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Corals display different growth forms as an adaptive response to both local and global

environmental conditions. Despite the importance of morphologic variability on corals,

growth and calcification rates of different coral morphotypes have been poorly recorded

in the Eastern Pacific. The purpose of this study was to compare annual extension

rate (cm yr−1), skeletal density (g cm−3), calcification rate (g cm−2 yr−1), and tissue

thickness (mm) of males and females colonies in three different morphotypes of the

common reef-building coral Porites lobata; columnar, massive, and free-living (corallith)

forms. The results show significant differences in all four-growth parameters between

morphotypes over a 6-year interval, and also differences between males and females in

most morphotypes. Massive colonies presented 15–33% faster annual rates compared

with columnar and free-living. Male colonies showed 30–40% faster annual rates than

females for both columnar and corallith morphologies. These data exhibit the extensive

plasticity of this species and highlight the fact that each morphotype × gender group

produced a different physiological response to environmental conditions. Therefore,

these information reveal that P. lobata from the Eastern Tropical Pacific develops different

morphologies to allow it to maintain coral species population, characteristics that

enhance the species possibility to further its distribution across the reef-framework.

Keywords: coral morphology, gender growth rates, Eastern Tropical Pacific, massive corals, coral calcification

INTRODUCTION

Morpho-plasticity in colony structure is an adaptive strategy upon which some coral species
rely to take advantage of changes in their environment (Foster, 1979; Muko et al., 2000; Smith
et al., 2007; Todd, 2008; Forsman et al., 2009). Hermatypic corals can adopt branching, massive,
encrusting, columnar, laminar, foliaceous, nodular, and free-living (corallith) forms (Veron, 2000).
However, morphologic variation may be present within not only a single species, but even within a
single colony; such phenomena are typically in response to local environmental conditions, which
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influence coral growth and led to changes in skeletal architectures
(Hughes, 1987; Lough and Barnes, 2000; Lough and Cooper,
2011). In general, the development of distinct morphotypes may
be influenced by several exogenous factors, such as substrata type,
depth, competition, space and light availability, bioturbation,
and water dynamics (Glynn, 1974; Foster, 1979; Hughes, 1987;
Van Veghel et al., 1996; D’Croz et al., 2001; Grigg, 2006;
Smith et al., 2007; Tortolero-Langarica et al., 2016), as well as
endogenous factors, such as the Symbiodinium assemblage and
genetic variations (Van Veghel et al., 1996; D’Croz et al., 2001;
Grigg, 2006; Smith et al., 2007; Todd, 2008; Forsman et al.,
2009; Paz-García et al., 2009; Barshis et al., 2010; Boulay et al.,
2012). The influence of all these factors may promote differences
in the metabolic pathways that each species invest their energy
resources, resulting in different skeletal characteristics in order
to guarantee their continual growth and survival (Veron, 2000;
Smith et al., 2007). Different colony forms not only benefit the
species survival, but also contribute to the reef structure and
complexity; such which increases in rugosity are associated with
increased the biodiversity (Spalding et al., 2001; Alvarez-Filip
et al., 2009).

One of the most abundant reef-building coral genera of
the tropical Pacific Ocean is Porites, which normally adopts a
massive growth form (Guzmán and Cortés, 1993; Glynn et al.,
1994; Lough et al., 1999; Lough, 2008; Lough and Cooper,
2011). Poritid corals can be present in different morphotypes
in the same reef area (Smith et al., 2007; Paz-García et al.,
2009; López-Pérez, 2013). In addition, the nature of coral
accretion in massive species is well understood and allows
recognition of specific skeletal features, such as high and low
density bands, over time (Lough and Barnes, 2000). Such
banding patterns are typically assessed in conjunction with other
growth parameters such as the skeletal extension rate (linear
growth, in cm yr−1), skeletal density (CaCO3 bulk mass, in g
cm−3), calcification rate (g cm−2 yr−1), and tissue thickness
(depth of live tissue, inmm) (Knutson et al., 1972; Lough
and Barnes, 2000; Carricart-Ganivet and Barnes, 2007). The
sex of coral can also affect its growth and timing of density-
band formation, due males and females invest in different
proportions the energy available for physiological processes such
as reproduction and calcification (Harrison, 2011; Carricart-
Ganivet et al., 2013). In consequence, genders may present
different annual growth parameters between them (Cabral-Tena
et al., 2013). Therefore, the coral’s genders may affect the
interpretation of the environmental proxies bound within the
skeleton (Carricart-Ganivet et al., 2013).

In the Eastern tropical Pacific (ETP), Porites lobata Dana
1846, is an important component of the structure of coral reef
communities (Guzmán and Cortés, 1989; Glynn, 1994; Glynn
and Ault, 2000). Despite the importance of morphologic and
growth variability in the reef structure, limited studies have
been performed on massive corals (Graus and MacIntyre, 1982;
Tomascik, 1990; Van Veghel and Bosscher, 1995; Smith et al.,
2007). These include the reported by Norzagaray-López et al.
(2014) who found growth differences between columnar and
encrusting colonies, nevertheless it is important to highlight that
these differences were possibly biased by the effect of the gender

and latitudinal gradients variations. To date, a comparison of
the growth of different morphotypes including the gender effect
in Poritid corals has not been undertaken, though it seems
reasonable to speculate that columnar, massive and free-living
forms may calcify at different rates in each specific gender. We
hypothesized that columnar and massive forms attached to the
substrata have major extension and calcification rates compared
withmobile free-living colonies and higher rates inmale colonies,
due to their different strategies to invest calcification resources.
In order to test this hypothesis, extension rate, skeletal density
and calcification rate were assessed using optical densitometry
on three different morphotypes and gender of P. lobata. In
addition, tissue thickness and time of formation of both high and
low density-bands among the morphotypes and genders were
documented and compared.

MATERIALS AND METHODS

Study Area and Coral Sampling
P. lobata morphotypes were collected in Isla Isabel National
Park (IINP) (permission number: DGOPA.04552.040711.1798),
located at 25 km offshore of the Nayarit coast, in
the central Mexican Pacific (20◦40′35′′–20◦41′45′′ N,
105◦33′30′′–105◦38′10′′ W; Figure 1). The reef area is composed
of fringing coral reef patches around the island, where branched
corals Pocillopora species and columnar massive Porites species
dominate and share the principal coral reef area between 2 and
6m depth. Other massive forms such as massive and coralliths
are distributed irregularly on flat rocky and calcareous bottom
at 4–8m (CONANP, 2007). The sea surface temperature (SST)
of the zone is influenced mainly by two inter-annual transitional
ocean currents, the California Current (CC) brings SST of
18–21◦C from January to March (Shea et al., 1992; Kessler, 2006;
Pennington et al., 2006; Pantoja et al., 2012), and the Mexican
Costal Current (MCC) is characterized by SST of 27–30◦C
between July and November (da Silva et al., 1994; Kessler,
2006; Pennington et al., 2006; Palacios-Hernández et al., 2010;
Pantoja et al., 2012). Several authors have reported periodical
temperature anomalies driven by El Niño-Southern Oscillation
events with both ElNiño (+3◦C; SST) and LaNiña (−4◦C; SST)
phases which has caused massive coral bleaching and mortalities
episodes (Glynn, 2000; Carriquiry et al., 2001; Reyes-Bonilla
et al., 2002; Fiedler and Talley, 2006; Kessler, 2006; Wang and
Fiedler, 2006; Cupul-Magaña and Calderón-Aguilera, 2008).

Coral Growth Measurements
Sampling was conducted in October 2013. Using a hammer and
chisel, a total of 11 P. lobata colonies (70 cm on average) of three
different morphologies were collected in the same area at 3–5m:
massive (n = 3), columnar (n = 4), and free-living coralliths
(n = 4) (Figure 2). In the laboratory, in order to eliminate
organic material, all samples were washed with fresh water, dried
using compressed air and then placed in a conventional oven
at 75◦C for 10 h. Coral samples were sectioned from the main
growth axis into slices of 7–10mm thickness, using a tipped
diamond saw blade (Qep). Coral slices were X-radiographed
using a General Electric X-ray machine (GE Hungay Rt. Medical
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FIGURE 1 | Study area, Isla Isabel National Park (IINP). Black star denote the site of collection.

Systems), with the exposure set to70 kv for 20 mAs at a
2-m distance between the X-ray source and the coral samples
(Figure 2).

Radiographic images were corrected using the method
described by Duprey et al. (2012) to eliminate the irradiation
bias (e.g., “heel effect” and “square law”). Corrected images were
analyzed using ImageJ (ver. 1.46, http://rsb.info.nih.gov/ij/) to
obtain density values (g cm−3) though perpendicular tracks (0.20
mm) along the highest growth axis of each colony, using the
method described by Carricart-Ganivet and Barnes (2007). Data
of linear extension rate was measured between the distance of
adjacent density minima peaks, which represent a theoretical
annual periods (mm yr−1), and calcification rate (g cm−2 yr−1)
were calculated as the product of skeletal density and extension
rate (Lough and Barnes, 2000; Carricart-Ganivet and Barnes,
2007; Lough and Cooper, 2011).

Tissue thickness (mm) was measured with a digital caliper
(Mitutoyo, 0.001mm precision) from the fringe to the deepest
mark of live tissue along each colony. In addition, tissue thickness
was also used to determine the timing of high density (HD)
band depositation, which can be readily calculated due to the
well understand impact of depth tissue on the apparent density
band formation on corals with porous skeletons, such as Porites
species (Barnes and Lough, 1993). The differences between real
and apparent timing of density-band formation was estimated
using the method described by Carricart-Ganivet et al. (2013),
and indicated as the apparent time differences (ATD).

Coral Sex Identification
A small fragment of each colony was fixed in 10% formalin
in seawater and stored at room temperature. Each fragment
was individually decalcified with 10% HCl mixed with a buffer
(0.7 g EDTA, 0.14 g sodium tartrate, and 0.008 potassium
sodium tetrahydrate), and the tissue obtained was rinsed with
running fresh water and preserved in 70% ethanol. Afterwards,
tissues were dehydrated using a 10-step Histoquinet Leica and
embedded in Paraplast X-tra. Sections of 8µm thickness were
obtained with a semi-automatic Leica microtome. Preparations
were stained using Masson’s trichrome protocol (Humanson,
1967). Slides were analyzed using a compound microscope
(LABO JAZ-ANZ). Gamete presence and gender identification
were determined as described by Rodríguez-Troncoso et al.
(2011).

Data Analysis
Mean average values of all coral growth parameters (±standard
deviation) were calculated for each morphotype and gender.
After evaluation of normality and homoscedasticity (P < 0.05),
non-parametric analysis of variance on ranks (i.e., Kruskall–
Wallis test) were used to compare levels of growth parameters
between morphotypes and General Linear Model two-way
ANOVA with fixed- effects was used in order to assess the effect
of morphology, gender and their interaction on coral growth.
Pearson’s product moment tests were used to determine the
significance of correlation between extension rate, density and
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calcification rate. All statistical analyses were conducted with
Sigma Plot (ver. 11, SPSS) and Statistical (ver. 8, Stats) software,
and an alpha level of 0.05 was set a priori.

RESULTS

Coral parameters resulted from 80 pairs of density bands over
a 6 years interval. P. lobata present a mean extension rate of
0.57 ± 0.03 cm yr−1, a mean density of 1.17 ± 0.02 g cm−3,
and a mean calcification rate of 0.65 ± 0.03 g cm−2 yr−1. At
temporal level growth parameters does not showed differences

(P > 0.05) over the 6 years analyzed (Table 1). However, growth
metrics were significant different between coralliths, massive and
columnar forms: in extension rate (H = 13.523, P = 0.001),
skeletal density (H = 33.026, P < 0.001), and calcification
rate (H = 6.444, P = 0.040; Figure 3). Columnar colonies
showed an average of 33 and 15% lower rates in extension and
calcification among the morphotypes. The gender was identified
only for columnar and coralliths forms, massive colonies not
showed evidence of sex gametes. Analysis of growth parameters
between males and females colonies resulted in similar growth
parameters when gender data pooled (Table 2). However, this
was statistical different using the effect ofmorphotype and gender

FIGURE 2 | Different morphotypes of Porites lobata in situ, under X-radiography and photograhps of coral slices displaying tissue thickness. (A)

Massive, (B) Columnar, and (C) Corallith (free-living).

TABLE 1 | Mean annual growth (± SD) of P. lobata morphotypes: extension rate, skeletal density, and calcification rate, (n) indicate the number of pair of

growth bands evaluated by year.

Year Corallith Massive Columnar

Density Extension Calcification Density Extension Calcification Density Extension Calcification

(g cm−3) (cm yr−1) (g cm−2 yr−1) (g cm−3) (cm yr−1) (g cm−2 yr−1) (g cm−3) (cm yr−1) (g cm−2 yr−1)

2008 1.11 ± 0.14 (4) 0.65 ± 0.24 (4) 0.71 ± 0.22 (4) 1.18 ± 0.03 (3) 0.65 ± 0.23 (3) 0.77 ± 0.28 (3) 1.07 (1) 0.45(1) 0.49 (1)

2009 1.05 ± 0.14 (4) 0.60 ± 0.17 (4) 0.61 ± 0.13 (4) 1.22 ± 0.04 (3) 0.57 ± 0.22 (3) 0.70 ± 0.26 (3) 1.22 ± 0.13 (3) 0.76 ± 0.55 (3) 0.92 ± 0.69 (3)

2010 0.98 ± 0.07 (4) 0.70 ± 0.20 (4) 0.68 ± 0.18 (4) 1.22 ± 0.05 (3) 0.64 ± 0.36 (3) 0.77 ± 0.41 (3) 1.25 ± 0.16 (3) 0.70 ± 0.36 (3) 0.85 ± 0.44 (3)

2011 1.06 ± 0.13 (4) 0.72 ± 0.24 (4) 0.77 ± 0.28 (4) 1.22 ± 0.07 (3) 0.57 ± 0.18 (3) 0.69 ± 0.21 (3) 1.30 ± 0.15 (4) 0.36 ± 0.09 (4) 0.45 ± 0.08 (4)

2012 1.10 ± 0.10 (4) 0.82 ± 0.06 (4) 0.91 ± 0.12 (4) 1.24 ±0.04 (3) 0.52 ± 0.18 (3) 0.65 ± 0.23 (3) 1.34 ± 0.18 (4) 0.41 ± 0.13 (4) 0.54 ± 0.16 (4)

2013 1.19 ± 0.13 (4) 0.71 ± 0.06 (4) 0.84 ± 0.09 (4) 1.32 ± 0.03 (3) 0.33 ± 0.06 (3) 0.44 ± 0.08 (3) 1.38 ± 0.20 (4) 0.35 ± 0.06 (4) 0.48 ± 0.11 (4)
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FIGURE 3 | Coral growth parameters (±95% confidence limits)

comparison between morphotypes. (A) Extension rate, (B) Skeletal density,

and (C) Calcification rate. *denotes statistically significant difference (P < 0.05).
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TABLE 3 | The results of two-way ANOVA’s of Porites lobata in three coral

growth parameters and the interaction of the gender using both columnar

and corallith morphologies.

Parameter Source DF MS F P

Extension rate Morphotype 1 0.865 34.879 <0.001

Gender 1 0.246 9.915 0.003

Morphotype × Gender 1 0.006 0.226 0.637

Skeletal density Morphotype 1 0.136 8.962 0.005

Gender 1 0.0205 1.35 0.254

Morphotype × Gender 1 0.002 0.098 0.756

Calcification rate Morphotype 1 0.834 31.563 <0.001

Gender 1 0.239 9.051 0.005

Morphotype × Gender 1 0.005 0.191 0.665

Bold values denotes statistically significant difference.

in extension and calcification rates (P < 0.01; Table 3), males
colonies grew 30 and 40% faster than females for columnar
and corallith morphologies, respectively (Figure 4). There was
a positive relationship between extension and calcification rate
(r2 = 0.889, P < 0.001), but not between of skeletal density
and calcification rate; in contrast, a weak relationship was found
between extension rate and skeletal density (r2 = −0.127, P =

0.001). Similar pattern were revealed when relationships were
analyzed by morphotypes (Table 2).

Tissue thickness averaged 6.63 ± 0.14mm for columnar
growth forms, 7.78 ± 0.13 mm for massive and 7.32 ± 0.16 mm
for coralliths, and these differences were statistically significant
(H = 24.895, P < 0.001). There were gender differences of both
columnar and corallith forms (Figure 5). The results reflects a
4–6 month differences in the apparent timing of density-band
formation between morphotypes, this difference was displayed
by the columnar forms with the lowest tissue thickness values
compared to coralliths and massive (Table 2). In addition, a
difference in the timing (months) of density-band formation
among genders of P. lobata, with 5-month of difference for
males, and 11 for females was observed. However, this was not
consistent with the interaction effect between morphology and
gender, where apparent timing of density- band formation was
2–3 month between genders in both columnar and corallith
forms. These results indicate a stronger effect of the morphology
with a 6-month difference in the apparent time of density-
band formation between morphotype, even considering the
colonies gender; where male and female coralliths showed faster
extension, calcification rate, and thicker tissue compared with
columnar colonies (Table 2).

DISCUSSION

Difference in calcification rate of distinct P. lobata morphotypes
(Corallith, massive, and columnar) at the same depth range
reveals the high plasticity of this scleractinian species and
demonstrates that each morphotype grows at different rates,
and such rates may depend on the colony’s gender. Phenotypic

plasticity has been reported for congeneric species in the central
Pacific, which present different growth rates between distinct reef
zones (e.g., high vs. low energy; Smith et al., 2007). Therefore, P.
lobata appears to be able to readily modify their growth strategies,
developing different forms and/or growing at different rates in
order to persist over the reef framework.

All coral morphologies are distributed at the same depth
range, but as expected, in different substrates. Columnar colonies
of this study recruit to rocks and coral matrix, and is possible
that they modify shapes depending of the complexity of the
substrata and compete for space with other sessile species; when
the available space is restricted coral growth could divert upward
rather than sideward, promoting columnar forms (Van Veghel
et al., 1996). Massive colonies were observed on calcareous
platforms rounded by large sandy areas, a similar observation to
that observed in the equatorial zone of the ETP (Guzmán, 1986).
This particular shape allows the space separation >1m, between
colonies of the same form. It should be noted that massive
growth forms tend to be larger and have higher in calcification
rates compared with columnar and corallith forms. Therefore,
massive forms are lesser extent by space and competition and
may grow in both height and width, developing large colonies.
The free-living (mobile) coralliths were found across flat, rocky
areas between adjacent coral matrices. Then tended to develop
rounded shapes due to interactions with coral reef fish and water
energy. As the coralliths increase in diameter and weight, their
morphology is ultimately subject to change over the time as they
attach to the substrate (Glynn, 1974; Tortolero-Langarica et al.,
2016).

The mean annual extension and calcification rates of P.
lobata documented herein are the lowest (on average ∼2-fold
lower) documented for Porites genera across the Pacific Ocean
(Guzmán and Cortés, 1989; Glynn et al., 1996; Lough et al.,
1999; Lough and Barnes, 2000; Smith et al., 2007; Lough, 2008).
Nevertheless, the range of extension values is similar to those
of Porites species at the same latitude (Lough and Barnes,
2000). The upward growth and calcification rate of P. lobata
corals from the eastern Pacific tend to decrease with increasing
latitude, which is a similar pattern to that observed in massive
Porites corals from the western Pacific (Lough and Barnes, 2000;
Cooper et al., 2008). This may be influenced by the variability
of the environment conditions at higher latitudes; for instance
temperature and light decreases and higher nutrient load may
inhibit or reduce coral growth, leading to lower extension,
and calcification rates in corals of the sub-tropical latitudes of
the ETP in comparison to conspecifics from tropical latitudes
(Grigg, 1981; Risk and Sammarco, 1991; Lough and Barnes, 2000;
Kessler, 2006; Pennington et al., 2006; Pantoja et al., 2012).

Differences in extension and calcification rates were observed
between morphotypes, with columnar colonies presented the
lowest rates compared with coralliths and massive (Table 2).
Therefore, we reject the hypothesis that free-living coralliths may
show slower rates compared with columnar and massive shapes.
This may be explained because morphology forms of the same
species can present different characteristics as a physiological
response to intra-specific interactions for competition of habitat
and resources (Van Veghel et al., 1996). These interactions
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FIGURE 4 | Growth parameters (±95% confidence limits) of columnar and corallith morphotypes including the gender effect (differences between

males and females). (A) Extension between males and females. (B) Skeletal density between male and females. (C) Calcification rate between male and females.

*denotes statistically significant difference (P < 0.01).
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FIGURE 5 | Tissue thickness (±95% confidence limits) differences among morphotypes and the effect of gender (across genders). (A) Comparison

between corallith, massive and columnar morphologies. (B) Comparison between genders within the columnar morphotype group. (C) Comparison between genders

within the corallith group. * denotes statistically significant difference (P < 0.001).

may produce damage on coral tissue and erosion on the
skeletal structure, generating a negative effect on extension
and calcification rates (Carricart-Ganivet, 2007). Therefore, the
organisms invest the energetic resources on tissue repair instead
on growth.

In contrast with extension and calcification rates, skeletal
density values of P. lobata are within the same range as those
documented across the Pacific (Risk and Sammarco, 1991; Lough
and Barnes, 2000; Carricart-Ganivet, 2007; Lough, 2008). At the
population level, skeletal density is expected to be influenced
by local environmental factors such as depth, nutrient load,
sedimentation, light, water flux and pH (Grigg, 1982; Hughes,
1987; Risk and Sammarco, 1991; Lough and Barnes, 2000;
Smith et al., 2007). Despite overall similarities in average levels
with those documented in of the Pacific, differences between
morphotypes were observed at IINP. Indeed, it is unsurprising
that different morphologies’ surface area/volume ratios could
necessitate differences in density (Risk and Sammarco, 1991;
Grigg, 2006; Smith et al., 2007; Lough and Cooper, 2011;
Tortolero-Langarica et al., 2016).

Differences between genders were documented both herein
and previously founded (Cabral-Tena et al., 2013; Carricart-
Ganivet et al., 2013). Males in columnar and corallith
morphotypes present higher growth rates than female colonies.
On average, a coral colony invests ∼15% of its daily energy
budget on reproduction (Sheppard et al., 2009), with a
high energetic cost to produce eggs than sperm (Harrison,
1985). Brooding corals produces in asynchronic maturation
many oocites per year (Rodríguez-Troncoso et al., 2011).
Therefore, female colonies continuously invest energy during
their reproductive periods reducing the amount of energy
available for calcification (Harrison and Wallace, 1990). As
P. lobata is characterized as a gonochoric brooder coral
(Harrison, 2011), it seems likely that female colonies will
decrease their growth to a greater extent than males during
periods of the gametogenesis, thereby generating differences

in calcification rates between genders (Figure 4). Also, this
is confirmed by the differences in tissue thickness between
genders (Figure 5), where males typically present a greater
thickness than females (Carricart-Ganivet et al., 2013), and
this is including herein for most morphotypes. Therefore,
both gender and morphotype appear to affect the growth of
P. lobata.

P. lobata showed a similar HD banded pattern between
morphotypes during the summer season. However, results
differed between morphotypes when apparent timing of density
bands deposition was examined. The difference between actual
and apparent HD banding is an average of 6 months. Herein
HD bands begin to form during the late winter when the
SST begins to increase gradually (Lough and Barnes, 2000).
Then, they continue to form until the end of the summer
season 6 months later. This is due to the porous nature Poritid
skeletons, a characteristic that allows continuing depositing
calcium carbonate under the tissue layer (Barnes and Lough,
1992, 1993; Carricart-Ganivet et al., 2013; Tortolero-Langarica
et al., 2016).

This study has demonstrated difference in extension rate,
skeletal density, and calcification rates between different P. lobata
morphotypes and genders. P. lobata is highly phenotypically
plastic (Smith et al., 2007) and is found in both the
Eastern and Western Pacific, despite a barrier to gene flow
across the Eastern Pacific Ocean (Baums et al., 2012). This
widespread distribution suggests a marked ability to adapt
or acclimatize to a wide variety of environment. Indeed,
this characteristic helps to the species to maintain their
distribution over the coral reef framework and serve as a
framework building species in the reefs of the ETP region.
In addition, the variability in growth parameters suggests
that colony morphology may factor into local and regional
comparison. This must be considered, for instance, because
due morphological variation itself may mask growth difference
between coral communities. Therefore, we recommended that,
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are growth comparisons to be made between localities or over
the time, the same morphologies are compared against each
other.
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