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In Europe and around the world, the approach to management of the marine environment

has developed from the management of single issues (e.g., species and/or pressures)

toward holistic Ecosystem Based Management (EBM) that includes aims to maintain

biological diversity and protect ecosystem functioning. Within the European Union, this

approach is implemented through the Marine Strategy Framework Directive (MSFD,

2008/56/EC). Integrated Ecosystem Assessment is required by the Directive in order

to assess Good Environmental Status (GES). Ecological modeling has a key role to

play within the implementation of the MSFD, as demonstrated here by case studies

covering a range of spatial scales and a selection of anthropogenic threats. Modeling

studies have a strong role to play in embedding data collected at limited points within

a larger spatial and temporal scale, thus enabling assessments of pelagic and seabed

habitat. Furthermore, integrative studies using food web and ecosystem models are able

to investigate changes in food web functioning and biological diversity in response to

changes in the environment and human pressures. Modeling should be used to: support

the development and selection of specific indicators; set reference points to assess state

and the achievement of GES; inform adaptivemonitoring programs and trial management

scenarios. Themodus operandi proposed shows how ecological modeling could support

the decision making process leading to appropriate management measures and inform

new policy.
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INTRODUCTION

The Ecosystem Based Management (EBM) approach to marine
conservation and sustainable use of the natural environment has
been promoted by international conventions (e.g., Convention
on Biological Diversity UNEP, 1998; CBD, 2014), national
legislation across Europe and beyond (Kidd et al., 2011)
and global scientific organizations such as the International
Council for the Exploration of the Sea (ICES) that provide
evidence and advice. EBM recognizes the need to take a
holistic approach to understanding ecosystem level change,
including explicitly accounting for the governance structures
involved in interpreting, enacting and enforcing legislation
(Borgström et al., 2015). Tightly linked to these aims, the Marine
Strategy Framework Directive (MSFD, 2008/56/EC; European
Commission, 2008) aims to achieve Good Environmental Status
(GES) for the marine waters within the EU by 2020. During
the first cycle of the MSFD (2012–2018), EU Member States
prepared initial assessments of their marine waters (Article
8), determined characteristics for GES (Article 9), established
environmental targets and associated indicators (Article 10), and
established monitoring programs for the ongoing assessment of
the environmental status of their marine waters (Article 11).
Programs of measures have been identified that will provide the
mechanism for changing the system to achieve the individual
targets, and the overall aim of GES. EU Member States are
required to review each element of the marine strategy every 6
years after their initial establishment (Article 17).

Although the fundamental statistical mechanics of ecosystems
are an area of ongoing research (Rodríguez et al., 2012;
Rossberg, 2013) many developments have been made by the
scientific community in terms of modeling and indicator
development (Shin et al., 2012; Piroddi et al., 2015a). Ecological
models (hereafter “models”), including a range of conceptual,
mathematical, and statistical representations of ecosystem
components and processes (e.g., Peck et al., 2016), have an
important role to play in the assessment and management
cycle. Models provide the means to test how different trophic
levels and the biogeochemistry of marine systems respond under
specific scenarios of management (e.g., fisheries, Allen and
Clarke, 2007) and environmental change (e.g., climate, Artioli
et al., 2014). Further, ecosystem models can be used to drive
distribution models for species in higher trophic levels, allowing
the exploration of management and change scenarios (e.g.,
fisheries, harmful algal blooms, Gilbert et al., 2010; Sumaila et al.,
2015).

A number of studies have shown how ecosystem modeling
could support the assessment of different ecosystem components
and pressures in several marine regions and also where models
require further development (Hyder et al., 2015; Piroddi et al.,
2015a; Tedesco et al., 2016; Rossberg et al., 2017). Here we
advance on this body of work and demonstrating that modeling
is not only useful for the assessment of components, but
throughout the entire assessment cycle of the MSFD (Figure 1).
Within the MSFD there are 11 themes or features that describe
GES, termed descriptors within the directive (hereafter “D,”
Annex I, MSFD). Four of these are strongly linked to biological

diversity: biological diversity (D1), non-indigenous species (D2),
food webs (D4), and seafloor integrity (D6), all of which have
the potential to be addressed using models (Piroddi et al.,
2015a). The impacts of human activities on the ecosystem can
also be addressed using models, particularly those linked to
the pressure descriptors commercial fish and shellfish (D3),
eutrophication (D5), and hydrological changes (D7). Although
developments vary considerably between MSFD descriptors
and assessment regions, some descriptors are well-addressed
by ecosystem models in all regions (e.g., D4 food webs), and
some remain poorly addressed (e.g., D2-non-indigenous species
and D6-seafloor integrity; Piroddi et al., 2015a). Models may
not always address biological diversity in a traditional sense
(species richness and evenness, Tedesco et al., 2016), but they
can be used to address simplified representations of natural
biological diversity in relation to seafloor integrity and ecosystem
functioning (Queirós et al., 2015).

Through a selection of case studies, this paper demonstrates
how modeling can be used throughout the MSFD assessment
cycle. Specifically, in the development and selection of indicators,
identification of reference points, informing monitoring
programs, assessing ecosystem state, and changes in functioning
and trialing management scenarios. We propose a modus
operandi through which ecosystem modeling can support the
decision-making process leading to appropriate management
measures and inform new policy.

INNOVATIVE MODELING TO SUPPORT
THE MSFD ASSESSMENT CYCLE—CASE
STUDIES

The MSFD follows an adaptive management approach with
Marine Strategies that must be reviewed every 6 years (Figure 1).
Assessing and maintaining GES requires an understanding of
the link between pressures on the marine environment and the
state of the environment. Marine systems, however, are subject
to multiple pressures and the resulting functioning of the system
is also influenced by long term climate change such that the
expected outcome of management actions is difficult to project.
Integrative modeling tools allow researchers to investigate the
processes operating in the system and the likely responses of
ecosystem components to potential management measures given
the prevailing climate.

Development of Novel Indicators for
Routine Assessment
Indicators are metrics used to determine the state of the
ecosystem and to detect changes that occur due to anthropogenic
or environmental impacts on the ecosystem. In the specific
case of the MSFD, indicators need to be applicable to the
descriptors (e.g., biological diversity) and pressures (e.g.,
fishing, pollution, etc.) that are explicitly listed in the directive
(European Commission, 2008). Monitoring programs must
be designed to provide data for indicator assessments (ICES,
2016a; Patrício et al., 2016). This is a fundamental step
in measuring progress toward targets and evaluating the
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FIGURE 1 | Assessments of Good Environmental Status are made as part of an adaptive management approach with 6-yearly cycle and require

modeling support at each step (key aims of the modeling required are presented in the white bubbles within the structure of the MSFD).

effectiveness of measures employed to achieve or maintain
GES. In addition to measuring the current characteristics
of the ecosystem, monitoring programs should consider
the wider context within which indicators are measured
(such as climate change and the risk of invasions of non-
indigenous species). However, ecosystems are complex
and we cannot measure “everything everywhere.” Rather,
evaluation of trade-offs in monitoring different ecosystem
state indicators (Kupschus et al., 2016) and potentially
additional pressures (not listed in the MSFD) that modulate or
confound these changes is needed (Queirós et al., 2016a).
By explicitly linking ecosystem model development to

MSFD monitoring program development, modeling can
assist by:

• Informing where sampling is required to improve precision
of measurements of state and be able to detect change in
ecosystem structure (habitats, communities, and connectivity;
ICES, 2016a).

• Evaluating where there is a risk of change in biological
diversity and ecosystem function (e.g., Pinnegar et al., 2014;
Katsanevakis et al., 2016).

• Informing upon which indicators should be assessed to
maximize gains in understanding ecosystem processes
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(Möllmann et al., 2008), improving our ability to give suitable
scientific advice in future.

An important step toward EBM is the selection of suitable
indicators from a range of proposed options according
to objective criteria regarding their scientific standard and
applicability to the MSFD (Queirós et al., 2016a). Some of
these criteria, such as the quantification of pressure-response
relationships, can be evaluated using models. For example,
indicators addressing disturbance of marine fish community
structure through exploitation (i.e., fishing, a physical pressure)
have been investigated (Houle et al., 2012). The indicators
evaluated were derived from simulated catch or survey data,
for example, for the body mass or current length of individual
fish, their expected length at first maturation, or trophic
level, which were aggregated according to a number of
formulae proposed in the literature (see Houle et al., 2012
and references therein). The model used described interactions
between size-structured fish populations with various maturation
body sizes. Specificity to fishing was evaluated in comparison
to indicators responses to small random model parameter
variation, representing, e.g., environmental change. While not
identifying a unique “winner,” this analysis revealed clear
differences in both sensitivity and specificity among proposed
indicators. These results later informed indicator selection (ICES,
2012).

Assessments based on indicators are required by the MSFD
at multiple levels: ecosystem, habitats (including their associated
communities) and species, and the spatial scale of these
assessments must be ecologically meaningful and relevant to
the pressures on the ecosystem. Ideally, indicator assessments
would support simple advice on status in relation to reference
points (thresholds). However, when such assessment reference
points are not available, identification of desirable directions of
change can be useful (i.e., “reference directions” Jennings and
Dulvy, 2005. For indicators where the pressure-state relationship
is unknown but the property is considered important to monitor
indicators can be used for “surveillance purposes” (Shephard
et al., 2015a). Examples are given in the following section for
indicators of biological diversity, food webs, sea-floor integrity,
and non-indigenous species. There is a risk that the pressure to
implement and fulfill legislative requirements could affect the
entire process of assessment. Acknowledgment of uncertainty (in
both data and models; Carstensen and Lindegarth, 2016; Payne
et al., 2016; Peck et al., 2016), recognition of coupled social-
ecological systems and that decisions reflect societal choice, and
the acknowledgment of these trade-offs are therefore needed
in GES indicator development (Long et al., 2015). Models can
support these aims, as exemplified below.

Modeling Habitats and Ecosystem
Components
Pelagic Habitats and Lower Trophic Levels
The value of coupled biogeochemical-physical oceanmodels with
realistic simulations of phytoplankton responses can be seen
in many examples of applied ecology. Aldridge et al. (2012)
used a variant of the European Regional Seas Ecosystem Model

(ERSEM, Butenschön et al., 2015) to examine the effects of a
large-scale seaweed farm in the northern North Sea. Compared
to control runs, the model with a seaweed farm displayed altered
phytoplankton composition at distances of up to 100 km. The
impacts of other large-scale marine engineering projects such as
the construction of wind farms at multiple sites in the North Sea
can also be probed using biogeochemical models (van der Molen
et al., 2014).

Remote Sensing and Bio-Optical Models for

Assessing Pelagic Habitat
Within the DEVOTES project, a case study has been performed
in the Bay of Biscay to investigate the potential to estimate
chlorophyll-a by each of two bio-optical models applied to
MODIS-AQUA imagery for the assessment of status and trends,
and to support the definition of reference values and targets
for chlorophyll concentration in the water column, as an
indicator that responds to eutrophication and suitable for the
MSFD D5 (human-induced eutrophication). These data may
also be potentially used to support other indicators under other
descriptors, such as those relating to pelagic habitat structure
within D1 or Harmful Algal Blooms (HABs) within D5. This
study revisits and updates the work performed by Novoa et al.
(2012) by extending the dataset to 2014. However, satellite data
also have limitations and uncertainties (Hooker and McClain,
2000). Firstly, only surface layers are sensed so subsurface
peaks of chlorophyll may be missed (Jacox et al., 2013). Bio-
optical algorithms perform well in waters where the main
optical constituent is phytoplankton, but the accuracy decreases
in waters with more optical constituents such as dissolved or
suspended matter.

The 90th percentile of chlorophyll-a values were evaluated
over the defined growing season in a 6 year sliding window.
This indicator is already used by the Water Framework Directive
(WFD, 2000/60/EC) and is a candidate for the MSFD (Ferreira
et al., 2010). The modeled values were compared, using MODIS-
AQUA data with the OC5 (Gohin et al., 2002) and OCI (Hu
et al., 2012) bio-optical algorithms, to traditional in situ datasets
from the Basque Littoral Monitoring Network (Revilla et al.,
2009; Figure 2). The reference values applied are those set by
the North Eastern Atlantic geographical inter-calibration group
for the coastal water type “Spain North East Cantabrian,” as
these target chlorophyll concentrations/ranges are determined
locally for different water types and water categories, based
on the results of the inter-calibration exercises (European
Commission, 2013). Despite the improvements of the algorithms
to better estimate chlorophyll-a values, the overestimation of
satellite estimations (particularly in values higher than 1mg
per m3) result in significant differences in assessments based
on the 90th percentile indicator: where the in situ dataset
classifies water bodies as “high quality” class, the MODIS-AQUA
OC5 satellite dataset classifies them in “good quality” and the
MODIS-Aqua OCI dataset algorithm) in “poor quality” class.
However, statistics other than the 90th percentile such as the
median or averages are less sensitive to the inaccuracies and
classifications from these statistics are agree with the in situ
data.
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FIGURE 2 | Location of the area of study. (A) Western Europe overlaid with the P90-chla calculated with the MODIS-Aqua OC5 dataset between 2003 and 2013.

(B) Detailed information about the location of the sampled stations from the Basque Littoral Monitoring Network, overlaid with main rivers pouring into the coastal

zone, WFD water bodies and the P90-chla calculated with the MODIS-Aqua OC5 dataset between 2003 and 2013.
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Remote Sensing and Bio-Optical Models for

Estimating Production at the Base of the Food Web
The rate of production of new cells or carbon by phytoplankton
is an important indicator for food webs, and as such, has been
proposed for use under the MSFD for food webs (D4). Whilst the
instantaneous rate of carbon fixation can be measured directly,
the daily, seasonal or annual integral of production can be
modeled as a function of phytoplankton biomass, underwater
light, and photosynthetic activity (Smyth et al., 2005; Carr
et al., 2006). Many models of primary production are available,
from relatively simple empirical functions through to complex
equations describing the underwater light field and plankton
response in detail. Marine biogeochemical models such as the
ERSEM and the Biogeochemical Flux Model (BFM, Vichi et al.,
2015) contain complex productivity calculations in their core
code, which, when driven by high quality atmospheric forcing
data and accurate physical ocean responses, provide the ability
to dynamically generate realistic inputs of new carbon in space
and time.

Changes inmarine primary production over annual to decadal
periods may be driven by changes in underwater light availability,
caused for example by increased sediment loading (Dupont and
Aksnes, 2013; Capuzzo et al., 2015), or by changing nutrient
concentrations or stoichiometry. A long-term study of modeled
annual primary production in the eastern Scheldt estuary showed
a decreasing trend between 1991 and 2011 (Smaal et al., 2013),
which could not be related to changes in the dissolved nutrients
or the concentration of suspended matter, but rather indicated
an overgrazing of the larger, more active phytoplankton due to
expanding aquaculture activities. Biogeochemical models such as
ERSEM and food webs tools such as Ecopath with Ecosim (EwE,
Christensen and Walters, 2004) could be deployed to investigate
the wider ecosystem effects of such a prolonged decrease in
overall production, and shift in prey size at the base of the food
chain.

The links between primary production and fisheries
production are now becoming well-established. Following
pioneering work by Ryther (1969) and others, the recent
availability of satellite-based primary production estimates for
the global ocean has allowed size-based fisheries production
models to be constructed for many large marine ecosystems
(Jennings et al., 2008; Jennings and Collingridge, 2015; Fogarty
et al., 2016). Further, work is required to regionalize satellite
production algorithms for European seas, and to establish
methods for the automated analysis of phytoplankton size-
structure for use in size-based models suitable for marine policy
purposes.

Mapping Benthic Habitats and Species Distributions
Modeling of physical habitats, their associated species and
connectivity between them can contribute toward the
identification of ecologically important areas in need of
protection (Baker and Harris, 2012), and form the basis for
designing cost-effective monitoring programs (De Jonge et al.,
2006). A range of modeling tools (Piroddi et al., 2015a; Peck
et al., 2016) have been developed to map habitats and species
assemblages and include: distribution modeling techniques to

predict the spatial patterns in species distribution, abundance
and habitats using observations of environmental variables
(e.g., bathymetric and seabed types distribution; Stephens and
Diesing, 2015) and new techniques to model connectivity
between communities (Chust et al., 2016). Statistical models, in
particular, can generate outputs that are easy to communicate
(Reiss et al., 2014) and provide information on the uncertainty
in the estimates (Figure 3). Such uncertainty information can
indicate where monitoring is required in order to reduce the
variance in the distribution model, or if multiple indicators are
supported by one monitoring program this can be optimized
by minimizing a weighted average of the indicators’ variances
(Carstensen and Lindegarth, 2016). Representing model
uncertainty spatially (Figure 3) is especially useful as the MSFD
relies on spatial assessments and species distribution indicators
will be directly affected by the quality of the data used to model
distributions. The location and frequency of multiple-objective
monitoring programs can be modeled and the power needed
to detect change in given indicators can be assessed leading to
operational decisions on how many data types can be collected
whilst maintaining sufficient overall precision and accuracy
(Shephard et al., 2015b). As an example the Cefas integrated
ecosystem survey program in the western Channel collected
multibeam data from which seabed conditions were inferred
for the entire area. The modeling process revealed areas of high
heterogeneity and low predictability which can be prioritized in
future surveys to reduce uncertainty and improve the reliability
of species distribution modeling and make actual changes in
distribution and extent (related MSFD D1 indicators) more
reliable.

Linking the Prevailing Climate and
Pressures to Food Web Responses
Anthropogenic and environmental sources are major threats
to marine ecosystems throughout the world (Naylor et al.,
2000; Pauly et al., 2005; Diaz and Rosenberg, 2008). Effective
marine resource management must take into account a variety
of both current and future pressures on marine ecosystems,
including fishing, eutrophication, climate change, and ocean
acidification. This is explicit to the MSFD which considers that
GES must be achieved with consideration for prevailing climatic
conditions. Up to now, a large body of work has focused on the
impact of single pressures on specific components of the marine
environment, while the assessment of cumulative and synergetic
effects of these threats remains poorly studied and such studies
are now emerging (Link et al., 2010; Hobday and Pecl, 2014;
Queirós et al., 2016b).

Food Web Responses to Ocean Acidification
van Leeuwen et al. (2016) applied a modeling approach to
examine the potential higher level effects of the impacts of climate
change and ocean acidification on marine ecosystems. Ocean
acidification research has been focused largely on individual
species and changes in their local environment, and less
frequently considered wider ecosystem and societal impacts
(Doney et al., 2009; Griffith et al., 2012; Le Quesne and Pinnegar,
2012; Queirós et al., 2016b). Understanding the combined effects
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FIGURE 3 | High resolution multibeam sonar data collected opportunistically during a multi-year integrated ecosystem survey program (van der Kooij

et al., 2011; ICES, 2015). (A) spatial plot of survey lines showing strength of returned acoustic signal (backscatter intensity, dB) revealing changes in the physical

properties of the seabed; (B) prediction interval (PI) of modeled seabed acoustic intensity return using random forest regression on broadscale auxiliary environmental

variables (e.g., Mascaro et al., 2014), areas with high prediction interval show greater variance and require higher resolution data or additional variables to reduce the

uncertainty; (C) final modeled seabed acoustic intensity (dB) return map, revealing broadscale variability in the physical conditions and facilitating better planning of

future survey activity.
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of direct (species level) and indirect (abiotic environment level)
changes due to ocean acidification across the food webs are
thus also critical to support the evidence base for management
decisions. van Leeuwen et al. (2016) applied a coupled ecosystem
model (consisting of a hydro-biogeochemical model and a
higher trophic level size-based model) in the North Sea in
three hydro-dynamically different sites: seasonally stratified,
transition waters, and permanently mixed. Three different
impacts affecting fishing yields were studied separately and
in combination: climatic impacts (medium emission scenario),
a proxy for abiotic impacts of ocean acidification (reduced
pelagic nitrification), and a description of potential biological
impacts of ocean acidification (reduced detritivore growth rate).
Results showed a high regional variability and an overall shift
toward more pelagic-oriented systems. Fisheries yields appeared
to increase due the climate effects in large areas of the North
Sea, but results indicated that ocean acidification could severely
mediate this impact for permanently mixed areas. Although
there is already evidence for a physiological response to ocean
acidification, this does not necessarily lead to an ecosystem
level response (Le Quesne and Pinnegar, 2012). Modeling
tools used in this case study have enabled an indication of
individual and combined effects of direct and indirect impacts
of climate change and ocean acidification in a marine food
web, and highlights that interactions between pressures can
lead to less than or more than the additive response of the
system.

Food Web Responses to Cumulative Impacts
Piroddi et al. (2015b) used an ecosystem modeling approach
for a small area of the Mediterranean Sea (Amvrakikos Gulf,
Greece) to assess temporal structural and functional changes
of its ecosystem under the combined effect of anthropogenic
pressures such as river runoff, fish farms, and fisheries. The
model derived indicators highlighted a general degradation of
the demersal compartments of the food web but a relative
stability of the pelagic compartments. Since the model has
showed a marginal role of local fishery in the Gulf ’s food
web and on its dynamics, as also observed by other studies
(Koutsikopoulos et al., 2008), eutrophication was considered the
only major pressure affecting the system. Specifically, the model
suggested that fish farms represented a secondary contribution
to nutrients and organic matter to the Gulf, whereas the two
major rivers were the main drivers of the Gulf eutrophication.
Contrasting results were observed by Piroddi et al. (2010)
for another area of the Mediterranean Sea (the Inner Ionian
Sea Archipelago, Greece), which is extremely oligotrophic, not
influenced by river run off and with a marginal low impact of
fish farms. Here, model derived indicators showed a consistent
decline with time while the demersal/pelagic biomass ratio and
the mean trophic level of the catches have increased linearly.
The model pointed to decline of small pelagic fish biomass,
particularly sardines, the main target of the local fisheries, and
an increase in biomass of demersal species as the likely cause
of the change in the ecosystem. Despite the fact that changes
in ocean productivity were observed in the area, the model
suggested that the degradations of the system were mainly

caused by intensive overexploitation of marine resources as
suggested also by other studies (Tsikliras et al., 2013; Gonzalvo
et al., 2014). Here, the modeling tool pointed strongly to the
underlying causes for ecosystem level change and would be
useful to managers attempting to improve the environmental
state.

Single and combined effects in the North Sea food web
were also studied by Lynam and Mackinson (2015) in this
case focusing on the response of indicators to direct impacts
of fishing and climate change. In the observation based model
projections, community composition indicators (Large Species
Index, mean maximum length) were found to respond to
fishing. In contrast, the trophic level of fish and elasmobranchs
was responsive to climate with a marginal effect of fishing
only. Importantly, the modeled temperature effect suggested
that the biomasses of certain trophic guilds (piscivores and
bentho-piscivores) may be suppressed by warming and, if
not taken into account during the setting of assessment
thresholds, these indicators could conceivably not reach their
desired levels due to climate effects. Modeling tools here
facilitate scientific advice on the combined effects of fishing
and climate impacts on the food web and can be used
to demonstrate the likelihood of an indicator reaching its
assessment threshold in the future given the prevailing climate
and pressure.

Uncertainty in Climate Change Projections
Models can be used to investigate the environmental status
of a system when prevailing conditions are far removed from
those at present, as is expected to occur in the future ocean
under global stressors such as warming and ocean acidification.
By forecasting future ocean conditions, some models can thus
help overcome traditional hurdles in forecasting ecosystem
state based on observational data alone, which are bound to
historical conditions (Barnsley, 2007; Szuwalski and Hollowed,
2016). Complexity in language choice in reporting modeling
results and of the uncertainty associated with such projections
has, at times, limited the uptake of the wealth of information
generated by models by policy around the world (Hyder et al.,
2015). The scientific community is now addressing this issue,
for instance, through the use of lay language, more accessible
to policy makers, in the expression of confidence attributed
to modeling results (Pörtner et al., 2014). Further to this, the
partitioning of sources of uncertainty in climate change impact
projections, and the explicit assessment of their contributions, are
paramount to improve the perception of confidence in modeling
results in research-policy communication (Payne et al., 2016).
For instance, though explicit recognition and quantification of
how physical and biogeochemical model structure, initialization,
internal variability, parametric, and scenario uncertainties are
carried forward into fish distribution models (Gårdmark et al.,
2013; Cheung et al., 2016; Payne et al., 2016) used to derive
GES indicators such as those described here. These are important
steps toward breaking down of uncertainty propagation and the
attribution of confidence to modeling forecasts used to support
policy. This effort is key to the uptake of modeling studies within
the MSFD process too.
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Modeling the Risk of Change in Ecosystem Function

Due to Species Invasions
Ecological impacts of non-indigenous species (NIS) range from
single-species interactions and reduction in individual fitness of
native species to population declines, local extinctions, changes
in community composition, and effects on entire ecosystem
processes and wider ecosystem function (Blackburn et al., 2014;
Katsanevakis et al., 2014). One of the MSFD requirements is to
assess the consequences of pressures arising from NIS, through
measurements of their impacts on the natural systems. A risk-
based approach has been generally adopted by Regional Sea
Conventions (RSC) and also by EUMember States in theirMSFD
initial assessments, but usually without clarification of the type
of adverse effects in biological diversity or the magnitude of
impacts observed (Micheli et al., 2013; Palialexis et al., 2014;
Berg et al., 2015). Understanding, quantifying and mapping the
impacts of invasive non-indigenous species across the seascape
is a prerequisite for the efficient prioritization of actions to
prevent new invasions or for developing mitigation measures
(Katsanevakis et al., 2016). A new index CIMPAL (Katsanevakis
et al., 2016) for measuring the cumulative impact of invasive
alien species in the ecosystems provides a spatially explicit
quantification of cumulative impacts. To illustrate the potential
of ecological-niche modeling (ENM) in the cumulative impact
index, DEVOTES used species distribution models (Kaschner
et al., 2013) to create a vulnerability map for the whole
the Mediterranean Sea under the current conditions, taking
a trial group of 17 species (DEVOTES Deliverable 4.2 and
Teixeira et al. unpublished). The CIMPAL index calculated
using the future projections of these species distributions
predicted an increase up to two and a half times the area
likely to suffer the effects of cumulative impacts from multiple
invasive NIS, with respect to the currently impacted area. Such
trends can be easily linked to specific habitats, species or
pathways of introduction, facilitating identification of ecosystem
components, processes, and services more at risk. Early-warning
indicators can be of utmost importance to identify vulnerable
spots or preferential pathways of introduction (Thuiller et al.,
2005; Hulme et al., 2008; Essl et al., 2015) and to anticipate a
joint set of actions in target areas or sectorial activities. These
ENM approaches are also effective tools to forecast changes
in distribution of invasive NIS under large scale scenarios
of climate change or addressing cross sectorial policies to
better manage invasions pressures in the marine environment.
Still, there are challenges to the use of these modeling
approaches for effectively predicting distribution patterns of
NIS in conservation and policy related contexts. For example,
to obtain meaningful risk maps of the cumulative impact of
invasive NIS it is required to consider the complete set of
species targeted but, only recently, developments on multispecies
distribution models are overcoming limitations of modeling
for a large number of species (e.g., Fitzpatrick et al., 2011).
Other relevant modeling developments aim at incorporating
species co-occurrence data into a species distribution model
(e.g., Pollock et al., 2014) or by integrating traits, namely
dispersal strategies, into the modeling (e.g., Miller and Holloway,
2015).

Detecting Change in Function through Ecosystem

Network Analyses
Food web functioning can be investigated through the use of
models that capture the complexity and diversity of trophic
flows in an ecosystem. The ecological properties of a network
of trophic flows can be characterized through Ecological
Network Analysis (ENA, e.g., Ulanowicz, 1997). ENA aims to
characterize the structure and the functioning of a food web
through a set of indices that describe the connections between
compartments through an analysis of the inputs and outputs of
a compartment, the trophic structure (based on a linearization
of the network), the rates of recycling, and the topology of
the flows (how redundant/specialized the flows are). Numerical
methods recently developed to allow the evaluation of ENA
indices and their uncertainty, so that statistical tests can be made
to compare changes in observed states or between simulated
scenarios (Lassalle et al., 2014; Chaalali et al., 2015, 2016; Guesnet
et al., 2015; Tecchio et al., 2016).

ENA indices have been proved useful to evaluate the impacts
of human pressures on ecosystem functioning and to simulate
likely impacts given climatic change scenarios. A change in
ecosystem functioning was modeled by ENA when comparing
the ecological network before and after the extension of the Le
Havre harbor in the Seine Estuary (Tecchio et al., 2016). Adjacent
to the harbor, the food web demonstrated increased detritivory
and recycling and the likely cause was a combination of pressures,
as human direct effects were associated with hydrological changes
induced by climatic conditions.

Scenarios are particularly useful to study cumulative effects
and disentangle effects from various pressures. For example, the
Bay of Biscay ecosystem was studied to investigate the effect of
climate change on the distribution of small pelagic fish and its
consequences on food web functioning (Chaalali et al., 2016).
Here, ENA analysis suggested that the ecosystem would adapt to
the simulated increased production of small pelagic fish in the
Bay of Biscay within 100 years and suggested that this fish group
would transport carbon toward higher trophic levels. Model
derived ENA indices can offer a unique view on change in the
ecosystem as a whole and demonstrate promise as food web
indicators.

Detecting Abrupt Changes and Regime Shifts
Multiple stressors such as climate, fishing, eutrophication, and
invasive species, have caused major reorganization of the aquatic
ecosystem, and these have been interpreted as regime shifts
in many areas including the Baltic, Black, and North Seas
(Alheit et al., 2005; Möllmann et al., 2009; Diekmann and
Möllmann, 2010; Lindegren et al., 2010, 2012; Llope et al., 2011).
This reorganization is likely to be reflected in multiple MSFD
descriptors, such as those of biological diversity, food webs,
commercial seafood production, and seafloor integrity.

Anticipating regime shifts is difficult since these abrupt
changes usually come as surprises (Doak et al., 2008). Recently,
Big Data analytics has been employed to evaluate whether regime
shifts could be predicted based on unexpected patterns in the
data, i.e., anomaly detection. Models such as non-stationary
dynamic Bayesian networks (Tucker and Liu, 2004; Robinson
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and Hartemink, 2009; Ceccon et al., 2011) can be employed to
learn from past data but adapt to the fact that the relationships
between the ecosystem components may change. This approach
has its challenges in the ecological domain, where data is often
relatively scarce, but some examples already exist (Trifonova
et al., 2015). These models could help identify upcoming regime
shifts based on data patterns, and could be used to informmodels
describing the underlying ecosystem processes.

It is important to note that systems that have experienced
regime shifts often show hysteresis effects, i.e., reduction of
external drivers need to have substantial stronger driver forcing
to recover to the original state (Beisner et al., 2003; Scheffer
et al., 2009). Although the existence of alternative ecosystem
states is contentious (Cardinale and Svedäng, 2011; Möllmann
et al., 2011), it is assumed that ecosystems that have experienced
regime shifts have reorganized into novel states (e.g., in terms
of species composition, population size, and species interaction
strength), and the altered environmental and anthropogenic
conditions may limit their recovery potential (Lotze et al., 2011).
A recent example from the Baltic Sea is the apparent recovery of
Eastern Baltic cod (Gadus morhua) predicted by linear, steady-
state models (Eero et al., 2012), but challenged by food web
models incorporating threshold dynamics (Blenckner et al.,
2015a). This emphasized the need of constant evaluation and
development of models, but also highlights that these processes
can be incorporated into modeling frameworks.

Modeling to Evaluate Management
Scenarios
When choosing management measures to attain GES, decision
makers need to have a strong evidence base to understand
the consequences of management options and make informed
decisions given a cost-benefit analyses of the options. However,
food web interactions are fundamental to any ecosystem such
that food web models could be required to fully evaluate changes
due to management. For example, Piroddi et al. (2011) used a
higher trophic level model of the Inner Ionian Sea Archipelago
(Greece) to assess reduction in fishing effort or total closure
(e.g., no-take zone) for the main fleets operating in the area as
a measure to recover a resident population of common dolphins.
Results from forecast scenarios highlighted that closing the area
only to the industrial sector would lead to an increase in forage
fish and thus a gradual recovery of common dolphins, but by
closing the entire area to fisheries (industrial and artisanal)
a recovery of common dolphin would be more pronounced.
Lynam andMackinson (2015) modeled the response of the North
Sea food web, and a suite of ecological indicators, given a climate
change scenario and a strategy in which fisheries management
measures may be implemented, in order to achieve maximum
sustainable yield targets for fishing mortality associated with
the Common Fisheries Policy (CFP; European Commission,
2013). The authors demonstrated that a reduction in fishing
effort consistent with CFP targets, would contribute to the
attainment of GES as measured by improvements in indicators
of biological diversity and food webs, thus linking the MSFD
pressure descriptor D3-commercial fish and shellfish to the state
descriptors D1-biological diversity and D4-food webs. Given
the need for managers to consider environmental targets for

indicators alongside traditional fisheries mortality targets for
stocks, scientific advice is required on the combined effects of
fishing and climate impacts on the food web (Brown et al., 2010).
Modeling is one of the only tools able to provide this evidence
base to facilitate management decisions on which measures
to take.

Lack of consideration of uncertainty and the use of single
model parameterizations can be seen as a common limitation
to some of the above studies (Jones and Cheung, 2015). Thorpe
et al. (2016) used an ensemble approach with 188 plausible
parameterizations of a size-based multispecies model (Thorpe
et al., 2015) with four fishing fleets to assess the effects of 10,000
alternate fishing scenarios of the ecosystem. They demonstrated
that the risk of stock depletions could be related to the value of
indicators of biological diversity and food webs (i.e., the Large
Fish Indicator and Size Spectrum Slope, respectively) and this
approach can be particularly useful for identifying assessment
thresholds for indicators. Thorpe et al. (2016) also demonstrated
a way to present risks (i.e., of stock depletion and thus loss of
biological diversity) and potential rewards (value of the catch)
associated with the scenarios tested. Similarly, a management
strategy evaluation tool has been developed for the EwE software,
capable of exploring the complete parameter space, and multiple
fisheries management strategies, having been tested using 1000
model configurations (STECF, 2015). Ecosystems are difficult to
model and project so that model uncertainty is also important
to capture in addition to parameter uncertainty. The STECF
workshop (STECF, 2015) approached this by using four differing
models (EwE, Fcube, Simfish, and Fishrent) and contrasting
the outcome of the fishing strategies. In the assessment of
impacts of climate change on marine ecosystems, large scale
intercomparisons of models and configurations are now standard
practice particularly to inform global studies such as assessment
reports from the Intergovernmental Panel on Climate Change
(Coupled Model Intercomparison Project of the World Climate
Research Programme).

Predicting the outcomes of the management actions with
precision becomes progressively more challenging as the number
of major forcing factors and pressures increase since they can
occur in previously unseen combinations (Dickey-Collas et al.,
2014). Uusitalo et al. (2016) approached this problem in the
Baltic Sea case by using three distinct modeling approaches to
evaluate how different combinations of fisheries management
and nutrient abatement can be expected to affect the ecosystem
status of the Baltic Sea, thus linking the MSFD pressure
descriptors D5-eutrophication and D3-commerical fish and
shellfish. The modeling approaches they chose, (1) a spatial
model for cumulative impacts (additive approach), (2) a food
web simulation model, and (3) a Bayesian model harnessing
expert knowledge, have all been used for management strategy
design or evaluation, and all have their strengths and weaknesses
in predicting the effects of the management scenarios (Uusitalo
et al., 2016). While all of these models were at least implicitly
based on the abundant research on the effects of nutrient
loading and fishing pressure on the Baltic Sea ecosystem (see
e.g., Gårdmark et al., 2013; Tomczak et al., 2013; Korpinen
and Bonsdorff, 2014; Blenckner et al., 2015b; Fleming-Lehtinen
et al., 2015), these three models were all based on a different
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logical construct, had different mathematical formulations, and
very different specifications in terms of how explicitly they
accounted for spatial and temporal aspects and the different
ecosystem types of the Baltic Sea. Therefore, the authors
concluded that any agreement between the models could be
interpreted as representing relatively well-known, or robust,
management response, while disagreement between the models
imply that the management response may be more uncertain.
This highlights the usefulness of multiple, mutually different
modeling frameworks in discerning the uncertainties in future
predictions.

Alternatively, uncertainty in ecosystem response can be
reduced by focusing indicator studies on high-level ecosystem
properties known to be more predictable than future projections.
Either models are built directly for the high-level properties,
or models describing systems at a lower level are used but
analyses focus on emergent properties, i.e., high-level responses.
Both approaches have been applied to predict recovery of
fish community size structure. Examples of the former, direct
approach are size spectrum models. The Species Size Spectrum
Model (Rossberg, 2012), for example, is sufficiently simple to
be solved analytically and this pinpointed key mechanisms
slowing recovery: competition for food among fish species of
very different size and predator-prey reversal. This was confirmed
using a much more detailed, species-resolved food webs model
(Fung et al., 2013), which was then used to predict recovery
processes a range of different indicators of fish-community size
structure. Applying this method to the Celtic Sea, Shephard
et al. (2013) predict that recovery of the Large Fish Indicator to
proposed target levels would require drastic reductions in fishing
pressures and may yet last 30–50 years.

Models Embedded within Assessments by
Regional Sea Conventions
GES is defined in the MSFD for “. . . seas which are clean, healthy
and productive within their intrinsic conditions....” Intrinsic
conditions are not clearly defined and it is not all clear, what sort
of ecosystem would occur in the absence of human interference
in a given physical environment. If we considered that the major
physical regimes in the sea (i.e., short-term/seasonal/permanent
stratified conditions/mixed conditions) promote a particular
life form of primary producer over others and thus structure
the food web then these regimes are the relevant level
in which to assess change in the plankton. Within the
DEVOTES project, we modeled physical processes with a
coupled hydro-biogeochemical model (GETM-ERSEM-BFM)
and determined Ecohydrodynamic zones that capture differing
intrinsic conditions (van Leeuwen et al., 2015). The spatial
stability of the Ecohydrodynamic zones suggests that carefully
selected monitoring locations can be used to represent much
larger areas. As such these zones are being used as the spatial
basis for plankton (D1 and D4) and oxygen (D5) indicators in
the OSPAR region (Greater North Sea and Celtic Seas).

HELCOM engages in modeling to define its nutrient
reduction schemes (i.e., with reference to eutrophication D5)
through use of the coupled physical-biogeochemical model

BALSEM (BAltic sea Long-Term large Scale Eutrophication
Model, Gustafsson, 2003; Savchuk et al., 2012) to calculate
maximum allowable inputs (MAI, Table 1). MAI are the
maximal level of annual inputs of water- and airborne nitrogen
and phosphorus to Baltic Sea sub-basins that can be allowed
while still achieving GES in terms of eutrophication, that
is given GES boundaries for eutrophication indicators like
nitrogen, phosphorous and chlorophyll-a concentrations, water
transparency and oxygen debt. BALTSEM is a time-dependent
ecosystem model available through the Nest Decision Support
System (www.balticnest.org/nest). It has been used also as the
major scientific tool for the development of the HELCOM Baltic
Sea Action Plan (HELCOM, 2007). The HELCOM Contracting
Parties annually report atmospheric emissions and waterborne
inputs of nitrogen and phosphorous from rivers and direct
point sources to the Baltic Sea sub-basins. Nutrient input data
are compiled in accordance with specific HELCOM guidelines
for nine Baltic Sea sub-basins, whose boundaries coincide with
the main terrestrial river basin catchments. The BALTSEM
model has instead divided the whole Baltic Sea into seven
sub-basins in accordance with natural marine boundaries and
the MAIs are calculated accordingly through an optimization
technique: finding the highest possible inputs that will satisfy
given eutrophication targets. A revised HELCOM nutrient
reduction scheme was adopted in the 2013 HELCOMMinisterial
Declaration (HELCOM, 2013) in which reduction requirements
for nitrogen inputs to the Baltic Proper, Gulf of Finland, and
Kattegat and for phosphorus inputs to the Baltic Proper, Gulf of
Finland, and Gulf of Riga were set (Table 1A). The progress of
countries in reaching their share of the country-wise allocation
of nutrient reduction targets (CART, Table 1B) is then assessed
separately.

DISCUSSION

Assessments of GES within the MSFD are made as part of an
adaptive management approach with 6 year cycle (Figure 1). In
this review, we demonstrate the important role that modeling
has throughout the MSFD assessment cycle from generating
understanding, underpinning assessments, and investigating the
impact of changes in prevailing climatic conditions, invasions
of non-indigenous species and multiple human pressures, and
in the exploration of potential impacts through projections that
consider management scenarios. Only through modeling can
such scenarios be tested in order to help select appropriate
management measures to maintain or recover ecosystems. We
have reported on case studies, many of them resulting from
DEVOTES project work, to illustrate how models should be used
in the MSFD implementation cycle, and suggest that in many
areas this is already happening but it is not always recognized nor
is it considered a matter of routine.

Modeling and the MSFD Implementation
Cycle—A Modus Operandis
Prior to each new assessment cycle, indicators should be re-
evaluated given new data and refined where necessary. During
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TABLE 1 | (A) Maximum Allowable Inputs (MAIs) to the Baltic Sea and (B) country allocated reduction targets (CARTs) as revised by HELCOM using the

BALSEM model (HELCOM, 2013).

(A)

Nitrogen Phosphorus

Denmark 2890 38

Estonia 1800 320

Finland 2430+ 600* 330+ 26*

Germany 7170+ 500* 110+ 60*

Latvia 1670 220

Lithuania 8970 1470

Poland 43610 7480

Russia 10380 3790*

Sweden 9240 530

(B)

Baltic Sea Sub-basin Maximum allowable inputs Reference inputs 1997–2003 Needed reductions

TN, tons TP, tons TN, tons TP, tons TN, tons TP, tons

Kattegat 74,000 1687 78,761 1687 4,761 0

Danish Straits 65,998 1601 65,998 1601 0 0

Baltic Proper 325,000 7360 423,921 18,320 98,921 10,960

Bothnian Sea 79,372 2773 79,372 2773 0 0

Bothnian Bay 57,622 2675 57,622 2675 0 0

Gulf of Riga 88,417 2020 88,417 2328 0 308

Gulf of Finland 101,800 3600 116,252 7509 14,452 3909

Baltic Sea 792,209 21,716 910,344 36,894 118,134 15,178

*Reduction requirements stemming from:

− German contribution to the river Odra inputs, based on ongoing modeling approaches with MONERIS.

− Finnish contribution to inputs from river Neva catchment (via Vuoksi river).

− these figures include Russian contribution to inputs through Daugava, Nemunas and Pregolya rivers.

The figures for transboundary inputs originating in the Contracting Parties and discharged to the Baltic Sea through other Contracting Parties are preliminary and require further discussion

within relevant transboundary water management bodies.

the 6 year period since the previous selection of indicators, new
indicators may have been generated and proposed to support
indicator assessment, particularly if new pressures on the system
have emerged. Thus, at the beginning of each cycle, a review
of the indicator set and a model based study to select the most
appropriate indicators in relation to pressures (Houle et al.,
2012) would be prudent along with the evaluation of their
scientific standard and applicability (Queirós et al., 2016a). Once
an assessment of state for GES has been made, the next question
likely to be faced by mangers is: are we moving in the right
direction to maintain or recover GES? Here again, modeling
studies are key since trends in state and indicators can be
projected incorporating the prevailing climatic conditions and a
range of anthropogenic pressures (Lynam and Mackinson, 2015;
Piroddi et al., 2015b; Uusitalo et al., 2016). Such studies can
inform the policymakers on the likelihood or reaching previously
agreed reference points given the prevailing climate. In some
instances, prevailing conditions (such as trends in temperature
or changes in storminess) may alter the trajectory of change
in the system such that managers may wish to alter targets
to account for this (e.g., Lynam and Mackinson, 2015; van
Leeuwen et al., 2016). Once these decisions have been made,

monitoring programs must be steered to ensure that data are
collected to support those areas of the assessment that are most
uncertain, and/or showing the strongest degradation (Shephard
et al., 2015b). Adaptive monitoring in this way should be most
cost-effective and lead to information being generated where it is
most needed.

If the ecosystem in question has not met GES, or if the
trends assessment suggests the system is likely to be degrading
given the range of current pressures, policy makers will wish
to implement management measures to maintain biological
diversity and food web functioning. However, given the range of
pressures in any system and the differing options of measures
that managers may consider implementing, further evidence
is required to enable an informed choice to be made. Here,
once again, modeling can assist through environmental impact
assessments andmanagement strategy evaluation. Ecosystem and
higher trophic level modeling, through which projections are
made for indicators given a range of scenarios that include a suite
of management strategies coupled to climate change trajectories,
can be used to estimate risk and reward of each potential option.
From this set, managers can then choose the most socially
acceptable solution.
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Perspectives: Further Development of
Novel Indicators
DEVOTES assessed the capabilities of state-of-art models to
provide information about current and candidate indicators
outlined in the MSFD, particularly on biological diversity, food
webs, non-indigenous species and seafloor integrity (Piroddi
et al., 2015a; Tedesco et al., 2016). We demonstrated that
models are largely able to inform on food webs, but that
non-indigenous species habitats and seafloor integrity are often
poorly addressed. Notably, however, mechanistic models such
as ERSEM have been explicitly designed to represent benthic
processes associated with seafloor functioning (Butenschön et al.,
2015; Queirós et al., 2015; Lessin et al., 2016). In this project,
we used modeling tools to refine some of the existing indicators
and to develop novel indicators. To address the gaps related
with indicators on non-indigenous species, we developed the
CIMPAL index (Katsanevakis et al., 2016). To help refine existing
seafloor integrity indicators, we employed benthic trait analysis
(van der Linden et al., 2016) to specifically understand benthic
community function in relation to habitats of the Bay of Biscay
and in the North Sea, and identified typological groups of
benthic macroinvertebrates, based on response and effect traits
as potential indicators for MSFDD6 and D1 (Lynam et al., 2015).

Understanding the maintenance of the relationship
between biological diversity and environmental disturbance is
simultaneously challenging and key to supporting an ecosystem-
based management approach. Traits-based approaches
emphasize the functional characteristics of species to study
this relationship, and availability of such information for
marine species has rapidly increased in recent years, particularly
in Europe (Costello et al., 2015). Mechanistic modeling
approaches often utilize functional classifications to represent
marine organisms (Queirós et al., 2015) providing a route to
investigate how ecosystem processes may change under future
environmental conditions, despite the complexity inherent to
the process (Bremner, 2008; Queirós et al., 2015; van der Linden
et al., 2016). Several studies have suggested model developments
are needed to support a more comprehensive use of traits-based
approaches (e.g., Savage et al., 2007; Webb et al., 2010; Verberk
et al., 2013).

Understanding the connectivity attributes of each species is
central to establishing effective management and conservation
strategies such as the creation of networks of Marine Protected
Areas (MPAs). For instance, Webb et al. (2010) suggests that a
quantitative framework combining Bayesian multilevel models,
dynamical systems models and hybrid approaches has the
potential to meaningfully advance traits-based ecology. Reiss
et al. (2014) stresses the importance of considering multiple
biological traits and benthic ecosystems functions in Distribution
Modeling techniques and their high potential to assist in a
marine management context (e.g., MPA designations). The
fragmentation of habitats is a threat to the maintenance of
biological diversity, thus dispersal traits of species and the
connectivity within and between population and communities
are important attributes of species distributional patterns (Chust
et al., 2016). As multiple species traits are likely to influence

trophic interactions and functioning, approaches which seek to
integrate trait-based methods with the food webs framework
are also emerging with many recent advances stemming from
modeling work (e.g., Thompson et al., 2012; Eklöf et al., 2013;
Poisot et al., 2013; Nordström et al., 2015). These have shown to
be successful at predicting network structure (Eklöf et al., 2013),
in determining the strength of individual trophic links (Klecka
and Boukal, 2013), highlighting that multiple traits are needed
for more complete descriptions of interactions (Eklöf et al., 2013)
and that functional and trophic attributes should be assessed
in an integrated manner to provide accurate assessments in a
changing environment (Boukal, 2014).

Acceptance of Model Information by
Decision Makers
There are significant challenges still surrounding the uptake
and use of complex models by decision makers. Many of
these relate to understanding of models, outputs in the right
currency, treatment of uncertainty, rigorous quality standards,
and availability of user-friendly model products (Hyder et al.,
2015). There are few direct examples of how outputs have
led to decisions either related to policy or management, but
this is not surprising since decision making is normative and
incorporates societal values alongside the evidence base (Fletcher,
2007). Models can contribute to the evidence base that underpins
decision making, but this is at an early stage with many
other factors accounted for after compilation of the scientific
knowledge (see e.g., van den Hove, 2007). However, it is clear
that models have a vital role to play in decision making, as many
policy or management options cannot be tested experimentally
or in real ecosystems. The key to improving the uptake of
models by decision makers is to build understanding both of
the methods and issues through multidisciplinary communities
that co-develop models (Hyder et al., 2015). Decision making
timescales are often at odds with model development, so it
is important to be able to adapt existing models to address
these needs at short notice, and to provide outputs in the right
currencies (monetary, stocks, natural capital, ecosystem services)
understandable by policy makers (Hyder et al., 2015; Queirós
et al., 2016b). For instance, many of the examples above focus
on the biological aspects of decision making, whereas many
decisions are based on economic or social outcomes (Watson,
2005; Papathanasopoulou et al., 2013). However, including the
human dimension is very important as it may represent the
largest source of uncertainty (Fulton et al., 2011). Integration
of human dimensions like governance into models is vital to
increase understanding of the likely outcome of management
decisions, and has driven the development of social-ecological
models (e.g., Griffith et al., 2012). There is a constant drive
to resolve technical challenges around complexity, uncertainty
and model skill (Allen and Somerfield, 2009; Payne et al.,
2016) but models can provide useful insight despite being
wrong (Box, 1979). Hence, modelers need to understand the
needs of decision makers and work closely with them to
build trust in their models, but ensure that uncertainty and
key assumptions are highlighted through quality statements
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(ICES, 2016b; Queirós et al., 2016b). Without this trust, models
will not be included in the decision making process or the
implementation cycle.

CONCLUSIONS

Our overview shows that modeling can support the review of
objectives, targets, and indicators for the MSFD. Modeling is the
only option to evaluate different management strategies and thus
help select appropriate management measures. We recommend
that indicator assessments are supported by modeling studies,
so that linkages between descriptors and global pressures on
the marine environment (such as climate change and ocean
acidification) and cumulative impacts are more fully grasped.
Models can be used to highlight recovery trajectories of
indicators and a range of management strategies should be
explored through scenarios to provide support to decision
makers. Specifically, the likely synergistic and antagonistic
effects of management measures and concurrent changes
in prevailing climatic conditions should be investigated at
each assessment cycle of the MSFD. Sources of uncertainty
(measurement error, uncertainty in pressure-state relationships,
model uncertainty) must be considered and communicated
during indicator assessments and model studies (Cartwright
et al., 2016). Utilizing modeling support as a routine in the
assessment cycle would ultimately improve long term planning
for the marine environment.

There is still a wide gap between modelers and decision
makers, and the full utility of models has not yet been realized.
To enable models to better support marine environmental
management and the MSFD, it is important to ensure
that communities of policy makers and scientists are set
up to co-develop ecosystem models. At a national level,
interdisciplinary groups are required to support assessments and
policy making, including internationally, groups of modelers
compare approaches and harmonize methods across regional
seas to support MSFD assessments. Internationally, independent
technical reviews of national groups’ progress should be made to
ensure high quality advice and promote harmonization between
regional seas.
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