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Species of Limnobacter genus are widespread in a variety of environments, yet

knowledges upon their metabolic potentials and mechanisms of environmental

adaptation are limited. In this study, a cell aggregate containing Limnobacter and

anaerobic methanotrophic archaea (ANME) was captured from an enriched anaerobic

methane oxidizing (AOM) microbial community. A genomic bin of Limnobacter was

obtained and analyzed, which provides the first metabolic insights into Limnobacter from

an AOM environment. This Limnobacter was found to contain genes involved in the

Embden-Meyerhof pathway, the citrate cycle, citronellol degradation, and transporters of

various organic substances, indicating a potentially heterotrophic lifestyle. A number of

genes involved in sulfur oxidization, oxidative phosphorylation and ethanol fermentation

that serve both aerobic and anaerobic purposes have been found in Limnobacter. This

work suggests that in the AOM environment, Limnobacter strains may live on the organic

substances produced through AOM activity and subsequently may contribute to the

AOM community by providing sulfate from sulfur oxidation.

Keywords: limnobacter, anaerobic methane oxidation, high-pressure, multiple displacement amplification, mud

volcano

INTRODUCTION

Members of Limnobacter genus have often been detected in various environments, such as surface
sea water, the deep ocean, the human intestine, and volcanic deposits (Lu et al., 2008; Eloe et al.,
2010; Rigsbee et al., 2010; Vedler et al., 2013). Currently very few species of this genus have
been isolated and characterized, and only two Limnobacter species, L. thiooxidans and L. litoralis,
have been described (Spring et al., 2001; Lu et al., 2011). Both species are heterotrophic and
capable of aerobically utilizing thiosulfate as an energy source. Till present, only one genome
from Limnobacter genus is available but without insight analysis (Limnobacter sp. MED105,
genome analysis has not yet been reported). Therefore, the metabolic potentials and environmental
relevance of this genus are not well-understood.

Anaerobic oxidation of methane (AOM) is critical for controlling the emission of methane
(Reeburgh, 2007), the second most important greenhouse gas, from anoxic environments.
Anaerobic methanotrophic archaea (ANME-1, -2, and -3) are able to mediate the AOM mostly
in association with sulfate-reducing bacteria (SRB) of the class Deltaproteobacteria, or by directly
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coupling AOM and incomplete sulfate reduction with the
passage of zero-valent sulfur to sulfur-disproportionating
Deltaproteobacteria (Knittel and Boetius, 2009; Milucka
et al., 2012). In addition to SRB of Deltaproteobacteria,
Alphaproteobacteria, and Betaproteobacteria are also thought to
be potential bacterial partners of ANME (Pernthaler et al., 2008).

To understand the molecular mechanism of AOM, we
have utilized a method of micromanipulation and single-
aggregate metagenome sequencing to analyze AOM microbial
communities in an AOM enrichment culture (Wang et al.,
2014). The micromanipulation allows the isolation of a single
aggregate composed of ANME and their partners. De novo
assembly of genomic reads of a cell aggregate and binning
by tetranucleotide signatures (Dick et al., 2009) separate the
bacterial bins from the archaeal ones. In the present study, a
cell aggregate containing ANME-2a/SRB and Betaproteobacteria
assigned to Limnobacter spp. was isolated from an AOM
enrichment by micromanipulation. After Illumina sequencing
of the multiple displacement amplification (MDA) product, a
partial genome assembly of a Limnobacter sp. was obtained.
This assembly provides an unprecedented chance to understand
the metabolic capabilities of a Limnobacter spp. from the AOM
environment. It also implicates a potential interaction between
ANME-2a archaea and Limnobacter spp. bacteria.

MATERIALS AND METHODS

Sample Description
The enrichment sample was obtained from a continuous
bioreactor supplemented with methane and sulfate (Zhang et al.,
2010, 2011). The original sedimentary sample was taken in
2006 from Captain Arutyunov Mud Volcano (N35◦39.700′′

W07◦20.012′′) in the Gulf of Cadiz, Atlantic Ocean (Zhang
et al., 2010). The bioreactor was supplied with methane-saturated
artificial seawater medium at a pressure of approximately 8
MPa. As described in our previous work (Zhang et al., 2010),
every liter of artificial seawater medium contains NaCl 26 g,
MgCl2 6H2O 5 g, CaCl2 2H2O 1.4 g, Na2SO4 1.3 g, NH4Cl
0.3 g, KH2PO4 0.1 g, and KCl 0.5 g supplemented with 30ml
bicarbonate solution, 1ml trace element solution, 1ml vitamin
mixture solution, 1ml thiamine solution, and 1ml vitamin
B12 solution. The anaerobic condition was maintained via the
addition of a reducing agent, sodium sulfide, in the medium
at a final concentration of ∼150µM. During the incubation,
the production of endogenous sulfide by AOM-SR occurred at
a rate of approximately 9.22µmol sulfide production/gdw/day,
and the resulting concentration of sulfide in the medium ranged
from 0.5 to 2.0mM (Zhang et al., 2010). The enrichment culture
maintained high AOM-SR activity when it was retrieved for use
(in November 2011) in the present analysis.

Cell-Aggregate Isolation and Metagenome
Sequencing
The culturing of microbial aggregates, genome amplification,
and sequencing followed methods described previously (Wang
et al., 2014). Multiple displacement amplification (MDA) was

performed in each tube to obtain a single aggregate using REPLI-
g Mini Kit reagents (Qiagen, Hilden, Germany) following the
manufacturer’s protocol. The cell lysis procedure followed the
manual supplied with the REPLI-g Mini Kit; briefly, the cell
aggregate was incubated with Buffer D2 on ice for 10min, and the
reaction was terminated by the addition of Stop Solution. MDA
was carried out at 30◦C for 12 h and inactivated by heating at
65◦C for 3min. The single aggregate genomes were then analyzed
primarily by 16S rRNA gene sequencing using primers Arch21F
and Arch958R for archaea (DeLong, 1992), as well as Bac27F
and Bac1492R for bacteria (Lane, 1991). Finally, the samples of
interest were sent to Macrogen, Inc. (South Korea) for genome
sequencing.

Metagenome Assembly and Binning
Illumina 2∗100 bp paired-end sequencing was performed on
a single aggregate of M12. For Illumina sequencing, a 500-
bp insert size library was constructed. Initially, 21,868,024
reads, totaling 2,208,670,424 bp, were generated for the M12
aggregate. The raw shotgun sequencing reads were dereplicated
(100% identity over 100% lengths) and trimmed using Sickle
(https://github.com/najoshi/sickle). Dereplicated, trimmed and
paired-end Illumina reads were assembled using SPAdes version
3.5.0 with k-mer sizes of 21, 33, 55, and 77 (Bankevich
et al., 2012). Binning of the assembled metagenome sequences
was initially performed using tetranucleotide frequencies in
emergent self-organizing maps (ESOMs) (Figure S1) with 4 to
8K as the fragment cutoff. Raw sequence data from the cell
aggregate metagenome were submitted to the Sequence Read
Archive at the National Center for Biotechnology Information
(NCBI) under accession number SAMN04004108. The genome
assembly of M12 has been incorporated into the Integrated
Microbial Genomes (IMG) system under submission ID 68701.
The completeness of the genomic bin was estimated based on
CheckM (Parks et al., 2015).

Annotation of the SCA Genome
Gene prediction was carried out using MetaGene and
fraggene_scan (Noguchi et al., 2006; Rho et al., 2010).
Accordingly, 3800 and 4052 ORFs were predicted for the
M12 assembly, and, for each predicted ORF, functional
information was collected from similarity searches against the
NCBI non-redundant protein database using BLASTP with an
expectation cut-off value of <10−5. Sequences that had reliable
hits with the non-redundant database were compared against
the KEGG and COG sequence databases using an expectation
cut-off value of <10−5.

RESULTS

Cell Aggregate Isolation and
Characterization
Cell aggregates were isolated from an AOM enrichment
incubated in a high-pressure continuous flow bioreactor (Zhang
et al., 2010). Within the culture, cell aggregates were mostly
formed between ANME and SRB, with diameters ranging from 3
to 50µm, and each cell aggregate contained several to hundreds
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of cells (Chen et al., 2014). Two hundred cell aggregates were
captured by micromanipulations as previously described (Wang
et al., 2014) (see also Materials and Methods). All were assayed
by 16S rRNA gene fragments, and 11 ANME-positive cell
aggregate metagenomes were obtained. The associated bacteria
of these metagenomes varied, with five aggregates containing
SRB of Deltaproteobacteria, two containing unclassified obsidian
pool 1 (OP1) group bacteria, one being bacteria-negative,
and the rest containing Acinetobacter of Gammaproteobacteria,
Acidobacteria, and Limnobacter of Betaproteobacteria.

The cell aggregate metagenome named M12 containing
ANME2 and Limnobacter of Betaprobacteria was analyzed in
this study. The ANME-2a identified from M12 shares 100%
16S rRNA gene sequence identity with that of M25, a cell
aggregate composed solely of ANME-2a (Wang et al., 2014). The
Limnobacter fromM12 (Limnobacter sp.M12) showed 99.6% 16S
rRNA gene sequence identity to that of Limnobacter sp. MED105
(NZ_ABCT00000000.1), which was isolated from surface waters
of the East Mediterranean Sea (Pinhassi and Berman, 2003).

General Features of the Genome Assembly
The cell aggregate M12 was subjected to Illumina sequencing,
and in total, 21,868,024 reads with 2,208,670,424 bp were
generated. Two well-resolved bins were recovered after binning
M12 (for details, see Materials and Methods and Table 1).
Bin24 was assigned to Limnobacter, Bin20 to ANME-2a and
no Bins that assigned to SRB was characterized. Based on the
CheckM analysis (Parks et al., 2015), an estimated 96.65% of
the complete genome draft of Limnobacter was recovered from
Bin24 (Table 1). Because genomic and metabolic analyses of
ANME-2a from a single aggregate metagenome (M25) have
been conducted previously (Wang et al., 2014), and the average
nucleotide identity (ANI) between Bin20 and M25 is 99.2%,
Bin20 was not further analyzed in this study.

Genomic Analysis and Metabolic Potential
of Limnobacter sp. M12
General Genomic Features of Limnobacter sp. M12
The obtained genome of Limnobacter sp. M12 has an estimated
genome completeness of ∼96.65%. It was compared with the
other available genome from Limnobacter species, Limnobacter
sp. MED 105. Genomic comparison between Limnobacter sp.
M12 and Limnobacter sp. MED105 showed that the ANI between
Limnobacter sp. M12 and Limnobacter MED105 is 87.2%, and
the alignment fraction value (AF) is 0.47 (Table 1). Based on
the current standard for species description (Konstantinidis and
Tiedje, 2005; Varghese et al., 2015), Limnobacter sp. M12 and
MED105 could be considered as two species, although their 16S
rRNA gene sequence identity reached 99.6%.

The genomes of Limnobacter sp. M12 and Limnobacter sp.
MED105 shared ∼90% of common predicted ORFs (with >30%
identity and >50% coverage), and Limnobacter sp. M12 hold 52
unique ORFs (Table S1). Majority of these M12-unique genes
are related to amino acids, benzoate, and starch and sucrose
metabolism; defense against viral infection, gene transposition,
insertion and horizontal gene transfer. Details of these gene
information are listed in Table S1.

Metabolic Potentials of Limnobacter sp.
M12
Carbon Metabolism
The assembled genome of Limnobacter sp. M12 contains almost
all genes that encode enzymes involved in the Betaproteobacteria
Embden-Meyerhof pathway and ethanol fermentation in which
glucose is oxidized via a step-wise process anaerobically to
produce pyruvate, which can be converted to ethanol with
acetaldehyde as an intermediate (Figure 1 and Table S2).

The citrate cycle and oxidative respiratory chains (Tables
S3, S4) were also identified. Through these pathways, pyruvate
derived from the Embden-Meyerhof pathway can be oxidized
completely, generating carbon dioxide and water when oxygen
is available. Genes encoding tripartite ATP-independent
periplasmic transporters (TRAPs) for dicarboxylate, C4-
dicarboxylate (e.g., fumarate, malate and succinate) and
mannitol/chloroaromatic compounds were also identified (see
Table S5 in the Supplemental material). These findings indicate a
heterotrophic lifestyle for Limnobacter sp. M12.

Citronellol is a naturally occurring aromatic component with
antibacterial effects (Bakkali et al., 2008). It is produced by
plants as well as certain marine organisms, such as sponges,
microalgae, and coral (Bakkali et al., 2008). Citronellol contains a
3-methyl substitution, making degradation difficult. Only a few
bacteria can use citronellol as the sole carbon source (Tozoni
et al., 2010). Citronellol can be metabolized to acetyl coenzyme
A and acetoacetate via the acyclic terpene utilization and leucine
utilization pathways (Förster-Fromme et al., 2006). The majority
of genes involved in citronellol utilization were identified in
Limnobacter sp. M12 (as shown in Figure 2 and in Table S6 of the
Supplemental Material), suggesting the ability of Limnobacter sp.
M12 to metabolize citronellol.

Sulfur Oxidation
Sulfur oxidase is an enzyme containing a molybdopterin cofactor
and a heme group enzyme. It allows microorganisms to utilize
reduced inorganic sulfur components (for example, S2− and S0)
as an electron donor for the energy-generating system (Friedrich
et al., 2005). A complete gene cluster (soxCDYZAXB) encoding
sulfur oxidase (Sox) was identified in a 151-kb fragment of M12
(see Figure 3 and Table S7 in the Supplemental Material). All
encoded Sox protein sequences displayed the highest sequence
identity (approximately 95%) with those from Limnobacter sp.
MED105 (ABCT00000000), with a similar gene order. Upstream
of the M12 soxCDYZAXB cluster, genes encoding cytochrome o
ubiquinol oxidase (CyoABCD) were identified (Figure 3). The
CyoABCD complex belongs to the oxidative phosphorylation
system, which transfers electrons from ubiquinol to oxygen (Riley
et al., 2006). The presence of the sox and cyo genes suggests the
capability of aerobic sulfur oxidization by Limnobacter sp.M12.

Nitrogen Metabolism
Genes encoding transporters of general L-amino acids and
branched-chain amino acids were found in Limnobacter sp.
M12 (see Table S8 in the Supplemental Material). The general
L-amino acid transporter system, which belongs to the ABC
transporter, is responsible for transporting a wide range of
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TABLE 1 | Overview of genome features.

Bin24 (assigned to

Limnobacter sp.

M12)

Limnobacter

sp. MED105

Bin20 (Assigned

to ANME-2a)

ANME-2a of M25

Genome size (Mbp) 3.28 3.39 1.69 3.64

Predicted ORFs 3068 3181 1710 4319

GC content 52.3% 55.2% 42.3% 43.2%

Completeness 96.65% 100% 29.9% 89.8%

Contamination 0.85% - 1.87% -

ANI* 87.2% 99.2%

AF# 0.47 0.42

Reference This study. (NZ_ABCT00000000.1) This study Wang et al., 2014

* Average nucleotide identity

# Alignment fraction value.

FIGURE 1 | Schematic of the metabolic pathways identified from Limnobacter sp. M12. Genome analysis suggested that Limnobacter sp. M12 is able to

utilize organic carbon and nitrogen sources through glycolysis, the citrate cycle, acyclic terpene, leucine utilization pathways, the nitrate/nitrite assimilation system, and

their associated transport systems. Through carbon metabolism, the generated electrons and NADH could support energy conservation via ethanol fermentation or

oxidative phosphorylation. The electron could also be derived from a sulfur-oxidizing system (soxCDYZAXB) to the oxygen via oxidative phosphorylation. Limnobacter

sp. M12 is motile because it contains genes encoding proteins involved in chemotaxis and flagella movement.

L-amino acids including those with acid, base, amide, and
aliphatic side chains. This transporter is composed of four genes
(aapJMPQ), namely aapJ, which encodes a substrate-binding

protein, aapQ and aapM, which encode two permeases serving
in the cross-membrane transport of L-amino acids, and aapP,
which encodes an ATP-binding protein. The branched-chain
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FIGURE 2 | Schematic of the microbial citronellol degradation pathways according to Förster-Fromme et al. (2006). Citronellol is oxidized to its

corresponding acid (citronellate) by the citronellol/citronellal dehydrogenase AtuB or AtuG. Citronellate is subjected to carboxylation, hydration and the removal of

acetyl-CoA, producing 7-methyloctanoyl-3-oxo-6-octenol-CoA. This component is subjected to two rounds of β-oxidation that lead to the production of

3-methylbut-2-enoyl-CoA. This metabolite then flows into the leucine catabolic pathway, generating acetyl-CoA and acetoacetate. Three molecules of acetyl-CoA are

generated during the pathways, which can be utilized as carbon and energy sources by the microorganism. The enzymes missing in the M12 SAG are shown in gray.

FIGURE 3 | Comparison of the sulfur-oxidizing system locus (sox) in Limnobacter sp. MED105 and Limnobacter sp. M12. The organization of sox genes,

including soxCDYZAXB, is similar in both MED105 and M12, but the flanking genes are different. CyoABCD represents genes encoding cytochrome o ubiquinol

oxidase, which is involved in oxidative phosphorylation. Numbers on the top of the gene clusters represent the base numbers on the assembly.
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amino acid transporters require five genes, livFGHKM, which
are responsible for the transport of extracellular branched-chain
amino acids, such as leucine, isoleucine, and valine (Winters
et al., 1991; Ribardo and Hendrixson, 2011). All aapJMQ genes
were identified from the partial genome of Limnobacter sp. M12;
however, aapP was not recovered, and all livFHGKM genes were
contained in the partial genome of L. sp. M12.

In addition, genes involved in nitrate/nitrite assimilation
(nasAB) were identified from the partial genome of Limnobacter
sp. M12, suggesting that this strain is able to take up nitrogen
from nitrate/nitrite.

Cell Motility
A nearly complete gene set of the polar flagella in Limnobacter sp.
M12 was identified (see Table S9 in the Supplemental Material),
which contains genes encoding flagella biosynthesis regulators
(FlhCD) and flagella structural proteins (FlhAB, FlgA-L, FliC-K,
and FliM-T). Two of the genes involved in the flagella system,
the negative regulator of flagellin synthesis and the flagella
synthesis protein flgN, were missing from the partial genome
sequence of Limnobacter sp. M12. In addition, an analysis
of the partial genome of Limnobacter sp. M12 suggests that
switching of the flagella is likely to be regulated by a chemotaxis
system. A typical chemotaxis system includes a methyl-accepting
chemotaxis protein (MCP), an aerotaxis receptor (Aer) and
chemotaxis proteins (CheA-D, CheRWVXYZ, and MotAB). The
partial genome of Limnobacter sp. M12 encodes all of these
components except for CheC and CheX (see Table S10 in the
Supplemental Material). In addition, the BqsS and bqsR genes
are a two-component system that enables microbial cells to
switch between biofilm and planktonic lifestyles in Pseudomonas
aeruginosa (Dong et al., 2008). The homologs of the bqsS
and bqsR genes were identified from the partial genome of
Limnobacter sp. M12.

DISCUSSION

Genomic analysis revealed a heterotrophic lifestyle of
Limnobacter sp. M12, with the capacity to utilize dicarboxylate,
mannitol and citronellol, as well as performing amino acid
and nitrate/nitrite assimilation and sulfur oxidation (as shown
in Figure 1). It is noted that Limnobacter sp. M12 has the
potential for oxygen respiration, as it possesses genes involved
in oxidative phosphorylation. However, aerobic respiration is
unlikely considering the anoxic condition of the bioreactor.
During AOM enrichment, anaerobic artificial seawater was
continuously supplied to the bioreactor, and a considerable
sulfide-producing rate (9.22 µmol sulfide production/gdw/day)
was constantly observed (Zhang et al., 2010). Hence, free oxygen
may not be present in the culture. However, we cannot exclude
the possibility that oxygen synthesis may occur within the
anaerobic culture; some microorganisms, such as Candidatus
Methylomirabilis oxyfera have been reported to generate oxygen
as an intermediate when using nitrite to metabolize methane
(Ettwig et al., 2010). On the other hand, fermentation could be
a reasonable strategy for Limnobacter sp. M12 to survive in this

anaerobic condition. Limnobacter sp. M12 contains genes that

encode essential enzymes for ethanol fermentation (aldehyde
dehydrogenase and alcohol dehydrogenase).

Compared to the Limnobacter sp. MED105 genome,
Limnobacter sp. M12 contains many specific proteins that may
benefit the cell against hazards from the environment. These
include MqsR (motility quorum-sensing regulator), a part of the
toxin/antitoxin system that influences quorum sensing, biofilm
formation and the general stress response (Kim and Wood,
2010; Wang and Wood, 2011); HipA protein, which mediates
multi-drug tolerance (Schumacher et al., 2009); Phasins, a
granule-associated protein participating in the formation of
intracellular granules, which enhance the fitness and stress
resistance of bacteria (Pötter et al., 2004; de Almeida et al.,
2007; Neumann et al., 2008); and abortive infection protein
and virulence-associated protein, which serve in phage defense
(Gerdes et al., 2005; Dy et al., 2014).

According to the AOM enrichment where the M12 consortia
were isolated, methane and carbon dioxide were supplied as
the only carbon sources, and sulfate was the only electron
acceptor. The organic carbon could be produced by the
ANME and SRB cells from methane and carbon dioxide.
Limnobacter sp. M12 is heterotrophic, as proposed in this
study; it might utilize the organic carbon produced from
the AOM community as its carbon and energy source. In
particular, the presence of the soxCDYZAXB genes and the
reduced sulfur components (for example, S0 and S2−) generated
from AOM-SR (Milucka et al., 2012) could be used as an
additional energy source for Limnobacter sp. M12. Under
strictly anaerobic conditions, Limnobacter sp. M12 may thrive
on the fermentation of organic carbon compounds produced
by the ANME archaea. However, in the presence of trace
oxygen concentrations that might appear in the reactor or
in shallow AOM active sediments, these Betaproteobacteria
may thrive on the oxidation of sulfur compounds. Thereby,
Limnobacter may protect oxygen-sensitive ANME archaea in the
environment.
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