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Polysaccharides are the most abundant and the most complex organic molecules

in the ocean. In contrast to land polysaccharides, many marine polysaccharides are

highly sulfated; in particular, the cell walls of macroalgae harbor a high diversity

of sulfated polysaccharides (carrageenans, agarans, fucoidans, ulvans, etc.). These

sulfated polysaccharides, biosynthesized by macroalgal primary producers, represent an

important food source for heterotrophic organisms. Their biodegradation requires a set

of enzymes that can cleave the glycosidic linkages of the carbohydrate backbone (called

glycoside hydrolases) and the sulfate ester groups (called polysaccharide sulfatases).

This review first provides on overview of the current state of knowledge on the

classification and mechanisms of sulfatases in general. Then, based on an exploration

of marine genomic and metagenomics data that reveals the diversity of carbohydrate

sulfatases, it focuses on strategies to predict these sulfatases. In particular, themodularity

of sulfatases and their location in marine polysaccharide utilization loci (PUL) provide

clues as to their potential substrates and can drive future functional assays. Finally,

the review underscores the low number of currently biochemically characterized marine

carbohydrate sulfatases (e.g., agarases, carrageenanases, and fucose sulfatases).

Bottlenecks encountered in studies on sulfatases likely lie in the difficulties in purifying

them and producing them in heterologous systems.
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INTRODUCTION

After carbon, oxygen, and nitrogen, sulfur is the most abundant element in living organisms.
Sulfur participates in the composition of cysteine and methionine, which are key amino acids for
protein folding (e.g., disulfide bonds) and essential for the reactivity of many enzymes as catalytic
amino acids or complexing cofactors (e.g., iron-sulfur cofactors). Sulfur is also found in vitamins,
steroids, and many carbohydrates including polysaccharides, proteoglycans, and glycolipids. Sulfur
is assimilated by living organisms in the form of inorganic sulfate ions, which are the second most
abundant anions in seawater. The concentration of sulfate ions in the oceans ranges from 25 to
28 mM; these values are very high compared with those found in freshwater and soil (10–50 µM)
(Wright and Colling, 1995; Friedlander, 2001; Bochenek et al., 2013).

The abundance of sulfate ions and its ubiquity has resulted in a wide distribution of sulfated
molecules and more especially, sulfated polysaccharides in marine organisms. In contrast to land
polysaccharides, a huge number marine polysaccharides are decorated with sulfate ester groups.
Except for sulfated glycosaminoglycans such as chondroitin sulfate or herapan sulfate found in
the matrix of animal cells, anionic polysaccharides found in terrestrial organisms carry uronic
groups (i.e., pectins, hyaluronic acid, polysialic acids). The occurrence of sulfated polysaccharides
in macroalgae, marine angiosperms, and seagrasses has been proposed to be an adaptation to
marine environments (Aquino et al., 2005; Olsen et al., 2016), suggesting that the sulfation
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of polysaccharides is a marker of marine origins. Nevertheless,
in all cases, the biosynthesis of sulfated polysaccharides requires
the activation of sulfate in PAPS (3′-phosphoadenosine-5′-
phosphosulfate), catalyzed by PAPS synthase, and then the
grafting of a sulfate ester group onto the carbohydrate via a
specific sulfotransferase (Klaassen and Boles, 1997; Zhang et al.,
1998).

The most studied sulfated marine polysaccharides are those
extracted from the cell walls of macroalgae due to the
industrial interest in their hydrocolloid properties. Agarans and
carrageenans are the most exploited polysaccharides from red
algae and the wide diversity of red algae polysaccharides has
been reviewed recently (Usov, 2011). Similarly, the sulfated
polysaccharides extracted from brown and green algae also
show high diversity. Several reviews have highlighted their
structural complexity and their potential applications (see, for
example, Kloareg and Quatrano, 1988; Berteau and Mulloy,
2003; Lahaye and Robic, 2007; Pomin and Mourão, 2008).
The diversity of sulfated polysaccharides biosynthesized by
marine microorganisms, such as bacteria and microalgae, has
been less explored so far. However, sulfate groups were found
to decorate the carbohydrate backbone of several secreted
polysaccharides and matrix lipo-polysaccharides biosynthesized
by marine bacteria (Mancuso Nichols et al., 2005; Nazarenko
et al., 2011). Composition analyses attested also the structural
diversity of sulfated polysaccharides biosynthesized inmicroalgae
but only a few polysaccharide structures have been resolved
(Hoagland et al., 1993; Gügi et al., 2015). For example, studies
and structural analyses of the main cell-wall polysaccharide in
diatoms—a group of ecologically important marine organisms—
suggest that it is a sulfated glucuronmannan (Percival and
McDowell, 1967; Willis et al., 2013).

Marine polysaccharides make up a large part of algal biomass
and are a food source for heterotrophic organisms. This reservoir
of sulfated polysaccharides are produced by concomitant fixation
of sulfur and carbon by photosynthetic organisms. Enzymatic
degradation of complex sulfated polysaccharides requires a set
of enzymes that can cleave the glycosidic bond and remove
any decorations, such as sulfate groups, from the carbohydrate
backbone. Specific glycoside hydrolases or polysaccharide lyases
depolymerize marine polysaccharides break the glycosidic bonds
via hydrolysis and β-elimination mechanisms, respectively.
Concerted action with sulfatases can result in the production
of neutral mono- and oligosaccharides then used for energy
consumption.

The avalanche of gene sequences produced during the
numerous marine genomics and metagenomics programs
have revealed the important role of sulfate in marine biology
(Glöckner et al., 2003; Teeling et al., 2012). Genomes of
polysaccharide-degrading bacteria reveal the co-occurrence of
glycoside hydrolases and polysaccharide lyases with sulfatases.
More interestingly, in the bacterial genus Bacteroidetes known
to include many polysaccharide-degrading strains, all the genes
coding for polysaccharide-degrading enzymes leading to the
saccharification of sulfated polysaccharides are clustered in the
genome in so-called “polysaccharide utilization loci” (PUL)
(Sonnenburg et al., 2006; Flint et al., 2008; White et al., 2014).
More recently, the discovery of marine polysaccharide-degrading

enzymes in Bacteroidetes strains found in the microbiota of the
human gut—likely acquired by gene transfer from marine
organisms associated with seafood (Hehemann et al., 2010)—
suggest that the investigation of the enzymatic degradation
of marine polysaccharides goes beyond the ecological
understanding of the ocean cycle, and also involves human
health. Likewise, genomic analyses of human microbiota have
revealed numerous PULs with sulfatase genes involved in the
degradation of many sulfated polysaccharides, probably of
marine origin.

Therefore, the purpose of this review is to summarize the
work dealing with marine polysaccharide sulfatases starting with
a short introduction to sulfatase classification, followed by a
highlight on the diversity of marine polysaccharides sulfatases
revealed by genomic data mining and then a description of the
marine polysaccharide sulfatases that have been biochemically
characterized to date. Glycosaminoglycan sulfatases will not
be considered here, although several chondroitin or heparin
sulfatases have been identified in marine prokaryotes (Han et al.,
2014; Wang et al., 2015a).

MECHANISM AND STRUCTURE
OF SULFATASES

Sulfatases are grouped into four classes based on sequence
homology, crystallographic structure and mechanisms. Type I
sulfatase—or formylglycine-dependent sulfatase—encompasses
the vast majority of the known sulfatases and to date,
all the biochemically characterized carbohydrate sulfatases
(Hanson et al., 2004). These sulfatases require post-translational
conversion of a cysteine or a serine into a formylglycine amino
acid residue essential for catalysis. The oxidation of amino acids
is catalyzed by a formylglycine-generating enzyme (FGE), also
named sulfatase-modifying factor 1 (SUMF1), which recognizes
the consensus amino acid sequence C/S-X-P-X-R (Cosma et al.,
2003; Dierks et al., 2003; Sardiello et al., 2005; Bojarová and
Williams, 2008).

In anaerobic bacteria, cysteine and serine residues can
be modified by another family of enzymes called anaerobic
sulfatase-maturating enzymes (anSMEs) (Berteau et al., 2006).
Crystallographic structure of FGE (Bond et al., 1997; von
Bülow et al., 2001) and anSME (Goldman et al., 2013)
demonstrate that their mechanisms differ in the use or non-use
of oxygen molecules, respectively. A recent review covers the
state of knowledge on these enzymes as well as their potential
biotechnological applications (Appel and Bertozzi, 2015).

Based on inhibition experiments and the analysis of the crystal
structure of sulfatase complexes, two mechanisms of desulfation
have been proposed, differing essentially in the hydration state of
the formylglycine residue at the beginning of the reaction (Bond
et al., 1997; Lukatela et al., 1998). However, both mechanisms
generally agree that the last steps of the reaction involve a
covalent bond between the sulfate anion and the formylglycine
amino acid, and the regeneration of formylglycine by hydrolysis
(Figure 1). The reaction results in the retention of the carbon
configuration, the chirality of the carbon center being unaffected
by the desulfation catalysis (Williams et al., 2014; Figure 2).
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FIGURE 1 | Two mechanisms of action proposed for

formylglycine-dependent sulfatases (the type I sulfatase family).

Mechanisms (A,B) differ by the hydration state at the beginning of the

reaction. However, they both lead to the formation of a covalent intermediate

between the sulfate ester group and formylglycine amino acid (Bond et al.,

1997; Lukatela et al., 1998)

Type II sulfatase encompasses Fe(II) α-ketoglutarate-
dependent alkylsulfatases, which belong to the dioxygenase
superfamily (Müller et al., 2004). The catalysis requires
molecular oxygen (O2) and α-keto-glutarate as a co-substrate
and leads to the oxidation of the primary sulfate ester group in
the aldehyde and concomitantly to the oxidative decarboxylation
of the α-keto-glutarate into succinate. Type III sulfatases are
represented by enzymes related to Zn2+- or Mn2+-dependent
metallo-β-lactamases. The cleavage of the C-OS bond occurs
via a nucleophilic attack of the carbon by a molecule of water
activated by the binuclear metal ion complex located in the active
site (Hagelueken et al., 2006). The loss of the sulfate group results
in the inversion of the configuration of the carbon (Figure 2).
No carbohydrate sulfatases fall in the type II or type III sulfatase
categories.

Two other sets of enzymes represent another potential
sulfatase families. One sulfatase belonging to the superfamily
of amidohydrolases has been purified from the marine bacteria
Pseudoalteromonas carrageenovora; the recombinantly expressed
enzyme is active on a synthetic substrate (i.e., methylemberliferyl
sulfate), but showed less activity than the native purified enzyme
(Genicot et al., 2014). The galactose-6-sulfurylase (discussed
below in Section Predicted marine polysaccharide sulfatases)
catalyzes the formation of anhydrogalactose concomitantly to the
release of the sulfate group (Rees, 1961a,b).

PREDICTED MARINE POLYSACCHARIDE
SULFATASES

The massive compilation of gene sequences through the
numerous genome and metagenome sequencing programs has
led to an exponential increase in the number of putative proteins

FIGURE 2 | Inverting and retaining carbohydrate sulfatases. (A)

Retaining sulfatases cleave the S-O bonds without inverting the configuration

of the carbon carrying the sulfate ester group. In the case of 4O-β-D-galactose

sulfate, the removal of the sulfate leads to the production of β-D-galactose. (B)

In inverting sulfatases, the C-O bond is broken and the stereochemical

inversion of the configuration of the ring carbon results in the epimerization of

the residue. Although this situation has never been observed, the removal of

sulfate of 4O-β-D-galactose would result in the formation of β-D-glucose. (Nu,

nucleophilic attack).

whose functions have, for the most part, not yet been determined
(Hanson et al., 2010). Despite the development of bioinformatics
tools, prediction of protein function requires experimental
validation, including a comprehensive overview of metabolic
pathways and functional characterization of the proteins. Like
other classes of proteins, sulfatases have seen the number of
predicted genes increase exponentially in databases, particularly
owing to the massive sequencing of marine organisms. The
precise function of the sulfatases, such as the nature of
their sulfated substrates (carbohydrate, lipids, metabolites, etc.),
cannot be predicted based on sequence comparison with
biochemically characterized sulfatases due to the lack of data.
Based on the surge in sulfatase gene sequences and their genomic
environment, probable function and preferred substrates of
carbohydrate sulfatases can be suspected.

Modular Sulfatases
Most sulfatases are made of one catalytic module; however, in
rare cases, two sulfatase modules are found in the same protein,
both having the predicted catalytic amino acid residues. More
interestingly, some proteins are multi-modular, containing one
sulfatase catalytic module and one glycoside hydrolase catalytic
module. For example, the protein found in the bacterium
Nonlabens ulvanivorans, combines two catalytic modules, one
attributed to a sulfatase, and the other to a glycoside hydrolase
belonging to family GH78 (rhamnosidases). This organization
reflects a genomic rearrangement adapted to the degradation
of ulvan, the sulfated cell-wall matrix polysaccharide found
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in green algae of the genera Ulva and Enteromorpha (Kopel
et al., 2014). Ulvan, composed of 3O-sulfate-rhamnose, is likely
more efficiently degraded by a bi-modular protein. Similarly,
the bi-modular protein found in Flammeovirga sp. SJP92
genome (GenBank accession no. PRJNA306821), composed of
a xylosidase (GH10) linked to a sulfatase, suggests evolution for
optimized degradation of sulfated xylan, found especially in the
cell walls of red algae.

A rapid survey of the Uniprot (The UniProt Consortium,
2015) and CAZy databases (Terrapon et al., 2015) revealed
several modular sulfatases (Figure 3), suggesting that a thorough
analysis of database should multiply examples of modular
sulfatases. Observations of these modular proteins indicate
that the preferred substrate of these sulfatases is a sulfated
carbohydrate and provide strong clues as to the sugar residues
involved.

Sulfated Polysaccharide Utilization Loci
PULs are clusters of genes co-localized in the genome
that encode proteins involved in the same polysaccharide-
degradation pathway, starting from the detection of the
polysaccharide to its depolymerization and uptake of the
degradation products (Flint et al., 2008; White et al., 2014;
Terrapon et al., 2015). PULs are found in Bacteroidetes, which
are recognized as important polysaccharide degraders given
the number polysaccharide-degrading enzymes found in their
genomes. The starch utilization loci of the human gut symbiont
Bacteroidetes thetaiotaomicron was the first PUL to be described
(Anderson and Salyers, 1989). Starch is first bound by the
outer membrane SusD protein, and then undergoes partial
hydrolysis by an amylase, SusG. The malto-oligosaccharides are
then imported into the cell by SusC, which is a TonB-dependent
transporter. The complete degradation of malto-oligosaccharides
is ensured by SusA and SusB, located in the periplasm. This
gene organization is used as paradigm for the prediction of
other PULs and always include proteins that are homologous

FIGURE 3 | Modular sulfatases. Several examples of modular sulfatases

retrieved from databases. The catalytic sulfatase module (Sulf) is linked to a

catalytic module attributed to glycoside hydrolase (GH). The GH number refers

to the CAZy family name.

to SusC and SusD and a series of polysaccharide-degrading
enzymes.

Because protein expression of PUL is co-regulated,
transcriptomic methods can monitor the expression level
of proteins of the targeted PUL when the bacteria are grown
in presence of selected polysaccharides, thereby identifying
the function of the identified PUL (Martens et al., 2008, 2011;
McNulty et al., 2013; Despres et al., 2016). Co-expression of
proteins located in the same PUL by carbohydrate inducers
validate the PUL organization and give some indication as to
the putative polysaccharides metabolized in vivo. PULs found
in Bacteroidetes of the human microbiota have been recorded
in the CAZy database (http://www.cazy.org/PULDB/) and
experimentally analyzed PULs are also included (Terrapon
et al., 2015). Many PULs, including the experimentally
analyzed ones, contain sulfatases and glycoside hydrolases
(or polysaccharide lyases), suggesting that these sulfatases are
active on carbohydrates.

The first documented marine PUL includes proteins involves
in the degradation of porphyran (the biosynthetic precursor
of agarose; Figure 4). It contains several glycoside hydrolases,
sulfatases, and a set of proteins of unknown function. This
PUL has been transferred laterally from marine Bacteroidetes
to human microbiota Bacteroidetes (Hehemann et al., 2010).
Many other PULs dedicated to the degradation of sulfated
polysaccharides have been observed in several bacteria genomes
or metagenomes (Gómez-Pereira et al., 2012; Mann et al., 2013;
Kabisch et al., 2014; Hahnke et al., 2015; Xing et al., 2015;
Panschin et al., 2016; Sun et al., 2016). The functions of PULs
are hypothesized based on sequence homology of glycoside
hydrolases found in the PUL with characterized enzymes. Then,
the presumed enzyme activities encountered in the PUL are
compared with the literature available on the composition or
structure of marine polysaccharides to attribute the putative
metabolized polysaccharide to the PUL. Additional information,
such as the location where the Bacteroidetes strains have been
isolated or sequenced (e.g., surface of an algae, microalgae bloom)
may also help refine the inference.

BIOCHEMICALLY CHARACTERIZED
MARINE POLYSACCHARIDE SULFATASES

Agaran and Carrageenan Sulfatases
Agarans and carrageenans are found in the cell wall of many
red algae (Rhodophyta). They are sulfated galactans made of D-
galactose alternately linked by α- and β- glycosidic bonds. In
agarans, the α-linked galactose belongs to the L series. These
polysaccharides are classified according the position and number
of sulfate ester groups and the occurrence of α-anhydrogalactose.
The best-known agaran is agarose, appreciated for its gelling
properties. Other agarans, such as the less-studied porphyran or
funoran, are found in many species of red algae. The diversity
of carrageenans is very high, based on the high number of
different repetition moieties that have been reported; however,
κ- (kappa-), ι- (iota-), hybrid κ-/ι- (also called κ2-carrageenan),
and λ- (lambda-) carrageenans are the most frequent marine
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FIGURE 4 | Examples of polysaccharide utilization loci (PUL) containing sulfatases. (A) The porphyranase PUL in Bacteroidetes plebeius found in the human

microbiota (Hehemann et al., 2012). (B) Ulva degradation PUL observed in Nonlabens ulvanivorans isolated from the feces of Aplysia sp. (Kopel et al., 2014). (C)

Carrageenan PUL in Cellulophaga algicola. The sulfatases found in this PUL have strong homologies with the biochemically characterized sulfatase of

Pseudolateromonas atlantica T6c (Préchoux et al., 2013, 2016). The function of the biochemically characterized enzymes are indicated on their corresponding genes.

polysaccharides in industry, employed as gelling, or thickening
ingredients (Usov, 2011).

Enzymatic degradation of red algal polysaccharides by
glycoside hydrolases which cleave the glycosidic bonds have
been observed in a wide diversity of marine bacteria (Michel
et al., 2006). Porphyranases have also been found in the genome
in human gut microbiota Bacteroidetes strains. Surprisingly,

agaran- and carrageenan-degrading enzymes (i.e., agarases,
porphyranases, or carrageenases) are not predicted from the
genome sequence analysis of agarophyte and carrageenophyte
algae (Bhattacharya et al., 2013; Collén et al., 2013).

Despite the high number of described agaran- and
carrageenan-depolymerizing enzymes, only a few sulfatases
have been biochemically characterized. They are all observed
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FIGURE 5 | Carrageenan sulfatases observed during biosynthesis and

biodegradation of carrageenan. (A) Sulfatases (named

galactose-6-sulfurylases) catalyze the conversion of ν- (nu) and µ-(mu-)

carrabiose into ι-(iota-) and κ-(kappa-)-carrabioses, respectively. (B) Several

endo- and exo-sulfatases have been biochemically characterized. They all

catalyze the removal of the sulfate ester group at position 4 (solid line arrows).

(C) Desulfation of the group located at position 2 is hypothetical, but

necessary for complete degradation of carrageenan (dashed arrows).

in marine bacteria and as for agarases and carrageenases, no
sulfatases have been predicted from the analysis of red algae
genomes (Ho, 2015).

The pioneering work ofWeigl and Yaphe (1966) demonstrated
the first carrageenan sulfatase activity in protein extracts
prepared from themarine bacterium P. carrageenovora. Ten years
later, this enzyme—a 4O-κ-carrabiose sulfatase of about 55 kDa—
was purified and NMR revealed an exo-type mode of action. The
sulfate ester group located at the non-reducing end of oligo-κ-
carrageenans produced by P. carrageenovora κ-carrageenase are
specifically eliminated, suggesting that the sulfatase intervenes
after enzymatic depolymerization of κ-carrageenan (McLean and
Williamson, 1979, 1981).

More recently, a similar approach was undertaken with the
carrageenolytic strain Pseudoalteromonas atlantica T6c whose
genome has been sequenced (Copeland et al., 2006). An endo-
ι-carrageenan-sulfatase active on ι-carrageenan was isolated
and biochemically characterized. The enzymes catalyzes the
specific removal of the sulfate at position 4 of the β-linked
galactose resulting in the conversion of ι-carrabiose into α-
(alpha-) carrabiose repetition units (Figure 5) (Préchoux et al.,
2013; Préchoux and Helbert, 2014). The gene coding for the
sulfatase has been cloned and expressed recombinantly in
Escherichia coli. These experiments demonstrate that the endo-
4O-ι-carrageenan-sulfatase is a type I sulfatase, a formylglycine-
dependent sulfatase.

Another carrageenan-sulfatase was isolated from P.
atlantica T6c, but it catalyzes the desulfation of κ-carrabiose,
resulting in a neutral β-carrabiose repetition moiety (Figure 5).

Overexpression of this endo-4O-κ-carrageenan sulfatase in E. coli
also validated its grouping in the type I sulfatase family (Préchoux
et al., 2016). Interestingly, in contrast to the first carrageenan
sulfatase investigations, these studies revealed endo-acting
carrageenan sulfatases that are efficient on polymers instead of
oligosaccharides, suggesting that degradation of carrageenan
may follow different pathways. One pathway involves the
depolymerization of carrageenan prior to desulfation of oligo-
carrageenans and another pathway supposes the desulfation
of the polysaccharides before the depolymerization of α- or
β-carrageenans by yet-to-be-discovered α- and β-carrageenases.

Desulfation of agars has also been reported in several marine
bacteria strains: P. carrageenovora (Kim et al., 2005), Pyrococcus
furiosus (Jung et al., 2012), Thermotoga marina (Lee et al., 2013),
Marinomonas sp. FW-1 (Wang et al., 2015b), and Flammeovirga
pacifica (Gao et al., 2015). In all cases, the modalities of
desulfation were not demonstrated, notably, the position of
the eliminated sulfate ester group. Heterologous expression of
T. marina sulfatase (Lee et al., 2013) demonstrates that it
belongs to the type I family. Interestingly, P. carrageenonvora
sulfatase has homology with type III β-lactamase-like sulfatase.
The gene was originally identified in neighboring genes involved
in κ-carrageenan degradation, suggesting potential involvement
in sulfated galactan metabolism (Barbeyron et al., 1995).

The galactose-6-sulfurylases, which intervene at the last step
in the biosynthesis of agarans and carrageenans, catalyze the
removal of sulfate ester groups at position 6 in galactose.
The hydroxyl group in position 3 of the galactose residue
attacks the carbon, resulting in the loss of the sulfate group.
This nucleophilic substitution leads to the inversion of the
carbon configuration, the formation of 3,6 anhydrogalactose and
inversion of the 4C1 chair conformation to 1C4 (Figure 5). In
this reaction, the molecule of water required for hydrolysis is
replaced by an endogenous hydroxyl group; therefore, the term
galactose-6-sulfurylase seems inappropriate (Usov, 2011).

The first evidence for the formation of an anhydro-ring was
obtained by Rees (1961a,b) using protein extracts from Porphyra
sp. incubated on porphyran purified from the same algae. Similar
approaches conducted with carrageenophyte algae also lead to
the formation of an anhydro-ring in κ- and ι-carrageenan (Wong
and Craigie, 1978; Zinoun et al., 1997; Genicot-Joncour et al.,
2009). The pure enzyme was sequenced and expression of the
corresponding gene was attempted in E. coliwithout success. The
function of the gene could not be validated experimentally, but
its occurrence in recently sequenced red algal genomes confirm
its algal origin and may explain the difficulty of expressing a
eukaryotic protein in a prokaryotic cell (Collén et al., 2013).

Fucoidan Sulfatases and Others
Fucoidans represent a class of sulfated polysaccharides composed
mainly of α-L-fucose found in the cell walls of brown algae and
in marine invertebrates (i.e., worms, sea urchins). The structure
of fucoidans depends on their biological origin and differs among
algal species. Fucoidans are co-products of the alginate industry,
which make them attractive as bioactive compounds and several
potential applications have been examined (Berteau and Mulloy,
2003; Pomin and Mourão, 2008). Several marine strains have
been shown to produce the enzymatic arsenal to degrade brown
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algal fucoidans (Michel and Czjzek, 2013). Fucanolytic enzymes
include glycoside hydrolases and sulfatases. Gene sequences
of fucanases have been validated by overexpression of active
enzymes (Colin et al., 2006). However, although fucoidan
sulfatase activity has been demonstrated in several bacterial
strains, its sequence is still unknown and as for agarases and
carrageenases in red algae, no sulfatase genes are predicted
in brown algal genome (Cock et al., 2010). Sulfatases active
on polymeric substrates or specific to oligosaccharide chain
ends have been reported, hinting at the unexplored diversity of
fucoidan sulfatases (Daniel et al., 2001).

Desulfation of marine sulfated glycosylated metabolites is
grossly unexplored: one report demonstrates a 4O-xylose
sulfatase in a protein extract of the liver of the marine mollusk
Littorina kurila (Kusaykin et al., 2006). The enzyme is active
on the sulfated xylose residue of holostan triterpene glycoside
(Kusaykin et al., 2006).

OUTLOOK

Sequencing of marine life has shed light on the diversity of
carbohydrate sulfatases. The modularity of sulfatases and the
genome organization of Bacteroidetes (i.e., PUL organization)
have the potential to drive future functional characterization
of the large amount of sulfatase sequences. Ultimately, the
comprehensive classification of sulfatases based on sequence
homology, allowing prediction of function is a challenging task
for future work, calling for bioinformatics analyses (Wegner
et al., 2013; Barbeyron et al., 2016) and crystallographic
description of catalytic sites to identify the key amino acids
involved in substrate recognition.

Functional characterization can benefit from genetic tools,
such as gene mutation, to inactivate encoded proteins, and
from more classic approaches, such as biochemical analyses of
the enzymes purified from the organism in which they have
been detected or heterologous expression in E. coli. However,

only very few carbohydrate sulfatases have been biochemically
characterized, underlining the difficulties in preparing them
to purity. Recombinant marine bacterial sulfatases have been
obtained, but always with a low level of activity. This low
activity can be explained by the low rate of post-translational
maturation of sulfatases in classic proteins expression systems
that are naturally unable to convert cysteine and serine into
formylglycine amino acid. Co-expression of sulfatases with
known maturating enzymes (i.e., FGE, AnSME) can result
in the production of a low amount of active enzymes,
but better knowledge of the sulfatase maturating system—
which probably involves several yet-to-be-discovered proteins—
is a bottleneck to the production of active recombinant
sulfatases.

The diversity of sulfatases lies in the diversity of sulfated
polysaccharides present in the oceans. The composition and
structure are simply unknown for most of them. Therefore, a
comprehensive analysis of sulfatase function requires, in parallel,
novel data on marine polysaccharides. Macro- and micro-algae,
the primary producers of the oceans, harbor an unexplored and

massive source of sulfated polysaccharides that contain both
carbon and inorganic sulfate ions. Deciphering the turnover of
marine polysaccharides involving sulfatases and other enzyme
partners, will enhance our molecular understanding of the
biogeochemistry of the ocean.
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