, and
cellular carbon and nitrogen content and the C:N molar ratio
(Table 1). In contrast, the Si:C (0.19 vs. 0.07) and Si:N (2.1 vs.
0.7) molar ratios were significantly higher for cells grown under
low compared to high light due to the higher Si per cell and per
surface area in the low light condition (p < 0.001, Student t-test).

In the two grazing experiments, the cellular silica content of
T. weissflogii was significantly lower under high vs. low light
conditions (Expt 1 = 291 vs. 760 fmol cell−1 and Expt 2 =

537 vs. 808 fmol cell−1, p < 0.001, Student t-test). In both
grazing experiments, clearance rates and ingestion rates of P.
crassirostris were significantly higher when copepods consumed
low silica cells (Figure 2, p < 0.001, Student t-test). This
indicates that copepods strongly preferred cells with low silica
over high silica cells. The clearance rate in the first grazing
experiment was higher than that in the second experiment,
which could be due to the lower prey concentration in the first
vs. second experiment (i.e., 1 copepod per 11,000 vs. 15,400
cells ml−1). In addition, in the second feeding experiment, fecal

FIGURE 1 | Cellular silica (bSi) of T. weissflogii growing exponentially

under four different light intensities. Error bars show 1 SD (n = 3).
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TABLE 1 | Cell size and cellular element content of Thalassiosira weissflogii grown under low and high light.

Irradiance ESD C N Si Si C:N Si:C Si:N

(µmol m−2 s−1) (µm) (pmol cell−1) (pmol cell−1) (pmol cell−1) (fmol µm−2) (mol mol−1) (mol mol−1) (mol mol−1)

17 12.8 (2.3) 9.01 (0.36) 0.79 (0.03) 1.71 (0.05)* 1.25 (0.04)* 11.4 (0.04) 0.19 2.16 (0.09)*

116 12.3 (1.7) 7.67 (0.10) 0.76 (0.02) 0.58 (0.01)* 0.36 (0.00)* 10.0 (0.18) 0.07 0.76 (0.02)*

ESD, estimated spherical diameter; Values in parentheses are 1 SD (n = 4 for ESD, n = 3 for other parameters). The surface area of the diatom cells was calculated by assuming a

spherical shape using the ESD estimated by the Coulter Counter.

*Indicates statistically significant (p = 0.05).

FIGURE 2 | Clearance rate (A), and ingestion rate (B), of Parvocalanus crassirostris feeding on T. weissflogii cells with high and low silica content for

two feeding experiments. Error bars are 1 SD (n = 3).

pellet production rate was significantly higher for copepods fed
with highly silicified cells (0.46 ± 0.04 fecal pellets cop−1 h−1

compared to 0.28 ± 0.04 fecal pellets cop−1 h−1 for the low bSi
diatom diet).

Copepod Growth, Egg Production, and
Hatching Success under High and Low bSi
Diatom Diets
Copepods fed with low bSi diatoms had a higher body weight
than those fed with high bSi cells. The average wet weight
of P. crassirostris increased from 7.2 to 10.8 µg ind−1 after
48 h when fed on low bSi cells, while those fed on high bSi
diatoms remained nearly unchanged (7.4 µg ind−1). On day 3 of
the incubation, the wet weight of copepods in both treatments
decreased, but the difference between low and high bSi diets
was still apparent (8.5 vs. 6.5 µg ind−1). Egg production rate
and the percent hatching success were also significantly higher
for copepods on the low bSi diatom diet compared to those
fed high bSi cells (t-test, t = 9.956, df = 37, p < 0.001 for
egg production rate; t = 5.383, df = 37, p < 0.001 for egg
hatching success). Egg hatching data were arcsin-transformed
for normality. The average egg production for 20 females of P.
crassirostris fed with low bSi cells was 90 eggs female−1 d−1

(SD = 34), while 19 females of P. crassirostris on the high bSi
diatom diet only produced an average of 11 eggs per day (SD
= 8) (Figure 3). The percent egg hatching success for the low
Si diatom diet was 82 ± 17% (1 SD), whereas the hatching

success rate for those fed with high bSi diatoms was low (23 ±

36%) and highly variable with 12 out of 19 individuals yielded
0% hatching success. Therefore, highly silicified diatoms were
detrimental to copepod growth, egg reproduction, and hatching
success.

DISCUSSION

Growth rate determined the bSi content of T. weissflogii, as the
growth rate of T. weissflogii (0.32 d−1) grown at the lowest light
level of 17 µmol m−2 s−1 was significantly lower than at higher
light levels (0.81–0.98 d−1; data not shown). Using light, N,
and P-limited continuous cultures of Thalassiosira pseudonana,
Claquin et al. (2002) demonstrated that a decrease in growth rate
resulted in a significant increase in the time spent in the period of
cell wall synthesis andmitosis (G2+M), when Si uptake is usually
high. Martin-Jézéquel et al. (2000) confirmed that both silicate
availability and the prolongation of the cell cycle phase during
which cell wall synthesis occurs, led to increased incorporation
of silica into the cell wall. Claquin et al. (2002) also found that
regardless of the type of limitation, biogenic silica (bSi) increased
per cell and per cell surface area with decreasing growth rate,
indicating that silicification was not coupled to the metabolism
of N or P. Nevertheless, the cellular quota of C, N, and Si (both
per cell and per surface area), as well as the C:N, Si:C, and
Si:N ratios obtained in our experiments (Table 1) fell within
the range reported for diatoms in general and for T. weissflogii
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FIGURE 3 | Egg production rate (A), and % hatching success (B), of P. crassirostris growing on low and high bSi diatom diets. Error bars indicate 1 SD

and n = 19 for high Si and 20 for low Si treatments, respectively.

specifically (Brzezinski, 1985; Strzepek and Price, 2000; Claquin
et al., 2002).

Our results indicate that copepods strongly preferred diatoms
with low silica content over high silica-containing cells. It
is not clear what trigged the low ingestion rate on highly
silicified cells, but the thicker frustule most probably reduced
the digestibility of the cells (Raven and Waite, 2004). The
significantly higher Si:C and Si:N ratios (i.e., the highest silica
content for low light cells) may be one reason for the reduced
feeding activity, however other chemical composition changes
may also be associated with the growth on low light. It is
well known that zooplankton feeding may also be reduced by
the morphology or physical structure of their prey. Van Donk
et al. (1997) reported that cells of the wall-deficient mutant of
Chlamydomonas were more easily ingested and digested than
normal cells, and cells with a thicker cell wall that were produced
under nutrient limitation were not digested by Daphnia. We
suspect that a copepod needs a longer time to digest and evacuate
the highly silicified diatoms through its gut which would lead
to a reduction in the ingestion rate. Bienfang (1980) found that
fecal pellets from copepods feeding on diatoms were similar in
volume but denser and subsequently having a higher sinking
rate than fecal pellets from copepods feeding on flagellates.
Therefore, the silica frustule in the fecal pellet enhances carbon
export.

The fecal pellet production rate was significantly higher for
copepods that were fed highly silicified cells. Low ingestion
and high fecal production would result in malnutrition, which
would lead to slow growth, low egg production and hatching
success and ultimately a decline in a copepod population.
Therefore, it is reasonable to predict that copepods during
the early stage of a diatom bloom (i.e., with relatively low
silicification due to sufficient silicic acid and high growth rate)
will be generally healthier than copepods feeding during the
declining phase of the bloom (i.e., high silicification due to
the exhaustion of SiO4 and slow growth), or those feeding

in iron-limited waters as iron limitation also increases Si
uptake relative to N and thus a higher cellular Si:N ratio
(Takeda, 1998; Marchetti and Harrison, 2007). This may
partially explain why mesozooplankton abundance is often low
in waters with a large diatom bloom (e.g., Liu and Dagg,
2003).

Several studies have reported grazing selectivity against
diatoms (Kleppel et al., 1991; Strom and Welschmeyer, 1991; Liu
et al., 2005, 2010). It has been proposed that some diatoms are of
inferior nutritional quality because they lack some essential lipids
(Kleppel, 1993; Jónasdóttir and Kiørboe, 1996), while others have
claimed the nutritional superiority of diatoms (Brown et al.,
1997; Chen et al., 2012). Some studies have suggested detrimental
effects of diatoms on copepod reproduction, probably due to
toxic aldehydes (e.g., Miralto et al., 1999), but other studies
have shown no negative effect of a diatom-dominated diet (e.g.,
Irigoien et al., 2002). However, no study has directly tested
the effect of the level of diatom silicification on copepods. In
a mesocosm study, Van Nieuwerburgh et al. (2004) reported
that a heavily silicified diatom bloom hampered copepod
growth. They further suggested that copepod populations can
be strongly regulated by ambient Si:N ratios since high Si:N
ratios led to larger diatom species and heavier silicification,
providing diatoms with the possibility to escape from grazing,
leading to the accumulation of algal biomass without a transfer
to higher trophic levels. Our study is the first controlled
laboratory study to demonstrate that diatoms with different
cellular silica content can influence copepod clearance and
ingestion rates since lightly silicified cells were preferred over
heavily silicified cells. Furthermore, diatoms with a thick
frustule may have a negative impact on copepod growth,
egg production and hatching rates as observed in this study
(Figure 3).

Observational and modeling studies usually relate high export
of carbon with diatom blooms (Honjo and Manganini, 1993;
Allen et al., 2005). By studying the physiology and reproductive
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biology of copepods growing on a diet of diatoms with different
silica content, we are able to better understand the copepod
population dynamics during the spring diatom bloom and post-
bloom environments. Based on both the low ingestion rate
and compromised growth and reproduction of copepods grown
with highly silicified diatoms as their sole food source, it can
be predicted that a rapid population growth of copepods may
not occur as the diatom bloom progresses and consumption of
the bloom by copepods may be limited. Therefore, the growth
environment of diatoms may determine the fate of the bloom
and the scale and proportion of the carbon export through the
sinking of ungrazed dead diatom cells and aggregates compared
to faster the transport of silica to depth via zooplankton fecal
pellets.
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