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Sea turtles spend the majority of their immature and adult lives in foraging grounds,

yet few studies have examined their abundance and condition in these areas when

compared to more accessible nesting beach habitats. Here, a 5-year dive log,

photo-identification (photo-ID) and surface encounter datasets were used to investigate

the abundance, individual movements and distribution of sea turtles along 40 km

of coastal reefs in southern Mozambique. A generalized linear model (GLM) was

constructed with turtle sightings as the response variable. Habitat type, year and day

of the year, as well as underwater visibility, were significant predictors of turtle sightings.

However, only 8% of the total variance was explained by the model, indicating that

other variables have a significant influence on turtle movement and distribution. Photo-ID

differentiated 22 individual green turtles Chelonia mydas and 42 loggerhead turtles

Caretta caretta from 323 photo-ID encounters. A majority (64%) of the photos could

be used to identify the individual. Although residency times of up to 1152 days were

calculated for juvenile green turtles, a low overall resighting rate indicates that individual

turtles either had large home ranges or were transient to the area. Surface encounter

data revealed a preference for nearshore shallow waters and an increased abundance

close to reef systems. Sea turtles’ preferences for shallow, nearshore habitats are likely

to increase the encounter risk with opportunistic and targeted artisanal fishers who catch

sea turtles.

Keywords: marine turtle, citizen science, site fidelity, movement, photo-ID, Chelonia mydas, Caretta caretta

INTRODUCTION

Understanding ontogenetic development of space use in marine megafauna species is a key aspect
of marine megafauna movement ecology (Hays et al., 2016). Burgeoning questions in this field
include how megafauna movements vary over space and time, essential knowledge for spatial
planning and conservation management (Block et al., 2011; Hays et al., 2016). Sea turtles are one
such megafauna group which move ontogenetically, spending part of their life in a juvenile nursery
habitat and then migrating to an adult foraging habitat.

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
https://doi.org/10.3389/fmars.2016.00288
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2016.00288&domain=pdf&date_stamp=2017-01-09
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jess@mozturtles.com
https://doi.org/10.3389/fmars.2016.00288
http://journal.frontiersin.org/article/10.3389/fmars.2016.00288/abstract
http://loop.frontiersin.org/people/375474/overview
http://loop.frontiersin.org/people/399911/overview
http://loop.frontiersin.org/people/384471/overview
http://loop.frontiersin.org/people/178338/overview
http://loop.frontiersin.org/people/178101/overview


Williams et al. Sea Turtles in Southern Mozambique

Juvenile sea turtles actively recruit to demersal neritic
development habitats in tropical or temperate zones following
several years of passive pelagic migration (Musick and Limpus,
1997; Luschi et al., 2003), although evidence of juveniles
recruiting to oceanic foraging areas has also been demonstrated
(e.g., Hawkes et al., 2006; Dalleau et al., 2014). Cheloniidae (hard-
shelled) species exhibit two strategies within their developmental
habitat; (1) the area is shared with adults and will constitute
the adult residential foraging grounds where juveniles will later
spend their inter-reproductive period (Limpus and Limpus, 2001;
Bolten andWitherington, 2003) or (2) the area will be frequented
only by juveniles that will subsequently shift to a different feeding
area when they reachmaturity (Musick and Limpus, 1997; Luschi
et al., 2003). To date, the spatial and temporal variability of
ontogenetic or developmental migrations in late stage juvenile
sea turtles is the least known stage in the life cycle of sea turtles
(Luschi et al., 2003; Godley et al., 2008; Hamann et al., 2010;
Varo-Cruz et al., 2016).

Local variation in life history occurs both regionally and
between different genetic stocks or regional management units
(RMU) for each sea turtle species. A synthesis on satellite
tracking revealed greater behavioral and ecological plasticity
in Cheloniidae than previously thought (Godley et al., 2008;
Casale et al., 2012). Migration routes of post-breeding adults
revealed four general migration strategies: (1); oceanic and
coastal movements to fixed neritic grounds, (2); coastal shuttling
between fixed or seasonal neritic sites (3); local residence, and
(4); pelagic foraging (Godley et al., 2008). For the south west
Indian Ocean (SWIO) loggerhead (Caretta caretta) populations,
oceanic and neritic foraging behaviors have been shown in late
stage juveniles (Dalleau et al., 2014). Migrations of these late
stage juveniles can be broadly categorized into three groups;
northern migration toward neritic waters of Kenya, Somalia,
Yemen and Oman (which hosts the largest nesting rookery in the
region), a southern migration toward the smaller South African
rookery but remaining in productive pelagic waters and a third
group where behavior could not be clearly defined but animals
remained offshore from Reunion Island, or the eastern coast of
Madagascar (Dalleau et al., 2014). The pelagic migration of late
stage juvenile loggerheads traveling south is distinct and different
from neritic shuttling migrations (between nesting and foraging
areas) as revealed in satellite tagged post-nesting turtles from
South Africa (Schroeder et al., 2003; Luschi et al., 2006; Dalleau
et al., 2014). Throughout their global ranges, adult loggerhead
turtles display strong site fidelity to residential areas and establish
feeding home ranges at these sites (Hughes, 1974; Limpus and
Limpus, 2001; Godley et al., 2003). Within the SWIO, post-
nesting loggerhead females migrate north, actively hugging the
coast from the Maputaland rookery into Mozambican coastal
waters (southern and central provinces) (Luschi et al., 2006).
The end point of these migrations is thought to be individually-
specific neritic feeding areas which are discrete foraging grounds
for mature adult loggerheads (Luschi et al., 2006).

Contrasting this, green turtles (Chelonia mydas) within the
SWIO adopt an alternative strategy, whereby mixed age/size
aggregations at foraging grounds are common (although niche
partitioning between size/aged animals occurs within a foraging

area (Ballorain et al., 2010). Foraging habitats across the SWIO
are shared by different breeding populations (stocks) of the
SWIO and beyond (Dalleau, 2013; Hays et al., 2014; Bourjea et al.,
2015). Typically, post-nesting green turtles migrate to neritic
resident foraging areas (Broderick et al., 2007; Garnier et al.,
2012) such as those tracked migrating from Vamizi Island in
northern Mozambique using primarily neritic (but also some
evidence of pelagic) migratory routes to foraging grounds in
Kenya, Tanzania and north-west Madagascar (Garnier et al.,
2012). Genetic analysis (mtDNA) at these foraging sites have
allowed an evaluation of the stock and the natal origin of animals
(Bowen andKarl, 2007) can be inferred which ultimately provides
insight into ontogenetic migration (displacement distances)
(Hays and Scott, 2013). However, along the east African and
Malagasy coast significant data gaps exist regarding the genetic
composition of animals within mixed foraging grounds resulting
in uncertainty about natal origins and ontogenetic migrations
undertaken to reach the foraging area are lacking (Bourjea et al.,
2015).

Immature turtles, having survived the higher mortality rates
associated with hatchling and post-hatchling life stages generally
have the highest stage-specific demographic sensitivity within a
population (Heppell et al., 2003), so anthropogenic threats that
disproportionately impact on immature turtles or are prevalent
in developmental habitats are likely to result in overall population
decline (Heppell et al., 2003; Gerber and Heppell, 2004; Wallace
et al., 2008). Yet for many of the world’s sea turtle populations
we lack empirical data on the distribution and condition of
important foraging areas, or the behavior and ecology of foraging
turtles (Hamann et al., 2010). Describing sea turtle foraging
areas with details of which animals (species, individuals, and
age classes) occupy an area, their use of the area (purpose of
occupancy, residency patterns, habitat preferences, area/space
occupied) and temporal patterns of their use (daily, seasonally,
and annually), is critical for effective conservation planning and
targeted management (Luschi et al., 2006; Hamann et al., 2010;
Casale et al., 2012).

Contributing to these fundamental gaps in sea turtle foraging
ecology, the environmental and behavioral mechanisms (or
combination of) which influence the timing of ontogenetic
migration and destination are poorly understood. In adult
foraging areas it has been proposed that the selection of these
sites is influenced by the drift pattern undertaken as hatchlings
(Hays et al., 2010; Scott et al., 2014). As such, the prevailing
oceanography around nesting rookeries may be crucial to the
selection of foraging areas used by adults (Luschi et al., 2003;
Hays et al., 2010). Regional evidence of this theory exists from
a green turtle rookery at Vamizi Island, northern Mozambique
where prevailing oceanography influences the diversity of
residential foraging grounds used by adults (Garnier et al., 2012).
Given the seasonal characteristics (seasonal monsoon systems)
and complexity of oceanic circulation (cyclonic and anticyclonic
eddies and lack of an ocean-scale annual gyre) in the Indian
Ocean it is possible that a greater variability of ontogenetic
migration patterns occur than in sea turtle populations in
other ocean basins (Dalleau et al., 2014). This suggests that
predicting and identifying migratory corridors and the final
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destination (foraging grounds) of ontogenetic migrations (for
spatial planning or threat assessment) is likely to be more
challenging sea turtles species in the SWIO.

The east African coast is presumed to host extensive foraging
areas (Bourjea et al., 2015) and the coastal waters of southern
Mozambique are no exception. Five sea turtle species inhabit
southern Mozambique, but their spatial distribution, habitat use
and population structure has not been studied (Louro et al.,
2006). Coastal foraging areas generally contain a mixture of
age/size classes and species, but a size structure bias can occur
(Hatase et al., 2002; Ballorain et al., 2010). Most knowledge
on sea turtle population ecology in Mozambique relates to
loggerhead turtles which are represented by a single genetic stock:
SWIO genetic stock (Hamann et al., 2013; Fernandes, 2015). The
species nests along much of the country’s southern coastline, and
their most studied rookery within the SWIO occurs across the
boundaries of Mozambique and South Africa (Nel et al., 2013).
Beyond the southern Mozambican nesting grounds, loggerheads
also spend extended periods of time in what are thought to be
coastal foraging grounds in the Inhambane Province, southern
Mozambique (Hughes, 1974; Papi et al., 1997; Luschi et al., 2006;
Pereira et al., 2014). Their foraging and migration areas are
not well known, although tagged juveniles have demonstrated
neritic and oceanic foraging behaviors (Dalleau et al., 2014).
Based on population trends from the South African coast, the
SWIO loggerhead population, is listed as “Near Threatened” on
the IUCN Red List (Nel and Casale, 2015), with the population
thought to be stable and showing signs of increase (Nel et al.,
2013).

Information on green turtles inMozambique has been derived
from nesting census work on Vamizi Island in the country’s
north, thought to be the most significant nesting rookery
in Mozambique (Garnier et al., 2012; Louro and Fernandes,
2012). Within the Inhambane region, mixed-size green turtles
(40–110 cm curved carapace length) utilize nearshore reefs
(Williams et al., 2015), but it remains unclear whether these
reefs represent foraging habitat and/or migratory corridors for
the species. Green turtles occur extensively throughout the
Mozambique Channel (Bourjea et al., 2007). Unlike loggerhead
turtles, foraging and nesting green turtles in the WIO comprise
of several genetic stocks (Bourjea et al., 2015). Turtles from
two of these stocks exist in Mozambican waters: the Northern
(NMC) and Southern Mozambican Channel (SMC) stocks
(Bourjea et al., 2015). The NMC stock consists of multiple
breeding populations (e.g., Seychelles, Northern Madagascar,
Kenya, Mayotte, Tromelin) however the SMC Stock is through
to primarily consist of turtles from the Europa rookery
(Bourjea et al., 2007; Lauret-Stepler et al., 2007). Anthropogenic
exploitation of sea turtles from their mixed-stock foraging
grounds can reduce breeding populations across a region (Bowen
and Karl, 2007). Theoretical modeled scenarios of anthropogenic
perturbations affecting foraging grounds of the SMC show
increased pressures to the NMC stock and could cause regional
implications however limited empirical data exist to validate this
prediction (Dalleau, 2013). It is clear that detailed investigation
into foraging areas within the region, particularly along the east
African mainland coast is required.

The absence of regional knowledge on the ecology of foraging
sea turtles in the region makes it difficult to assess and
quantify the impact from various threats, such as incidental
and directed take from small scale fisheries (SSF). SSF often
comprise the majority of the fisheries sector in developing
countries (Béné, 2006; Alfaro-Shigueto et al., 2010). SSF are
widespread globally throughout nearshore habitats and easily-
accessible coastal waters (Francis et al., 2001) and high bycatch
rates of sea turtle, cetacean and elasmobranchs occur (Koch
et al., 2006; Soykan et al., 2008; Mancini et al., 2011).
Coastal net fisheries may be the largest single threat to sea
turtle populations globally (Gilman et al., 2009) and within
Mozambique, artisanal gill net and beach seine fishing are
thought to have the greatest impact to sea turtles, marine
mammals and elasmobranchs (Kiszka, 2012). In Mozambique,
SSF contributes to 91% of the total marine fisheries catch
(IFAD, 2011), and the 2006 national census for artisanal
marine fisheries found that over 280 000 people depend
directly on artisanal fishing with another 90,000 dependent on
obtaining resources from diving or shore line collection (Menezes
et al., 2011). The abundance of turtles caught by artisanal
fisheries throughout the Mozambique Channel is thought to
overshadow commercial fisheries catches (Rakotonirina and
Cooke, 1994; Humber et al., 2011; Nel et al., 2013; Bourjea et al.,
2015). Specifically in Mozambique, the number of people and
boats engaged in SSF is increasing, even though productivity
is declining (IFAD, 2011). Gill netting and other artisanal
fisheries (spearfishing, beach seining, purse seining) occurs
extensively throughout Inhambane Province, where our study
was undertaken.

Advances in the understanding of foraging turtle ecology
and ontogenetic migrations are likely to require a diverse
approach using information revealed from tracking, tagging,
genetic stock and remotely sensed environmental data collected
collaboratively across the region (Dalleau, 2013; Bourjea et al.,
2015). An additional technique which could yield valuable
information in foraging grounds is photographic identification
of individuals. The low cost, low-tech, and non-invasive nature
of Photo-ID in contrast to other techniques (Fastloc, Argos
or acoustic tagging), has propelled its adoption as a tool
for in-water monitoring of animals (Schofield et al., 2008;
Jean et al., 2010; Dunbar et al., 2014; Carpentier et al.,
2016), particularly in developing countries where application of
alternative technologies was hindered by resource limitations.
Photo-ID can potentially provide insight into use of neritic
coastal areas by sea turtles as foraging grounds or migratory
corridors and may further enhance understanding on late stage
juveniles and ontogenetic space use. Our study uses three
complementary datasets (dive logs, photo-ID, and a surface
encounter dataset) to investigate the size structure, residency,
environmental, spatial and temporal trends of sea turtles in
coastal habitats around the Inhambane peninsula in southern
Mozambique. We attempt to clarify the spatial use of this area
by green and loggerhead turtles. We consider our findings within
the context of known SSF risk to sea turtles in this region,
along with the practicalities of applying photo-ID from citizen
science.

Frontiers in Marine Science | www.frontiersin.org 3 January 2017 | Volume 3 | Article 288

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Williams et al. Sea Turtles in Southern Mozambique

METHODS

Study Area
Our study was conducted in the coastal waters adjacent to the
small village of Praia do Tofo on the Inhambane peninsula
of Inhambane Province, southern Mozambique (−23.51◦S,
35.23◦E) (Figure S1). A detailed study site description was
provided by Williams et al. (2015). Fifteen different reef areas
all routinely visited by scuba dive tour operators, were selected
for inclusion in this study. These reefs were located from 500m
to 15 km offshore along a 40 km stretch of coast. All are
primarily rocky, with low hard coral diversity and range in
mean depth from 11 to 33 m. Using prominent coral taxa the
sites could be distinguished into four habitat types: (1) plate
corals, (2) soft corals, (3) rocky reefs with branching tree corals
(Dendrophilliae), and (4) mixed (coral and macroalage). These
four habitat types were separated into distinct spatial groupings,
with plate coral habitats found in the northern offshore reefs,
rocky reefs with branching corals found in deeper waters directly
offshore from Tofo Bay, and soft coral reefs found in deeper
waters in the south. All other sites were classified as mixed
macroalgae and coral habitat type, and were found in nearshore
shallow areas (Figure S1). Ocean conditions were dynamic and
swell sizes (0.1–3 m) and underwater horizontal visibility (5–30
m) varied day to day. Horizontal visibility was estimated and
reported by experienced divers.

In-Water Data Collection and Analysis
Citizen scientists and researchers contributed toward both dive
logs and turtle photo-ID collection in Praia do Tofo. Data from
1, 403 dives undertaken between Aug 2011–Sept 2015, a total
of 1, 055 diving hours, were available for analysis. To avoid
possible data duplication within a day, or between dive groups,
only one record per species per day at each specific dive site was
used, except where photo-ID records were available to confirm
that multiple individuals were present. Dive logs were completed
by long term and highly experienced divers (research assistants
or project leaders of local marine conservation organization or
dive instructors). Divers were trained in species identification
(sea turtles, elasmobranches and cetacean), size and carapace
estimation techniques (Williams et al., 2015). Diver training
included estimating distances underwater (e.g., visibility) by
using the known size of the dive boat as a size guide. Most
carapace length data were collected by trained marine research
assistants using a laser photogrammetric system set up for sizing
megafauna species underwater (whale sharks, manta rays, and
turtles) (Rohner et al., 2011). While too few photogrammetric
measurements were obtained for inclusion in this study, the
equipment enabled two laser dots, set at 50 cm apart, to be
projected onto the animal or nearby surface (i.e., benthos, cave
wall), which the diver then used as a scale bar to estimate turtle
size in the field. A number of these divers also assisted with
sea turtle mortality studies, where they were trained to measure
and report curved carapace length and curved carapace width of
carapaces discarded from illegal take/use (on land).

Additionally to the dive logs, detailed turtle sighting sheets for
the same study period were completed for each record (described

in Williams et al., 2015). The turtle sighting sheets facilitated
the collection of more detailed turtle behavior information and
were designed to be submitted in coordination with the dive log,
however duplicate records from different reporters, and positive
bias issues occurred because each record was clearly identified to
a particular dive log entry. Turtle sighting sheets were not used to
evaluate sightings trends, however they did provide an additional
subset of estimated curved carapace length (CL) (n total = 679)
from the same study period for green, hawksbill (Eretmochelys
imbricata), leatherback (Dermochelys coriacea), and loggerhead
turtles, and for additional encounters not identified to species
level. Where possible, dive log records were validated for species
identification using photo-ID records submitted.

The mean turtle sighting rate per minute of diving was
calculated from the dive log dataset. A Kruskal-Wallis chi-
squared test was used to compare sighting rate among sites.
Additional pairwise comparisons were made using Wilcoxon
rank sum test to compare sightings rates among the four habitats.

Dive Log Analysis
Dive log data were used to construct a negative binomial
generalized linear model (GLM) with natural splines using
R (R Core Development Team, 2016), with turtle abundance
set as the response variable. Due to limitations with sample
sizes of loggerhead, green and unidentified turtles, species
were pooled for this analysis and records of hawksbill (n =

11) and leatherback (n = 2) were removed from the dataset.
Fifteen variables were investigated as possible predictors of
turtle abundance (Table S1). To improve the model’s predictive
ability, the data range of some predictors were capped with
minimum and maximum values (distance from shore ≥8 km;
visibility ≥5m, ≤25m; max depth ≤29m; average depth
≤22m; and bottom surface temperature (BST)≤18◦C ≤27◦C).
The best-fitting model was conservatively assessed using a
stepwise Akaike’s Information Criterion (AIC) function with
the default penalty per parameter set at k = 2, and a dropterm
chi-squared function performed on the AIC-supported model.
The significance of each predictor and their suitability for
inclusion in the final model was selected using a chi-squared
test (Venables and Ripley, 2002). In the model output figures,
the y-axis is a relative scale, so that a y-value of zero is the mean
effect of the adjusted predictor on the response; a positive y-
value indicates a positive effect on the response; and a negative
y-value indicates a negative effect on the response. If a horizontal
line can be placed between the 95% confidence limits (dotted
lines), this implies that the relationship between the response
and the predictor is not significant. These lines tend to diverge
near the extremes of the range for continuous predictors as a
consequence of fewer observations. Kruskal-Wallis chi-squared
and Wilcoxon rank sum test tests were used to perform multiple
comparisons among levels of categorical predictors.

Photo-Identification Analysis
Detailed dive logs were coupled with photo submissions (April
2010–September 2015) of each turtle encounter if available,
allowing confirmation of species. We used photo-ID to detect
individual site preferences, residency patterns and movements.
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Photo-ID is based on the premise that each individual turtle
can be reliably distinguished and recognized in subsequent
encounters (Schofield et al., 2008; Jean et al., 2010; Dunbar et al.,
2014). We adopted the TORSOOI system (TORtues marines
du Sud-Ouest de l’Ocean Indien—Marine Turtles of the South
West Indian Ocean: www.torsooi.com)1 to identify individual
turtles by their facial scute patterns. This database system uses
recognition software (described in detail by Jean et al., 2010) to
compare and sort the photographs, presenting the top matched
images in descending order of similarity. If the photograph
showed clearly visible facial scutes, and the angle of the camera
was within 20◦ of the side of the turtle’s head, an encounter
number was assigned to each record, and each encounter
identified as a specific individual. Left and right facial profiles of
each animal were visually inspected and classified using a three-
digit code to describe each scute on the turtle’s head, posterior
from the eye to the neck, and from the line of the upper jaw to the
top of the turtle’s head, following Jean et al. (2010) (this process
required< 2 min per profile). To our knowledge, the recognition
software used in TORSOOI has only been tested within green
and hawksbill turtles (Jean et al., 2010; Carpentier et al., 2016).
Suitability for loggerheads, was tested by comparing manual
visual identification against TORSOOImatching. Each encounter
was visually coded and assigned individual identifications for
the entire loggerhead dataset (approx. 10 min each). After this,
we repeated the process using semi-automatic profile coding
tool built into TORSOOI. Results between manual matching
and TORSOOI were not significantly different, hence we report
results based from the TORSOOI.

Sighting data for individual green and loggerhead turtles were
used to assess the lagged identification rate (RLi), the probability
of re-identifying known individual turtles over increasing time
periods, here measured in days (Whitehead, 2001). While
encounters of hawksbill turtles were reported, the photo-ID
dataset was insufficient (n < 10) for population modeling. Using
the movement module in SOCPROG 2.6 software (Whitehead,
2009), empirical data were compared to eight model scenarios
representing both closed and open populations with various
combinations of emigration, re-immigration and mortality,
including permanent emigration (see Table S2 for model
descriptions). Data were bootstrapped 100 times to generate
standard errors for RLi and parameter estimates for the fitted
models. Either the AIC (loggerhead turtles) or quasi-AIC (QAIC;
green turtles) were used to select the best-fitting model/s for
each species, with QAIC used due to over-dispersion of data
(Whitehead, 2007).

Surface Encounters
GPS tracks of survey effort covered by dive boats (n = 2)
of one dive operator were available from February 2012 to
September 2015 for a subset of the total dive trips, with additional
commercial snorkeling trip (ocean safari) records added to the
dataset (n = 656 total tracks with a combined length of 28,
232 km and n = 138 turtle surface encounters). An active
visual search for megafauna animals occurs on these trips to
1TORSOOI (2015). Sea turtles photo identification protocol – 2015
TORSOOI/Kelonia/IFREMER.

maximize the snorkel encounter opportunities with charismatic
megafauna species. A comprehensive description on search
pattern and vessel characteristics used for diving and ocean
safaris can be found in Pierce et al. (2010). The dive operator
frequently combined a double dive trip with an ocean safari
which meant that animals were spotted on transit to dives and
actively searched for in transects between dives. As noted in
Pierce et al. (2010) searches were aided on the majority of
trips by the use of a removable spotting chair, which raised a
single observer to ∼3m above sea level to broaden the search
corridor. The GPS track dataset was biased toward early morning
(dive effort bias) and midday (ocean safari trips) rather than
afternoon, however the bias dataset included search effort from
all working hours (6 a.m.–5 p.m.). The study area was gridded
into 500 × 500m cells, and the total length of boat tracks within
each cell were converted into area measurements by multiplying
by the estimated effective search area, 30m (we estimated this
by proposing that 15m on either side of the boat could be
considered an appropriate yet conservative spotting distance to
spot animals at the surface, which was successfully applied in
field settings). Surface encounters were only reported when an
animal was spotted, from the boat, on the surface. Turtle surface
encounters were converted to daily presence/absence within each
500 × 500m cell, and multiplied by daily search effort (area) to
calculate sightings per unit effort (SPUE). Given that SPUE is
not standardized for search time, or variability in boat speeds
(dive boats used were not fitted with speedometer), this may
lead to an overestimation of these sightings (Braun-McNeill and
Epperly, 2002). As the search area and effort was consistent across
years (Figure 1), SPUE is presented for the entire study period.
All spatial analyses were conducted using Quantum GIS (v 2.14
Essen) (Quantum GIS Development Team, 2016).

RESULTS

Dive Log Analysis
Dive effort was greatest in 2014 (n= 464) cf. 2011 (n= 71), 2012
(n= 256), 2013 (n= 321) and 2015 (n= 282). Themeanmonthly
number of dive trips was 28 over the entire study duration,
with a variation in effort dependent on year (2011 = 14, 2012
= 22, 2013 = 27, 2014 = 39, 2015 = 31). Minimum monthly
dive effort was 10 dives and maximum monthly effort was 48
dives. Diving occurred all year and dive effort was not strongly
influenced by seasons or seasonal weather (Dec-Feb mean = 70,
Mar-May mean = 75, Jul- Aug mean = 74, Sep- Nov mean =

62). Data for the full 12 months were not available for analysis
in 2011 (only commencing in Aug) or 2015 (data up to Sep) and
this is likely to influence the effort/trends. Dive effort was biased
toward the morning (n= 1015) rather than afternoon (n= 388),
although afternoon dives were strongly biased toward shallow
mixed habitat reefs. Mean depth of dives was 18.0 ± 0.1m and
mean horizontal underwater visibility was 13.4± 0.1 m. On 18%
of dives visibility was suboptimal (i.e., ≥5m ≤ 9m (n = 254).
Dive effort varied minimally (difference of 153 dives) between
habitat type, with “soft coral” reefs the most frequently dived
habitat (n= 423, 2 sites), “rocky sites with tree coral” (n= 377, 4
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FIGURE 1 | Search effort (insert a) (standardized in m2 and gridded into 500 × 500m cells) from boat trips along the Inhambane coast, Mozambique.

Area covered was estimated at 15m on either side of the boat. Search effort, as estimated through total track length for each year, was similar: 2012 = 7336.05 km,

2013 = 8910.39 km, 2014 = 6391.73 km, and 2015 = 5593.36 km. Turtle surface encounters (insert b) per unit effort (SPUE) m2 of search effort conducted per 500

× 500m grid cell, 2012–2015. Dive sites are overlaid onto both inserts (represented by open circles) and color coded according to four basic habitat types. Location

of the boat launch site is marked on insert a. Imagery: Google Earth (2016).
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sites), “mixed” (n = 333, 8 sites) and least frequently dived were
“plate coral” habitats (n= 270, 5 sites).

In total, 399 turtle sightings were reported across 1403 dives,
over a period of 4 years and 2 months. Turtle sightings (mean
sightings per minute of diving) were highly variable at each
site and among dive sites (Figure 2) (Kruskal-Wallis chi-square
= 30.1857, df = 3, p < 0.001). Patterns among habitat types
and turtle sightings were less distinct. Although the “soft coral”
habitat sites had the highest densities of turtles, the differences
among the four habitat types were not significant. However,
given that dive effort and turtle sightings were not consistent
among sites (n = 17–311, Figure 2) we proceeded with inter-
habitat pairwise comparisons using a Wilcoxon rank sum test.
This identified significant differences in turtle density between
the “mixed + soft” (p = 0.00059), “plate + soft” (p = 0.00621),
and “soft + tree” (p= 1e-05) dive site groups where soft habitats
had highest turtle sighting rates.

Most turtle encounters reported by divers were identified to
species level (88.5%). The sizes of turtles reported, variation
in which could be indicative of reproductive immigration or
emigration, did not correlate with day of the year. Varying size
classes were reported throughout the year for all species. Mean
carapace lengths for green and hawksbill turtles were similar at
0.7m (green 0. 6 ± 0.2 and hawksbill 0.6 ± 0.2). Loggerheads
were commonly reported at carapace lengths of 1m (mean CL 0.8

± 0.2). The range of size classes reported was greatest for green
turtles (0.3–1.4 m, Figure 3.).

The final GLM for turtle abundance had limited predictive
power, explaining 8% of the total variance in turtle sightings.
Five predictors were retained for the final model: year, day of
the year, time of day, visibility and habitat type (Table S3). Year
was a significant predictor of turtle sightings in the final GLM.
Turtle abundance did not vary significantly through 2011–2015
(Kruskal-Wallis chi-squared = 4.8214, df = 4, p = 0.3061). A
small inter-annual variation was present, with turtle abundance
lowest in 2011 (Figure 4A). Sightings fluctuated through the
year, with a peak occurring around day 250 (early September)
and remaining high for the remainder of the calendar year even
though seasonal dive effort was slightly higher during the autumn
season (March to May) (Figure 4B). There was no obvious
relationship between time of year and the size distribution of
turtles present, so breeding-related migrations were not a likely
contributor to this result (as above). Turtle sightings were highest
in the soft coral habitat which also received the heaviest diving
effort (Figure 4C). Time of day was a significant predictor of
turtle abundance: afternoon dives (primarily shallow dives <

15 m) reported higher number of animals than morning dives,
even though dive effort was ∼2.5 times greater in the morning
(Figure 4D). Underwater visibility was highly dynamic within
seasons and years. Higher underwater visibility yielded higher

FIGURE 2 | Mean turtle sightings per minute of diving for each dive site, sorted by habitat groupings, with standard error bars and dive effort.
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FIGURE 3 | Estimated carapace length (CL), with species-specific n value in brackets. Linear descriptive statistics show range and spread CL data between

the 25th and 75th percentiles, with the bold line representing the median and outliers plotted as circles.

turtle abundance (Figure 4E) and visibility was optimal (>9 m)
on 82% of dives (n= 1403).

Photo-ID
A total of 1137 images (n = 323 encounters) were submitted
to our photo-ID project by local researchers or citizen scientists
between late 2010 and September 2015. The number of
photos submitted varied per encounter, as did the subject area
of each photograph (left or right facial scutes, carapace or
some combination thereof). Citizen scientists also provided
a small number of pictures taken between 2005 and 2010,
before the project commenced. From these combined data
we identified 22 individual green turtles and 42 loggerhead
turtles (Figure S2). Most turtles were only seen once, and green
turtles were more frequently re-sighted than loggerhead turtles
(Figure S2).

Overall turtle encounter rate during the study period was low,
with turtles sighted on only 24.1% of dives, at a sighting rate
of 0.4 turtles per hour. Loggerheads were the most frequently
sighted species at 0.2 turtles per hour (n = 210), but they
had the lowest percentage of usable photos (i.e., identifiable to
individual) submitted (51.7%). The majority of turtle encounters
were identified to species (green n = 157, hawksbill n = 12,
leatherback n = 2, unidentified species n = 23). Of 399 sea
turtles observed, 80% had photo-ID encounters submitted (n =

323), of which 64% (n = 204) had scute patterns that could be
coded out to determine individual identity. Although only a few
hawksbill turtles were sighted (n = 12) these animals were easily
photographed and 86.4% (n= 10) could be identified to a specific
individual. Green turtle encounter also had a higher percentage of
encounters where individual scute profiles could be distinguished
(n= 125/157, 77.6%).

Loggerhead Turtle Site Residency and
Lagged Identification Rate
Forty-two individual loggerhead turtles were identified from
photographic encounters submitted between 2010 and 2015 (plus

three additional encounters from 2007 to 2008). Only three
of these individuals were re-sighted three (n = 2) and five
(n = 1) times over the study (Figure S2). The longest time
between sightings of a loggerhead turtle was 532 days for an
adult individual. Of the eight models (Table S2), AIC results
determined that models C and D (1AIC < 2) were the best fit,
indicating that the population was best represented by an open
population with some emigration and mortality (Table 1). There
was no support for closed population models. The small sample
size of this dataset means model outputs should be regarded as
indicative rather than quantitative. Estimates of population size
were low, and consistent between models C and D, with LIR
decreasing to slightly above zero over time.

Green Turtle Site Residency and Lagged
Identification Rate
Twenty-two individual green turtles were identified and six
were re-sighted more than twice. Resighted individuals were re-
identified on 3 (n = 2), 5 (n = 1), 13 (n = 1), and 19 (n = 1)
different occasions (Figure S2). Two individuals were re-sighted
over periods of 2.5 and 3.2 years, respectively (Figure S2). The
maximum time between first and last sightings for an individual
was 1152 days, and this turtle was reported at two dive sites.
Based on the slight differences inmodel fit (1QAIC<2;Table 2),
three emigration andmortality models (C, D, andH) provided an
equally valid representation of reality. There was no support for
closed populationmodels. The lagged identification rate for green
turtles dropped sharply between days 1 and 6, then remained
constant at slightly above zero thereafter.

Surface Encounters
Boat search effort varied little, in effort or space, across years
(Figure 1). The highest search effort across all years was in the
inshore area surrounding the boat launching and landing site
within Tofo Bay. Search effort was consistent from the northern
to southern reefs. Sightings (turtles surface encounters per m2,
SPUE) were low overall. Turtles were generally recorded in
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FIGURE 4 | Generalised Linear Model outputs showing the relationship between sea turtle sightings (abundance) and all significant predictors. The rug

plot along the x axis indicates sampling effort, and dotted lines indicate 95% confidence intervals (partial plots for; A- year, B- day of the year, C- habitat type, D- time

of day, and E- visibility).

association with known reefs, as indicated by dive sites. The
highest SPUE occurred close to dive sites in both northern and
southern extremes of the study area (Figure 2). Search effort did
not correlate with sightings and the area with the highest search
effort, Tofo Bay, had the lowest SPUE.

DISCUSSION

Our results confirm the year-round presence of sea turtles
in the coastal waters and nearshore reefs of Praia do Tofo
in southern Mozambique. However, both model analyses and
encounter numbers indicate that the number of turtles present on
these reef systems was low. In the Bazaruto Archipelago Marine
National Park (BANP) (∼250 km north), aerial surveys reported
154 turtles sighted over 5 days in May 2008 from a survey
area of 174,900 ha (cf. 399 turtles reported in the 4-year Tofo
dive log from survey area ∼40,000 ha) (Provancha and Stolen,
2008). Their sightings suggest a significantly higher density of

turtles occupy the nearshore coastal waters of BANP (4.85E-5
turtles h−1 per ha−1 Bazaruto cf. 9.45E-6 turtles h−1 per ha−1

Tofo). The greater turtle abundances reported in BANP may be
attributed to two differing factors compared to Praia do Tofo;
the area has extensive seagrass meadows which can support large
numbers of turtles, and it receives some degree of protection
and enforcement as marine protected area. Other areas still have
many more turtles, such as algal dominated coral reef sites of the
southern Great Barrier Reef, green turtle density was estimated at
0.45 turtles per ha (Chaloupka and Limpus, 2001).

Feeding behavior has been directly observed in green,
loggerhead and hawksbill turtles in the area on dive encounters
and within photo-ID encounters submitted (Williams et al.,
pers. observation). We can assume that the Praia do Tofo
area is likely to be foraging grounds for juvenile turtles,
however further evaluation of foraging behaviors specific to
each species and age class are needed. No comparative studies
from mainland coasts of the WIO region exist. However,
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TABLE 1 | Variation in AIC scores for the eight models fitted against the loggerhead turtle data.

Model Loggerhead 1AIC Parameter Value SE Lower 95% CI Upper 95% CI

A 19.455

B 19.455

C 0.000 a1 = Emigration rate 0.004 0.334 0.003 0.962

N = 1/a2 0.086 0.063 −0.072 0.138

D 0.000 a1 = N 11.636 8.486 7.227 38.937

a2 = Mean residence 246.079 81.558 0.000 342.427

E 22.503

F 23.455

G 0.224

H 140.405

For best fitting models, population parameter estimates generated from Models C and D fitted against lagged identification rate for loggerhead turtles, presented with standard error,

lower and upper 95% confidence intervals. Where models A and B represent closed populations and models C to H represent open populations with varying parameters. AIC, Akaike

information criterion; N, Population size.

TABLE 2 | Variation in QAIC scores for the eight models fitted against the green turtle data.

Model Green 1QAIC Parameter Value SE 95% CI lower 95% CI upper

A 13.970

B 13.970

C 1.808 a1 = Emigration rate 0.001 0.165 9.29E-05 0.962

N = 1/a2 0.204 0.072 −0.072 0.306

D 1.808 a1 = N 4.894 3.250 3.266 13.595

a2 = Mean residence 1020.663 10986.320 196.864 10731.784

E 9.261

F 9.261

G 2.582

H 0.000 a1 = N 0.603 6.189 0.135 36.456

a2 = Mean time in study area 1.187 28.815 −0.737 79.128

a3 = Mean time out of study area 8.317 32.426 0.074 120.115

a4 = Mortality rate 0.001 0.216 2.0E-4 1.254

For best fitting models, population parameter estimates generated from Models C, D and H fitted against lagged identification rate for green turtles, presented with standard error, lower

and upper 95% confidence intervals are presented. Where models A and B represent closed populations and models C to H represent open populations with varying parameters. QAIC,

quasi- Akaike information criterion; N, Population size estimate.

daily abundance of foraging green turtles using seagrass beds
and reef flats off Mayotte Island, Comoros is greater than at
Tofo (Roos et al., 2005; Ballorain et al., 2010). From aerial
surveys and snorkeling censuses, mean turtles per day were
calculated at 32 (aerial survey) and 29 (snorkel surveys) (Roos
et al., 2005). Adding to this, Ballorain et al. (2010) reports
a turtle encounter rate on the seagrass meadows in N’Gouja
Bay, Mayotte at 23.9 × 10−4 ± 10−4 turtles m−2. While their
survey methods are not directly comparable to ours, the results
suggest green turtle abundance was lower at Praia do Tofo
(mean animals per day: 9.25E-10 turtles h−1 m−2) than at
Mayotte, a significant year-round nesting rookery for green
turtles (Dalleau et al., 2012) and a known foraging area (Ballorain
et al., 2010).

Predictors of Turtle Abundance
Turtle abundance was not strongly influenced by the
environmental, temporal or oceanographic variables tested

in the GLM. Only 8% of the total variance in turtle abundance
could be explained by the GLM, with five significant predictors.
Three of these were temporal (year, day of the year and time
of day), one oceanographic (visibility) and one environmental
(habitat type). One additional spatial variable (dive site) was also
a significant predictor of turtle abundance, but was removed
from the final model due to a high standard error. Overall the
GLM explained a low proportion of the variability in turtle
abundance relative to studies on sympatric species. Rohner et al.
(2013) documented that 40, 30, and 24% of total variance could
be explained for sightings of reef manta rays (Manta alfredi),
giant manta rays (M. birostris) and whale sharks (Rhincodon
typus), respectively, within the same study area and from
dive logbook data. Low model deviance (8.4%) of turtles and
dugongs has also been noted in similar analyses in which oceanic
conditions as predictors of megafauna assemblages were used
to model aerial survey data at Ningaloo reef, Western Australia
(Sleeman et al., 2007). While they reported a weak correlation
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between bathymetry and relative abundance, where animals
were more abundant when a steep change in depth contour
occurred (Sleeman et al., 2007), depth was not a significant
predictor in our study. The low total variance explained by
our model may have been influenced by the multi-specific
nature of our analysis (sightings of two turtle species merged),
or a high degree of independent behavior exhibited by turtles,
as has been demonstrated from satellite tagged turtles (e.g.,
Papi et al., 1997; Hatase et al., 2002, 2006). Using models to
predict and explain the distribution of marine megafauna and
how it correlates with oceanographic or bathymetric variables
is difficult (Polovina et al., 2004; Piatt et al., 2006; Sleeman
et al., 2007). Further complications arise as these models
struggle to account for the complexity of animal behavior,
particularly predators (Sleeman et al., 2007). Abundance and
distribution of turtles is likely to be influenced by a complex
suite of factors, including oceanographic, bathymetric, habitat
requirements for food and shelter, deterrents (artificial lighting,
heavy anthropogenic use, and natural predators) and behavioral
factors (conspecific competition, age class instincts). To
improve our understanding, we would require higher resolution
oceanographic data (spatial and temporal) coupled with long
term species specific sightings records in which detailed
behavioral information about habitat use and feeding habits is
incorporated.

Diving effort was variable among reefs and on different
trips to the same reef. Given that oceanic conditions in the
area are dynamic and highly variable (i.e., strong currents,
bad visibility, high surge), the total area of reef covered and
direction the reef surveyed are dependent on ocean conditions.
This may help to explain the variability in turtle sightings
between successive trips to the same dive site, as it is possible
that animals are present on a portion of the reef that does
not get surveyed due to logistical restraints. In addition to
this, the dive sites surveyed are part of an expansive chain
of reefs that run parallel to the shore and regularly dived
reefs comprise a small proportion of total reef area. It is
possible that the home range of some of our photographed
turtles does not occur in regularly surveyed areas, or that
we have encountered animals in the periphery of their home
ranges. Greens and loggerheads modify their home range both
spatially and temporarily depending on resource availability,
environmental conditions (e.g., temperature, depth, productivity
of waters) or diurnal patterns (Luschi et al., 2006; Howell et al.,
2010; Dalleau et al., 2014; Shimada, 2015; Christiansen et al.,
2016; Varo-Cruz et al., 2016). The general behavioral-ecological
model for Cheloniidae is a gradual shift from pelagic-vagile to
benthic-sedentary lifestyle with progressive reduction of home
ranges (Godley et al., 2008; Casale et al., 2012), with strong
site fidelity evident in some populations (Shimada et al., 2016).
Further investigation at our study site is needed to evaluate fine
scale movements to investigate if seasonal patterns influenced
by temperature (e.g., winter shifts) occur. Given the narrow
width of the continental shelf along Inhambane Province, short
forays between neritic into oceanic waters could be possible,
similar to loggerheads in the Mediterranean, where favorable
foraging grounds are exploited by opportunistic animals that use
oceanic-neritic edges (Casale et al., 2012).

Some of the relationships among predictors and turtle
sightings were intuitive, such as greater visibility resulting in
a higher likelihood of observing turtles. Although turtles were
present year-round, increased abundance of animals around the
summer months could represent an influx to the area for the
mating and nesting season (loggerheads or leatherbacks) even
though recent (5 years) nesting effort in the immediate area
has been minimal (<10 nests) (Fernandes et al., 2016). Average
carapace size of first time nesters in the loggerhead South African
rookery is 84 cm (Nel et al., 2013). Based on carapace length
estimates supplied by citizen scientists the majority of in-water
loggerhead encounters are of animals of this size or larger.
However, we did not detect any changes in turtle size regardless
of species over the course of the year.

Turtle sightings were significantly influenced by habitat type.
Turtle densities were highest in the “soft coral” habitat types
which were grouped in the south of the study area, in deeper
waters (23–30 m). Turtle SPUE from surface encounters was
also highest in the southern area in close proximity to these
reefs. Abundance of turtles and surface encounter SPUE was
also high in the north of the study area, where sites were
largely the “plate coral” habitat type. The drivers of the increased
abundance of turtles in these habitat types is unclear. In Gorgona
National Park, Colombia atypical feeding behavior was described
at mixed size foraging grounds of the east Pacific green turtle
(Amorocho and Reina, 2007). They reported reefs comprising
of hard and soft corals with sandy benthos and an absence of
seagrass meadows, where turtles feed mainly on animal matter,
with bias toward tunicates (Amorocho and Reina, 2007). If a
similar feeding behavior was adopted by green turtle in the
Praia do Tofo, this could explain why increased abundance was
observed at “soft” and “plate” coral sites. We hypothesize that
several factors (habitat quality, habitat diversity, food availability
and SSF pressure) may influence the turtles to reside at these sites,
rather than the inshore shallow sites, which are “mixed” habitat
type. Fuentes et al. (2006) demonstrated clear dichotomy in
juvenile green sea turtle diets foraging in seagrassmeadows, patch
reef and reef slope around Green Island in the Great Barrier Reef,
Australia. They showed juveniles have strong preferences for
either a seagrass or algal diet and that regular switches between
diet preferences was possible (Fuentes et al., 2006). Turtles may
have favored “plate” or “soft” coral habitat types, as it is possible
these sites have greater quantities of macroalage or preferred
variety of macroalgal species. Sea turtle abundance is unlikely to
be homogeneously spread along our study area, and the spatial
dataset found higher densities adjacent to the south and northern
reefs. The reasons for this pattern are unclear. To elucidate this,
we suggest spatial characterisation of the benthic habitats in the
area be conducted to examine the relationship between habitat
types and turtle sightings in detail. The Inhambane estuary
system immediately adjacent to the north of our study area
provides extensive shallow seagrass meadows. It is possible that
turtle density is higher in these areas, or is more representative
of the core habitat area of turtles using reefs in Praia do Tofo.
To date, no work has been conducted in the area to determine
if turtles of any species or size class exhibit avoidance behavior
in the presence of either scuba divers or their boats, or artisanal
fishers or their vessels.
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Photo-Identification and Population
Structure
Photo quality, as measured by the percentage of useable photos,
varied among species. A higher proportion of identifiable
photographs were obtained for green and hawksbill turtles
relative to loggerheads. The former two species were generally
encountered at shallower sites, where ambient light was higher,
typically resulting in improved photos in instances where
automated point-and-shoot cameras were used. Their facial
scute patterns were also markedly more distinct than in most
loggerheads. Although Jean et al. (2010) noted that specialist
fieldwork and training was not required for successful photo-ID
at Reunion Island, the comparatively low photo quality obtained
in this study, and consequent low percentage of identifiable
images, suggests that dedicated training could be of substantial
benefit at this site. Such training could include the development
of a series of guiding principles to aid recreational divers, or dive
operators, to suitable photos for analysis, conducting practice
sessions with models, suggested camera settings, and explaining
the best way to approach turtles without initiating a flight
response (Williams et al., 2015).

We identified 42 loggerhead and 22 green turtle individuals.
Population estimates for both species were small, and encounter
rates per dives were only around 24%. However, this was an
increase from 8.1% in earlier work in the same area (Williams
et al., 2015). We think that the higher rate reported here is
more reflective of reality, as the new estimates are based on
a significantly larger presence-absence dive log (n = 720 vs.
1425). A similar style of population modeling based on photo-
ID of green turtles was conducted in the Philippines (Araujo
et al., 2016). Araujo et al. (2016) also present similarly low
resighting rates in the majority of their animals encountered. The
limited sample sizes available likely mean that mark-recapture
model results are more indicative than precise, although the
relative daily population estimates (11.6 loggerheads and 4.9
green turtles) do suggest that proportionally more loggerheads
were present.

A caveat of photo-ID studies has been the lack of long-term
validation for the persistence of scute and scale shapes and colors
across decades (Goodman-Hall and McNeill, 2013). The longest
period of time over which we re-identified an individual was 1.4
years for an adult loggerhead, and 3.1 years for a juvenile/sub
adult green. Other studies have re-identified individuals 3, 4 and 6
and 11 years later (Reisser et al., 2008; Jean et al., 2010; Goncalves
and Loureiro, 2013; Carpentier et al., 2016, respectively). For
greens there is some evidence to suggest facial scale stability
exists, although pigmentation patterns can change (Féliz et al.,
2010; Araujo et al., 2016; Carpentier et al., 2016). Long-term
photo series from known individuals are required to quantify
the rates and implications of changes to facial scales, but we
think it is reasonable to assume that facial scutes remain stable
over the 5-year period discussed here. A caveat to consider
is that low resightings rates in loggerheads may be an artifact
of identification tool (i.e., lack of suitability in TORSOOI to
accurately identify individual loggerhead turtles). To avoid this,
visual comparison and manual identification was undertaken for

the entire loggerhead dataset and we feel TORSOOI suitably
recognized unique details of facial patterns to assign loggerhead
identifications. Robust methods testing of the application of this
tool for loggerheads would confirm any doubts for future work.

Perception and Availability Bias
Our data also highlight the need to understand perception and
availability bias when using observation based monitoring and
citizen science for sea turtle monitoring (Pollock et al., 2006).
In particular, we found that photo quality varied across species
and was also likely to be influenced by depth (of the diver and
turtle) and water visibility. Coupled with this, the GLM indicated
that sightings and abundance were linked to several factors that
relatemore to when andwhere turtles are available such as time of
day or year. Imperfect detection is known as availability bias and
can be addressed by experimentally assessing sightability under
a variety of environmental conditions. Perception bias could be
linked to expertise or experience. Understanding the influence of
bias, such as availability and perception, in citizen science based
species monitoring is a key question for future research.

Movement Patterns
Green turtles, with a modeled mean residency time of 1021
days, were present on Inhambane reefs for longer periods of
time than loggerhead turtles, which had a mean residency
of 246 days. A small number of green turtles demonstrated
strong site fidelity, with some individuals resighted between 13
and 19 times at a single dive site over the duration of the
study. Dive log data identified most of these individuals to be
juveniles. Juvenile green turtles have been well-documented to
be resident in shallow coastal waters (Ballorain et al., 2010;
Meylan et al., 2011; Scott et al., 2012). Thus, the likelihood
of encountering resident animals in their home range can be
relatively high. In contrast, although loggerhead turtles were
more frequently encountered than greens (0.20 and 0.15 turtles
per hour, respectively), they were rarely resighted. Dive log data
showed that curved carapace size classes of≥70 cm were present,
suggesting that both sub-adult and adult loggerheads use the
area. We advise some caution in interpreting the carapace length
data presented, as it is estimates rather than measurements and
future work should adopt more precise estimation techniques
(described in Houghton et al., 2003) or continue to expand
and evaluate the laser photogrammetry dataset. Several accounts
exist of post-nesting loggerhead turtles using neritic waters of
Mozambique (Hughes, 1974; Luschi et al., 2006; Pereira et al.,
2014). Fidelity to these post-nesting foraging grounds and the
migratory routes used to reach them have been reported from
other loggerhead populations (Schofield et al., 2010). Pereira
et al. (2014) documented the variability of foraging destination
in northward post-nesting migrations (potentially shuttling
migrations described in Luschi et al., 2006) from three satellite
tracked female loggerhead turtles swimming from natal beaches
in the Ponta D’Ouro Marine Partial Reserve in the extreme south
of Mozambique. One animal traveled north into Macaneta and
Xai Xai, an area Pereira et al. (2014) believed to be its resident
foraging ground (250 km south of present study area). Dangers
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of artisanal fisheries interactions were also evident in the second
animal which was caught by turtle hunters 20 km south of Praia
do Tofo (Pereira et al., 2014). Some mature loggerhead turtles
may therefore have permanent feeding grounds in coastal waters
within Inhambane Province, with others being transient visitors
returning to natal beaches or on their way tomore distant feeding
grounds (e.g., Tanzania, Madagascar) (Luschi et al., 2006; Pereira
et al., 2014). The data types used in our study give a general
indication of site fidelity and movements, but the absence of
fine scale spatial and temporal data prohibits the calculation of
reliable estimates of home ranges. Acoustic and satellite tagging
of animals using this area would be a logical next step for
progressing our knowledge of habitat use and movements.

Potential Interactions with Small-Scale
Fisheries
Sea turtle populations near Praia do Tofo are small. Given the
year-round presence of turtles documented here, their abundance
in shallow (<35 m) nearshore reef areas, and the long residency
periods of some individuals, we speculate that these turtles are
highly susceptible to capture by SSF, either as bycatch or as
illegal target species. Resighting rates, particularly of loggerhead
turtles, were low. Population models indicated a high degree
of movement into and out of the area. We are unable to
ascertain if low resightings are due to high transient behaviors
or if high mortality rates from SSF occurs in our study area or
the surrounding region. Our unpublished data from the area
has documented regular mortalities (n = 353, 2009-2016) from
targeted hunting and bycatch from artisanal fisheries (Williams
et al., in preparation). This number of dead turtles is on par with
the number of live turtles we report, suggesting that SSF could
be serious threat to turtles in this region. Rates of illegal take
and use are suspected to be high within Mozambique (Louro
et al., 2006) and within the SWIO all sea turtle species are
highly vulnerable to artisanal fisheries bycatch (Bourjea et al.,
2008; Kiszka, 2012; Bourjea, 2015). It is unclear whether the low
population density in the area is a consequence of this hunting
over the past decades, but future comparison with areas with
lower contemporary anthropogenic pressure would be useful.
Broadening citizen science data collection to include the activity
of fishers would be particularly valuable.

CONCLUSIONS

We synthesized three different data types to reveal novel
information on the nearshore habitat use, abundance and
distribution of green and loggerhead sea turtles in the Praia
do Tofo area in southern Mozambique. Both species use the

area year-round, as a foraging ground for some immature
green turtles and transient habitat for other life stages. Modeled
population sizes, surface encounter and dive encounter rates all
suggest that the contemporary turtle population in the area is
small. However, limitations to our methodology prevent accurate
assessment of abundance and the opportunistic nature of data
collection have limited a robust evaluation of spatio-temporal
patterns. While sightings trends were stable over the limited time
series of the available datasets, they were also very low and we are
thus concerned that high fishing and hunting pressure on these
inshore reefs is a likely threat to these local sea turtle populations
(Louro et al., 2006). Human impacts are likely to be higher on
green turtles, which are more resident than loggerhead turtles,
but the relatively higher number of loggerheads sighted means
that fishing-derived mortality here could also have broader
impacts on the Western Indian Ocean stock of the species.
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