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The purpose of this review is to highlight progress in unraveling carbon cycling dynamics

across the continuum of landscapes, inland waters, coastal oceans, and the atmosphere.

Earth systems are intimately interconnected, yet most biogeochemical studies focus

on specific components in isolation. The movement of water drives the carbon cycle,

and, as such, inland waters provide a critical intersection between terrestrial and marine

biospheres. Inland, estuarine, and coastal waters are well studied in regions near centers

of human population in the Northern hemisphere. However, many of the world’s large

river systems and their marine receiving waters remain poorly characterized, particularly

in the tropics, which contribute to a disproportionately large fraction of the transformation

of terrestrial organic matter to carbon dioxide, and the Arctic, where positive feedback

mechanisms are likely to amplify global climate change. There are large gaps in current

coverage of environmental observations along the aquatic continuum. For example,

tidally-influenced reaches of major rivers and near-shore coastal regions around river

plumes are often left out of carbon budgets due to a combination of methodological

constraints and poor data coverage.We suggest that closing these gaps could potentially

alter global estimates of CO2 outgassing from surface waters to the atmosphere by

several-fold. Finally, in order to identify and constrain/embrace uncertainties in global

carbon budget estimations it is important that we further adopt statistical and modeling

approaches that have become well-established in the fields of oceanography and

paleoclimatology, for example.
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INTRODUCTION

Water acts as the driving force moving biogeochemical constituents through earth reservoirs and
across the continuum of the atmosphere, soils, inland waters, oceans, and sediments (Figure 1; Cole
et al., 2007; Tranvik et al., 2009). Biological and physical mechanisms (e.g., weathering, burning,
and photo-oxidation) transform organic carbon-containing molecules along their journey, but the
fate of OM is not chemically intrinsic (i.e., predetermined based on chemical structure) as often
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assumed (Zonneveld et al., 2010). Although physical processes
such as burning can render OM less bioavailable (Baldock
et al., 2004), nearly all types of organic molecules (e.g., rock,
petroleum, combustion, and plant-derived) are bioavailable in
the appropriate setting (Petsch et al., 2001; Raghukumar et al.,
2001; Ward et al., 2013; Myers-Pigg et al., 2015).

Rates of OM decomposition in both soils (Schmidt et al.,
2011) and aquatic settings (Dittmar, 2015) depend on a suite
of factors including microbial community composition, redox
state, and sorption/desorption of organic molecules to particles.
Organic matter-mineral associations are an important factor
in the selective preservation of organic molecules along with
ambient oxygen levels (Keil and Mayer, 2014). Inland waters are
recognized as efficient bioreactors where terrestrial OM is rapidly
decomposed due to ideal conditions for microbial metabolism
(Richey et al., 2002). As such, OM is relatively short-lived in
inland waters with a mean residence time of roughly 2.5 ± 4.7
years, compared to centennial to millennial-scale residence times
in soils, oceans, and sediments (Catalán et al., 2016).

Interactions between microbes and OM that occur along
ecosystem transitions have not yet been adequately quantified
or incorporated into aquatic carbon budgets. For example, in
the Amazon River the breakdown of vascular plant-derived
OM to CO2 is enhanced by as much as 6-fold when algae-
rich tributaries mix with the sediment and terrestrially-derived
OM-rich main channel (Ward et al., 2016). This phenomenon,
referred to as the priming effect, has been well studied in soils
(Löhnis, 1926; Kuzyakov et al., 2000), but has only recently
received attention from aquatic scientists (Aller et al., 1996;
Guenet et al., 2014; Bianchi et al., 2015). It is hypothesized that
this process plays an important role onOMdecomposition across
a wide range of settings such as estuaries (Steen et al., 2015),
coastal oceans, river plumes (Aller et al., 1996), natural and man-
made reservoirs, the hyporheic zone, and lower rivers (Bianchi,
2011). However, a consensus has not been reached with other
observations of no priming and negative priming across different
aquatic environments (Gontikaki et al., 2013; Bengtsson et al.,
2014; Catalán et al., 2015).

One difficulty in assessing the importance of processes
occurring along ecotones such as priming is that there are so few
studies evaluating systems over their full reach. The vast majority
of scientific studies are limited in scope and only focus on a
few questions or locations. Understanding global cycles requires
more integrated and systemic studies. The Amazon River is
one example of a system where considerable recent effort has
been made to examine organic matter cycling from “source to
sink.” For example, Feng et al. (2016) evaluated changes in OM
composition fromPeruvian headwaters tomarine sediments with
comparisons to available data in the central reaches of the river.
The lower reaches of the river, which represents 13% of the total
basin area, have been unstudied until recently (Ward et al., 2015)
and there has also been recent effort examining the evolution of
OM and microbial communities from the river into the ocean
plume (Medeiros et al., 2015a; Satinsky et al., 2015; Seidel et al.,
2015a).

Consolidating an understanding of processes that occur
along the aquatic continuum in the context of global carbon

fluxes requires integrating lessons learned frommicro/mesocosm
scale experimentation and local, regional, and continental scale
observations (i.e., Macrosystems Ecology; sensu Heffernan et al.,
2014). Further, the effects of human alterations to the natural
ecosystem processes are not well understood. For example, fossil-
fuel emissions and land use change have altered the natural
cycling of carbon, and this influence is continuing to grow; global
fossil-fuel emissions have increased by roughly 65% from 1990
to 2014 (Le Quéré et al., 2015). Understanding how ecosystems
will respond to enhanced greenhouse gas (GHG) levels in the
atmosphere and how carbon is naturally cycled between earth
systems is critical in constraining the extent to which terrestrial
and aquatic biospheres can absorb and sequester anthropogenic
emissions.

The purpose of this review is to evaluate current
paradigms and gaps in our understanding of the transport
and transformation of carbon constituents along the continuum
of the atmosphere, the terrestrial biosphere, inland waters,
estuaries, and coastal oceans. The open ocean is a central part
of the global carbon cycle, but the considerable amount of
work done in this setting merits its own review. Although the
hydrologic cycle is a continuous and dynamic loop, for the sake
of this review we will consider rainfall and the coastal ocean to
be the starting and ending points of our discussion, respectively.
We will describe the processes occurring along this continuum
and end with a discussion on current estimates of carbon fluxes
to/from each compartment.

HYDROLOGIC AND BIOGEOCHEMICAL
LINKAGES

A watershed, as the landscape through which all waters flow
from their highest source before draining naturally to the sea,
is a fundamental organizing unit of the land surface. Water
drives the biogeochemical dynamics described in this review
(Figure 2). Rainfall washes out atmospheric particles and OM
deposited or secreted from vegetation into the soils. This input
together with plant material deposited in surface soils provides
organic substrates that sustain a large variety of soil organisms.
The infiltration of water into soils and movement of water over
the landscape transports geochemical constituents vertically into
groundwater and laterally into rivers and streams. However,
the connection between above and below ground flow paths is
sensitive to disruptions such as over-extraction of groundwater
reserves, pollution of aquifers, or seawater intrusion due to sea-
level rise. This section describes the mobilization and transport
of carbon as water travels from the atmosphere, across the
landscape/soils, and into inland water systems (Figures 1.1–1.8).

While the basic pathways of water movement across the
landscape are well understood, it should be recognized how these
pathways are evolving and with what consequences. The global
distribution of freshwater resources are shaped by present and
future demands along with natural and anthropogenic climate
change (Kundzewicz et al., 2008; Döll, 2009), and, as a result,
access to potable water is forecasted to decrease globally (Alcamo
et al., 2007). Groundwater reserves have received less attention
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FIGURE 1 | (1) Atmospheric particles act as cloud-condensing nuclei, promoting cloud formation (Kerminen et al., 2000; Riipinen et al., 2011). (2)

Raindrops absorb organic and inorganic carbon through particle scavenging and adsorption of organic vapors while falling toward earth (Waterloo et al., 2006; Neu

et al., 2016). (3) Burning and volcanic eruptions produce highly condensed polycyclic aromatic molecules (i.e., black carbon) that is returned to the atmosphere along

with greenhouse gases such as CO2 (Baldock et al., 2004; Myers-Pigg et al., 2016). (4) Terrestrial plants fix atmospheric CO2 through photosynthesis, returning a

fraction back to the atmosphere through respiration (Field et al., 1998). Lignin and celluloses represent as much as 80% of the OC in forests and 60% in pastures

(Martens et al., 2004; Bose et al., 2009). (5) Litterfall and root OC mix with sedimentary material to form organic soils where plant-derived and petrogenic OC is both

stored and transformed by microbial and fungal activity (Schlesinger and Andrews, 2000; Schmidt et al., 2011; Lehmann and Kleber, 2015).(6) Water absorbs plant

and settled aerosol-derived DOC and DIC as it passes over forest canopies (i.e., throughfall) and along plant trunks/stems (i.e., stemflow) (Qualls and Haines, 1992).

Biogeochemical transformations take place as water soaks into soil solution and groundwater reservoirs (Grøn et al., 1992; Pabich et al., 2001) and overland flow

occurs when soils are completely saturated (Linsley et al., 1975) or rainfall occurs more rapidly than saturation into soils (Horton, 1933). (7) Organic carbon derived

from the terrestrial biosphere and in situ primary production is decomposed by microbial communities in rivers and streams along with physical decomposition (i.e.,

photo-oxidation), resulting in a flux of CO2 from rivers to the atmosphere that are the same order of magnitude as the amount of carbon sequestered annually by the

terrestrial biosphere (Richey et al., 2002; Cole et al., 2007; Raymond et al., 2013). Terrestrially-derived macromolecules such as lignin (Ward et al., 2013) and black

carbon (Myers-Pigg et al., 2015) are decomposed into smaller components and monomers, ultimately being converted to CO2, metabolic intermediates, or biomass.

(8) Lakes, reservoirs, and floodplains typically store large amounts of OC and sediments, but also experience net heterotrophy in the water column, resulting in a net

flux of CO2 to the atmosphere that is roughly one order of magnitude less than rivers (Tranvik et al., 2009; Raymond et al., 2013). Methane production is also typically

high in the anoxic sediments of floodplains, lakes, and reservoirs (Bastviken et al., 2004). (9) Primary production is typically enhanced in river plumes due to the export

of fluvial nutrients (Cooley et al., 2007; Subramaniam et al., 2008). Nevertheless, estuarine waters are a source of CO2 to the atmosphere, globally (Cai, 2011). (10)

Coastal marshes both store and export “blue carbon” (Odum et al., 1979; Dittmar et al., 2001; Moore et al., 2011). Marshes and wetlands are suggested to have an

equivalent flux of CO2 to the atmosphere as rivers, globally (Wehrli, 2013). (11) Continental shelves and the open ocean typically absorb CO2 from the atmosphere

(Cai, 2011), sequestering a small fraction of the fixed CO2 as organic carbon in (12) marine sediments due to the “biological pump” (Moran et al., 2016).

relative to surface waters until recently (Foster and Chilton, 2003;
Famiglietti, 2014), but are the primary freshwater source for over
two billion people, globally (Alley, 2006; Kundzewicz and Döll,
2009). In addition to intensification of flood/drought cycles, the

quality and quantity of surface water is predicted to be negatively
influenced by changes to the earth’s climate through alteration of
rainfall, river flow, and temperatures and associated properties
such as organic pollutant and sediment levels (Whitehead et al.,
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2009). Alterations to land use are another major factor potentially
affecting surface water quality (Seeboonruang, 2012).

At regional scales, river basins are natural integrators of
surficial processes. Large rivers owe their flow and chemical
loads to a much denser network of small rivers and streams
bordered by areas of periodically inundated land. Upland areas
are dissected by corridors of wet soils and flowing water. Hence,
understanding the hydrological and chemical patterns observed
at the mouths of major rivers requires delineating the sequences
of biogeochemical processes operating across multiple time and
space scales. As embodied originally by the River Continuum
Concept, river properties should vary systematically downstream
as processes affecting primarily the interactions of flowing water
with the landscape give way to within river transport and
processing (Vannote et al., 1980; Minshall et al., 1985).

The central premise of a river basin model is that the
constituents of river water provide a continuous, integrated
record of upstream processes whose balances vary systematically
depending upon changing interactions of flowing water with the
landscape and the interplay of biological and physical processes
(Karlsson et al., 1988). That is, the chemical signatures of riverine
materials can be used to identify different drainage basin source
regions, reaches or stages, and can be tied to landscape-related
processes such as chemical weathering and nutrient retention by
local vegetation (Benke andMeyer, 1988). A significant challenge
for global biogeochemistry is to determine how the interaction
of hydrological and biogeochemical cycles functions at the land
surface, on regional to continental scales, producing the river
flow and chemical load delivered to the oceans (Meybeck, 1982).

Above-Ground Carbon Flow Paths
The interaction of water with OM begins before rain falls to
the earth’s surface. Aerosols and organic vapors act as cloud
condensing nuclei, stimulating cloud production (Figure 1.1;
Kerminen et al., 2000; Riipinen et al., 2011). Aerosol particles
come from various sources such as aeolian transport of dust,
terrestrial plants (e.g., isoprene emission), combustion of plant
biomass and fossil fuels (i.e., “black carbon”), and agricultural/
industrial activities (Simoneit and Elias, 2000; Pio et al., 2001;
Snyder et al., 2009).

Once a raindrop precipitates, the water gains dissolved organic
matter (DOM) from these same atmospheric particles and
vapors, resulting in DOM concentrations order(s) of magnitude
greater than those observed in inland waters and the ocean
(Figure 1.2; Artaxo et al., 1988; Waterloo et al., 2006; Germer
et al., 2007; Neu et al., 2016). Soils are an important source of OM
that is present in atmospheric water vapor. For example, while
hailstones from storm clouds harbor primarily plant-surface
bacteria, the molecular composition of DOM contains mainly
soil-derived sources suggesting a fast transfer of OM from soils
to the atmosphere (Šantl-Temkiv et al., 2013). In addition to
being solubilized to DOM (Greenfield, 1957), particulate organic
matter (POM) is also “washed” from the atmosphere by rainfall,
acting as an additional flux of carbon to the earth’s surface
(Monteith et al., 2007).

Rainfall becomes increasingly enriched in DOM and POM
as it passes through forest canopies (i.e., throughfall; Figure 1.6;

Germer et al., 2007) and vegetation layers (i.e., stemflow; Levia
and Frost, 2003), while biological transformations also begin to
rapidly convert organic substrates into inorganic carbon. For
example, in an Appalachian forest 14–33% of the dissolved
organic carbon (DOC)mobilized by above ground flow paths was
degraded during incubation experiments. DOC was consumed
most rapidly in throughfall samples with rates decreasing
vertically along organic and inorganic soil horizons (Qualls and
Haines, 1992).

In the tropical Amazon basin, the flux of DOC in rainfall
ranges from 27.5 kg ha−1 year−1 in the Rio Negro, a relatively
pristine forested area in the central Amazon (Filoso et al., 1999),
to a maximum of 123.4 kg ha−1 year−1 in Paragominas, a heavily
deforested area in the eastern Amazon (Markewitz et al., 2004),
with the highest rainfall fluxes occurring near transitional regions
with significant deforestation and burning (Neu et al., 2016).
Considering hydrologic regimes are similar in the above regions,
the concentration of DOC in rainfall is the largest factor driving
these differences in rainfall DOC fluxes. Throughfall fluxes are
generally the highest of each respective flow path in the tropics,
with net fluxes (i.e., not including rainfall DOC) ranging from
68.4 kg ha−1 year−1 (Neu et al., 2016) to 195.1 kg ha−1 year−1

(Germer et al., 2007) in the Amazon, compared to a stem flow
flux of 1.5 kg ha−1 year−1 (Neu et al., 2016). The abundance
and composition of DOM in these above-ground flowpaths is
largely controlled by the type of vegetation/landscape that the
water is exposed to and surface properties of plants such as leaf
composition, surface texture (i.e., rugosity), and the abundance
of epiphytes (Neu et al., 2016).

Overland flow occurs when rainfall occurs more rapidly than
soil infiltration (Horton, 1933) or when soils are completely
saturated (Figure 1.6; Linsley et al., 1975). Impermeable surfaces,
which are prevalent in urban settings, greatly enhance overland
flow and allows for the mobilization of urban pollutants such
as brake dust and oil into storm drains and receiving waters
(Gromaire-Mertz et al., 1999; Davis et al., 2001; Shuster et al.,
2005). Overland flow is generally limited to extreme rain events,
and represents a relatively minor carbon flux relative to rainfall
and throughfall. In the Arctic, certain regions have experienced a
decrease in the role of DOM from overland flow to rivers, with
greater importance on lateral flow inputs of deep soil sources
due to greater thaw and increased infiltration of snowmelt waters
through the active soil layer (Striegl et al., 2005; Aiken et al.,
2014).

There are only a limited amount of studies comparing OM
fluxes and transformations through above ground flow paths,
prior to entering soils and streams, which is a critical gap in
data coverage along the aquatic continuum. For example, the
use of biomarkers to unravel OM sources in aquatic systems
depends on knowing the past history of these molecules with
certainty. However, processes such as selective leaching of plant-
derived compounds from litterfall and soils (Hernes et al.,
2007) or sorption/desorption of organic molecules in transit
(Aufdenkampe et al., 2001) complicate interpretations of these
signatures. For example, differences in the ratio of specific lignin
phenols (i.e., common terrestrial plant biomarkers) are often
attributed to differences in vegetation sources and degradation
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state, but these signatures can be greatly altered by selective
fractionation while moving through the aforementioned flow
paths (Hernes et al., 2017). Development of robust biomarker
proxies for organic matter provenance, prior processing, and
paleoclimate requires a quantitative understanding of how
organic molecules evolve along the entire terrestrial-aquatic
continuum.

Below-Ground Carbon Flow Paths
After percolating through vegetation layers and the landscape,
rainfall absorbs into soils (Figure 2). Soils contain a complex
mixture of OM derived from the overlaying vegetation,
root systems, in situ microbial and fungal activity, and
carbon mobilized by above-ground flowpaths (Figure 1.5). The
evolution of the quantity and composition of OM with soil depth
is largely controlled by microbial processing and transitions
between solid and aqueous phases via sorption/desorption
(Kalbitz et al., 2000; Vieublé Gonod et al., 2006; Schmidt et al.,
2011). Soil mineral structure exerts an important control on
soil OM storage over geological time scales (Torn et al., 1997).
However, the concept of soils being primarily composed of
inherently stable humic substances is being revised to recognize
the diversity of OM and dynamic processes acting on these
molecules (Medeiros et al., 2006; Lehmann and Kleber, 2015).
Despite large differences in OM delivery mechanisms, soils
share many similarities with aquatic/marine sediments, typically
ranging between 0.5 and 5% organic carbon (OC) by weight, with
higher values observed in OM-rich settings like permafrost and
peatlands (Keil and Mayer, 2014).

OM present in soils is tightly linked to mineral surfaces, with
sorption/desorption altering the composition of OM ultimately
mobilized from soils into streams. Mineral associations both in
soils/sediments and aquatic ecosystems can protect OM from
substantial microbial decomposition. There are generally four
types of interactions between OM and minerals: (1) Ligand
exchange, or sorption of small molecules to mineral surfaces; (2)
Sorption of large molecules such as proteins to several mineral
surface contact points; (3) aggregation (i.e., chemical bonding or
van der Waals attractions); and (4) occlusion (i.e., covering of
OM in a mineral structure such as diatom frustules), which offers
the most substantial protection of OM (Keil and Mayer, 2014).

Sensitivity of organic molecules to oxygen, or rather the
dependence of microbial activity on oxygen content, and the
amount of exposure time to oxygen is another factor determining
selective preservation of OM in sediments, soils, and aquatic
environments (Arnarson and Keil, 2007; Burdige, 2007). The
most recent paradigm on OM degradability in soils emphasizes
the importance of the factors described above along with
microbial adaptations and community structure (Schmidt et al.,
2011). These same principles apply to OM in the aqueous
phase, where the majority of OM is decomposed soon after its
synthesis. For example, more than 99% of DOM is decomposed
within a decade of being produced, with only a small fraction
of molecules overturning on centennial to millennial time scales
and accumulating in the ocean (Dittmar, 2015).

Water that enters the soil matrix moves along gradients
in the landscape’s topography and saturation state, ultimately

being expressed as groundwater or stream flow interconnected
by the hyporheic zone (Figure 2; Brunke and Gonser, 1997).
Although, roughly 97% of the earth’s freshwater supply resides
underground, the ecological dynamics of groundwater are
relatively understudied in comparison to rivers and lakes (Gibert
et al., 1994). Deep groundwater settings have traditionally been
considered “closed systems” with respect to ecological dynamics
due to long water and solute residence times (i.e., centuries to
millennia; Fetter, 1988), whereas shallow groundwater systems
have a close connection to surface waters on more rapid
timescales (Toth, 1963) through the surface water-groundwater
interface (Jones and Holmes, 1996; Brunke and Gonser, 1997;
Boulton et al., 1998).

The concentration of DOM in groundwater is largely
influenced by its source (e.g., soils, the riparian zone, and
above ground flow paths) and the extent of heterotrophic
decomposition since these constantly dark settings generally
experience no in situ primary production (Ghiorse and Wilson,
1988; Chapelle et al., 2009; Shen et al., 2015). OM in the
riparian zone can be derived from both autochthonous sources
(e.g., vegetation and soils) and from the river itself (Clinton
et al., 2002; Blazejewski et al., 2009; Peter et al., 2012a). The
distance that water and carbon moves through soils unsaturated
with moisture (e.g., the vadose zone) is an important control
on groundwater DOM concentrations, with the lowest DOM
concentrations being observed in regions with deep vadose zones.
DOM concentrations are generally lower in below ground stocks
relative to above ground counterparts largely due to the effects
of microbial processing (Peter et al., 2012b; Neu et al., 2016).
For example, Baker et al. (2000) demonstrated that snow-melt
was an important source of both DOM and dissolved oxygen
to groundwater in a mountainous setting in New Mexico, USA.
As a result of these snow-melt driven fluxes, roughly 45% of the
leachedDOCwas estimated to be consumed based onmicrocosm
experiments (Baker et al., 2000). In an unconfined aquifer in
Denmark roughly 11% of bulk groundwater DOC could be
microbially-decomposed, whereas 27 and 28% of fractionated
low molecular weight and hydrophilic organic molecules were
degraded, respectively (Grøn et al., 1992). Biotic and abiotic
transformations occurring in both above and below ground flow
paths ultimately determine the quantity and composition of OM
delivered to river networks and eventually the coastal ocean
and/or atmosphere.

Mobilization of OM from Soils to Streams
Processes occurring in soils along with solubility characteristics
directly affect the quantity and composition of organic and
inorganic constituents that are stored in soils and mobilized
into groundwater and rivers/streams (Figure 3; Sanderman
et al., 2009). Hydrologic flowpaths through the uppermost
OM-rich soil layer exert an important control on soil OM
concentrations. For example, modern-aged OM (i.e., less than
∼100 years old) is flushed from upper soil layers, depleting soil
OM concentrations and leaving behind older OM in deeper
soil horizons during storm events (Schiff et al., 1998; van
Verseveld et al., 2009). Easthouse et al. (1992) estimated that
base river flow consists of OM primarily from deep soil layers,
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FIGURE 2 | The flow of water and associated geochemical constituents (blue arrows) through atmospheric (white), terrestrial (green), freshwater

(purple), and estuarine/marine (blue) reservoirs.

FIGURE 3 | (A) The composition of organic matter and inorganic constituents along soil profiles is controlled by the interplay between stabilization/dissolution via

mineral sorption/desorption; microbial decomposition, which is dependent on microbial community composition/activity and redox/environmental conditions (e.g.,

Schmidt et al., 2011); and (B) preferential mobilization of more soluble molecules (Kaiser et al., 2004), which is dependent on polarity and molecular size/charge, by

rapid overland flow and shallow subsurface flow relative to slow base flow. Inorganic constituents such as silicate and phosphate, which are important nutrients for

aquatic production, are mobilized more slowly than OM, meaning most of their flux is attributed to base flow.

whereas 50–65 and 35–50% of the OM mobilized by peak
flow originates from the subsoil and organic soil horizons,
respectively.

Dissolved organic carbon (DOC) and organic/inorganic
nitrogen concentrations generally increase during periods of
heavy rainfall, but most storm sampling campaigns to date have
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focused only on temperate settings (Boyer et al., 1997; Hinton
et al., 1998; Hill et al., 1999; Buffam et al., 2001; Raymond and
Saiers, 2010; Ward et al., 2012). Relatively insoluble constituents
such as silicate and phosphate, on the other hand, are generally
only mobilized by slow base flow and diluted by heavy rainfall
events (Kennedy, 1971; Ward et al., 2012). The relatively slow
mobilization of inorganic constituents such as phosphate and
silicate relative to C and N-containing molecules (Figure 3)
exerts an important control on nutrient limitation for in situ
primary production both within inland waters and marine
receiving waters.

Raymond et al. (2016) recently described these mobilization
dynamics within the context of the “Pulse Shunt Concept
(PSC),” whereby OM is pulsed into streams during extreme
hydrologic events (e.g., heavy rainfall or large snow/ice melting
events) and subsequently shunted from headwater streams into
larger rivers prior to significant microbial or photo-oxidative
transformation. This shunting of OM can alter downstream
reactivity gradients and also allow for the export of reactive
OM that maintains terrestrial signatures (Raymond et al.,
2016). PSC evolved from conceptual frameworks such as the
river continuum concept (RCC), which describes a decreasing
complexity of OM composition from headwater streams to
large downstream river networks due to microbial communities
adapted to take advantage of the inefficiencies of upstream
communities (Vannote et al., 1980). Additional models evolved
and built upon RCC such as the spiraling concept describing
reach-scale DOM removal in sediment biofilms (Newbold et al.,
1982); the inclusion of unique environments such as floodplains
into the linear drainage network (Junk et al., 1989; Sedell et al.,
1989; Ward and Stanford, 1995); and the riverine ecosystem
synthesis model, which provides a framework for integrating
discontinuous hydrogeomorphic patches (Thorp et al., 2006;
McCluney et al., 2014). Creed et al. (2015) suggested that
rivers trend toward a state of chemostasis, with the control on
DOM levels shifting from primarily hydrologic in headwaters
and small streams (resulting in a correlation between discharge
and concentration) to in/near-stream biogeochemical processing
further downstream along the continuum (Figure 4), resulting
in a preferential loss of aromatic molecules relative to aliphatic
(Figure 1.7).

The residence time of water is one aspect of OM transport
that is particularly emphasized in the PSC framework. The
time a water molecule and associated OM spends in each
river compartment ultimately determines its fate and extent of
downstream advection (i.e., shunting). Although PSC addresses
rapid loading events, a similar concept can be applied to
understanding broader differences between watersheds with
different topological regimes. For example, in a steep drainage
basin such as the Ganges-Brahmaputra, which drains a large
area of South Asia, water moves rapidly toward the sea along
a steep gradient and, as such, a large amount of terrestrially-
derived OM can be found preserved in coastal sediments (Galy
and Eglinton, 2011). In contrast, systems with a more gradual
drainage footprint and longer water residence times, such as the
Amazon River, deliver less bio-reactive OM to the ocean, with the
majority (i.e.,∼95%) of transported OM being converted to CO2

in the basin’s rivers and soils/sediments (Richey et al., 2002;Ward
et al., 2013, 2015).

TRANSFORMATION AND STORAGE OF
OM IN INLAND WATERS

The decomposition of terrestrially-derived OM continuously
occurs as rivers and streams travel downhill toward the sea,
driving the production of greenhouse gases such as methane
(CH4) and CO2 (Figure 1.7; Duarte and Prairie, 2005; Battin
et al., 2008), and also fuels lotic food webs (Tank et al., 2010).
As a result, streams, rivers and estuaries are usually oversaturated
in dissolved CO2 and CH4 in comparison with atmospheric
levels, leading to degassing of these GHGs to the atmosphere
from surface waters (Raymond et al., 1997; Richey et al., 2002;
Borges and Abril, 2011) and vegetation (Bergström et al., 2007).
This phenomenon has been observed throughout the world
and is expressed most strongly in the tropics, where warm
temperatures stimulate OM decomposition (Raymond et al.,
2013). This section describes the processing and storage of OM
along inland water systems.

Conversion of OM to CO2 in Inland Waters
The main source of CO2 to small streams is subsurface flow from
riparian soils (Jones and Mulholland, 1998; Johnson et al., 2008).
Up to 90% of the dissolved CO2 in first order streams comes from
microbial and root respiration in the soil and is delivered to the
stream via lateral flow of groundwater. As stream size increases,
the contribution of CO2 inputs from soil respiration decreases,
while the in situ oxidation of allochthonous organic matter plays
a larger role in controlling CO2 levels (Butman and Raymond,
2011). In running waters, the controls on GHG production and
evasion is in part a function of hydrologic and geomorphologic
features that result in fluvial environments with different balances
between production, consumption, import, and export of these
gases (Borges et al., 2015; Stanley et al., 2016).

Lakes, reservoirs, and floodplains act as important regulators
on both the breakdown and storage of OM (Figure 1.8; Cole
et al., 1994; Tranvik et al., 2009; Kellerman et al., 2015).
Floodplains and lakes often represent areas of enhanced primary
production, providing the river with fresh autochtonous OM
(Junk et al., 1989; Melack and Forsberg, 2001; Benedetti et al.,
2003). High levels of algal and aquatic plant production (Junk
and Howard-Williams, 1984; Junk et al., 1989) can considerably
enhance the overall export of DOM from a river system (Tockner
et al., 1999; Hedges et al., 2000). In fact, the extent of wetland
coverage is often linked to DOC concentrations (Spitzy and
Leenheer, 1991; Mann et al., 2014) and can be used to predict
DOC distributions in stream/river networks (Gergel et al., 1999).
It has been suggested that floodplains are the primary driver
for CO2 outgassing from tropical rivers (Abril et al., 2014).
However, this conclusion is at odds with the rapid conversion of
terrestrially-derived OM to CO2 in both rivers and floodplains
(e.g., Ward et al., 2013, 2016). Floodplains essentially transport
CO2 from the atmosphere to the water via aquatic plant
primary production and subsequent plant respiration. This CO2
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FIGURE 4 | Geochemical components are constantly mobilized into the aquatic setting from soils and vegetation in the surrounding watershed, the

riparian zone, and floodplains as water flows from headlands to the sea. Reactive components are transformed along the continuum as water flows through

the river network, with OC storage and autochthonous production mostly occurring in floodplains, lakes, and reservoirs (not shown). The amount of potentially reactive

OC that reaches the estuary, where fresh and saline waters meet, is a function of watershed/river physiochemical characteristics and water residence time.

is advected downstream and returned to the atmosphere via
degassing, ultimately resulting in a net zero exchange unless
there is appreciable production of recalcitrant OM by these
aquatic plants (not currently constrained). The breakdown of
terrestrially-derived OM in rivers, on the other hand, represents
a large exchange between terrestrial and aquatic biospheres and
the dynamic conditions along this gradient allows OM that may
have otherwise been preserved in soils/sediments to be returned
to the atmosphere as CO2.

Organic matter stored in rocks, or petrogenic OM, is the
largest global pool of organic carbon and is mobilized into
modern biogeochemical cycles through chemical weathering and
rock uplift (Hedges, 1992). The age of OM and CO2 in rivers
varies drastically across space and time due to the complex

mobilization dynamics previously discussed and heterogeneity
in physiochemical characteristics across not only latitudes, but
within a basin (Raymond et al., 2004). For example, the
radiocarbon age of POM in the Mekong River varies from∼3000
years old during the low water period to modern during the high
water period (Martin et al., 2013). DOM and particulate lignin
phenols, on the other hand, were ubiquitously young throughout
the hydrograph, indicating a rapid cycling of the majority of the
DOM pool and, likewise, fresh vascular plant derived OM in
the particulate phase (Martin et al., 2013). Similar observations
have been made in the Amazon basin, where DOM ages were
also ubiquitously young, whereas POM ranged from old in the
headwaters to modern in the lowland rivers likely due to a
dilution of old petrogenic carbon with fresh litter and rapid
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cycling of DOM (Mayorga et al., 2005). Dissolved CO2 in the
Amazon basin shifts from old (e.g., centennial to millennial ages)
in the mountainous headwaters where carbonate weathering is
a significant input to the water column to modern in carbonate-
free and lowland rivers, where microbial decomposition of young
OM in soils, streams, and the water column is the primary source
of CO2 to the river network (Mayorga et al., 2005).

Although ancient OM was traditionally assumed to be
recalcitrant due to its ability to persist in the environment
for millenia, microbes are capable of breaking down and
assimilating/respiring old petrogenic OM once mobilized into
the aquatic setting (Petsch et al., 2001; Berner, 2004; McCallister
et al., 2004; Galy et al., 2015), which, along with burial in the
ocean and volcanic eruptions, is an important process controlling
atmospheric CO2 levels over geological time scales (Mackenzie
and Lerman, 2006). Most of this biologically transformed ancient
OM is converted to CO2 rather than assimilated and moved up
trophic levels (Dittmar and Kattner, 2003). The breakdown of
old OM is particularly relevant in the Arctic, where warming is
expected to thaw permafrost and push the boundary for regions
where permafrost can exist to higher latitudes, releasing large
amounts of ancient OM into rivers (Guo et al., 2004; Hood et al.,
2009; Hessen et al., 2010; Spencer et al., 2015).

The reactivity of permafrost-derived carbon varies seasonally,
with the most reactive substrates being flushed during the spring
freshet (Holmes et al., 2008). The age of OM has also been
observed to become progressively younger along downstream
gradients in the Arctic (Mann et al., 2015), which the authors
attribute to biological degradation. Glacial runoff is another
important source of ancient reactive OM to the ocean (Stubbins
et al., 2012a). Considering that glaciers and ice sheets are the
second largest pool of water in the global hydrologic cycle,
the melting of glaciers and ice sheets has the potential to
not only raise sea level, but also act as a positive feedback
for the accumulation of CO2 in the atmosphere (Hood et al.,
2009). Beyond environmental responses to climate change, the
mobilization of old carbon from natural ecosystems throughout
the world is being affected by human alterations to the landscape.
Observations of a linkage between the age of DOM in rivers
and population density, land cover, and other environmental
variables suggests that human disturbance is increasing the rate
at which aged OM ismobilized from the terrestrial landscape into
rivers (Butman et al., 2015).

Methane Cycling in Inland Waters
Large amounts of methane are generally produced in the anoxic,
OM-rich sediments of lakes and floodplains. For example, lakes
emit roughly 8–48 Tg CH4 year−1, which is 6–16% of natural
methane emissions and exceeds methane emissions from the
ocean (Bastviken et al., 2004, 2011; Kirschke et al., 2013). In
freshwater environments it has been estimated that anaerobic
carbon mineralization contributes to 20–60% of total carbon
mineralization rates (Boon and Mitchell, 1995; Hamilton et al.,
1995; Utsumi et al., 1998), with methanogenesis making up 30–
80% of this anaerobic activity (Kuivila et al., 1988; Bédard and
Knowles, 1991). As such, it has been estimated that 20–59% of the
OM delivered to sediments via suspended particles is converted

to methane (Wetzel, 2001 and references therein). However, a
large fraction (30–99%) of methane produced in aquatic systems
can be converted to CO2 via microbial CH4 oxidation in the
water column prior to being evaded to the atmosphere (Liikanen
et al., 2002; Kankaala et al., 2006; Bastviken et al., 2008). For
example, in the Amazon River it has been estimated that CH4

emissions are reduced by as much as 96% due to oxidation
(Sawakuchi et al., 2016).

Human intervention in river hydraulics by impoundments is
known to change the dynamics of CO2 and CH4 production and
emissions (Crawford and Stanley, 2016; Crawford et al., 2016).
By impeding water flow, reservoirs function as a trap for the
suspended sediment load in rivers. The burial of OM associated
with these sediments can represent an important carbon sink
in these man-made environments (Dean and Gorham, 1998;
Mendonça et al., 2014). On the other hand, these depositional
environments are also hotspots for methane production and
subsequent emissions to the atmosphere (Delsontro et al.,
2010; Jacinthe et al., 2012; Maeck et al., 2013). Another effect
of sediment deposition is increased light penetration and in
situ primary production. The growth of the phytoplankton
community is an important source of labile organic matter that
fuels CH4 production in reservoir sediments (Mendonça et al.,
2012). This CH4 produced in the reservoir is not only released
from the reservoir surface but also from downstream waters
(Guerin et al., 2006).

Reservoir CH4 emissions can be further amplified by the
conversion of dry land, which in many cases acts as a sink of
atmospheric CH4 due to methanotrophic bacterial consumption
in the aerated soil (Curry, 2007), into flooded anaerobic areas
where CH4 production is typically high due to the decay of
flooded OM present in the soil when reservoirs are constructed
(Kemenes et al., 2007). Thus, reservoirs emit particularly large
amounts of CO2 and CH4 produced by the decomposition of
this flooded terrestrial OM during the first decade or so of dam
operations (Abril et al., 2005). Reservoirs contribute to roughly
18% of global anthropogenic methane emissions, while natural
emissions from lakes are estimated to be 6–16% of total non-
anthropogenic CH4 emissions (St Louis et al., 2000; Bastviken
et al., 2004). The rapid conversion of methane into CO2 in
naturally flowing waters presents an important issue with respect
to hydropower dam operations. The release of methane gas to
the atmosphere can be significantly intensified as water travels
through dam turbines and in the quickly flowing, turbulent
waters downstream of a dam, which essentially allows methane
to bypass oxidation further downstream in the river continuum
(Fearnside, 1995, 2004).

OM Storage in Inland Waters
Although OM is rapidly cycled in inland waters, lake sediments
represent regions of significant OM burial due to high
sedimentation rates and burial efficiencies (Figure 1.8; Tranvik
et al., 2009). Total OM burial rates in lakes and reservoirs are
thought to be 1 to 4 times greater than the ocean (Einsele et al.,
2001; Tranvik et al., 2009). It has been suggested that total
continental OM burial is an order of magnitude higher than
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marine burial and that most of this OM is derived from human-
induced erosion (Wilkinson and McElroy, 2007). However, it is
also thought that marine OC burial rates may be underestimated
compared to lakes (Aufdenkampe et al., 2011).

OM burial rates have continued to increase in lakes and
reservoirs since the industrial revolution (Mulholland and
Elwood, 1982; Webb and Webb, 1988) as a result of increased
land use change (Anderson et al., 2013), conversion of natural
land into agricultural plots, and eutrophication in inland water
bodies (Dean and Gorham, 1998; Anderson et al., 2014).
In addition to enhanced burial rates, the spatial expanse of
impounded waters is continuing to increase. For example, the
amount of impounded area in the conterminous U.S. has
increased by roughly 1% per year since 1960 (Clow et al., 2015),
with similar rates of expansion in developing countries (Downing
et al., 2006). However, there is not currently a consensus on
whether sedimentary OM trapped behind dams is truly “stored”
considering it is susceptible to human manipulation of the
hydrologic regime and remobilization.

When evaluating the fate of OM stored in reservoirs vs. man-
made lakes with respect to global carbon budgets, it is important
to consider that OM stored in reservoir sediments typically
has a shorter residence time than in lakes due to hydrologic
manipulation and associated resuspension and export processes
(Clow et al., 2015). This means that OM that was once stored
in a reservoir can be readily mobilized back into the aquatic
environment, where environmental conditions such as elevated
oxygen levels and adapted microorganisms are more suitable for
biological decomposition.

ESTUARIES AND COASTAL OCEANS

Estuaries represent a direct link between fresh and saline waters.
Large rivers also contain freshwater estuaries, in a sense, where
tides completely reverse the flow of water semi-diurnally, but
the force of the river’s discharge is strong enough to maintain
a salinity of zero (Figure 4). The dynamic environmental
conditions along these evolving ecotones provide an abundance
of unique ecosystem niches driving high levels of biodiversity
and productivity. As a result, estuaries provide a large suite of
ecosystem services such as nutrient/pollutant cycling, sediment
and carbon storage, buffers for storm and flooding events,
and fisheries production (Canuel et al., 2012). Considering that
over 75% of the world’s population surrounds coastal regions
(Vitousek et al., 1997; Lubchenco and Petes, 2010), estuaries
and coastal oceans not only connect natural terrestrial/marine
biogeochemical cycles, but also represent a central connection
between human societies, international commerce, and the
environment. For example, the ecosystem services described
above provide an economic value greater than $25 trillion,
annually (Nellemann et al., 2009; Barbier et al., 2011).

This close connection has resulted in negative alterations
and perturbation of natural estuarine/coastal biogeochemical
cycles on a global scale. Activities such as dam construction,
river diversions/leveeing, conversion of natural landscapes to
agricultural land uses, and urbanization have altered the export

of sediments, nutrients, and pollutants to coastal waters, which
can result in negative consequences such as hypoxia that can
have a large impact on valuable ecosystem services (Lotze et al.,
2006; Diaz and Rosenberg, 2008; Rabalais et al., 2009; Lotze,
2010). For example, alterations to floodplain networks can reduce
aquatic DOC levels, which limits the presence of environments
that promote a reduction in nutrient concentrations via
denitrification (Philip and Townsend, 2010). Anthropogenic
hypoxia is often attributed to agricultural inputs of fertilizers
(Rabotyagov et al., 2014), but wetland loss in managed
watersheds such as the Mississippi River is likely another
important factor to consider (Mitsch et al., 2005; Schramm
et al., 2009; Duan et al., 2017). Likewise, increased export of
terrestrially-derived OM due to watershed perturbations and
its subsequent decomposition in coastal waters is not currently
considered to be a factor driving hypoxia, but may play an
important role.

Sediment and OM Transport from Large
Rivers
Coastal shelf seas are often strongly affected by the riverine
input of nutrients and OM (Figure 1.9). Shelf seas only represent
a small part of the total ocean surface, but account for 15–
30% of primary procuction in the ocean and up to 50% of
export production (Wollast, 1998). Roughly 80% of the total OM
transport to ocean sediments happens in the shallowwater depths
of shelf seas (Figure 1.12; Borges, 2005). Because of their high
economic value, shelf seas, sandy shorelines, and estuaries are not
only exposed to increasing anthropogenic pressure but are also
threatened by sea-level rise (Dugan et al., 2010; Bauer et al., 2013).
Despite their importance, carbon cycling dynamics in shelf seas
are still not well understood, mostly due to the high complexity
of carbon sources and sinks (Gattuso et al., 1998).

Rivers represent an important source of OM to the
ocean, influencing biogeochemical cycling along ocean margins.
Constraining the connectivity between coastal systems and the
deep sea has received considerable attention in recent years.
Many coastal margins adjacent to large-river delta-front estuaries
(LDEs, Bianchi and Allison, 2009) are surmised to export
a relatively small volume of river-derived particulate matter
seaward of the shelf break either due to: (1) their location on
wide, passive continental margins where deltaic sedimentation is
confined to the inner shelf or (2) because they are located where
shelf-dominated coastal currents occur (McKee et al., 2004). This
has led to the prevailing dogma that continental shelf sediments
are hemipelagic in nature, i.e., composed of a mixture of fine
biogenic particles derived from marine production (5–75% by
volume) and terrigenous silt (Shanmugam et al., 1985; Stow
et al., 1985). However, it is becoming increasingly recognized
that some LDEs (e.g., Sepik, Ganges-Brahmaputra, Eel, and
Rhone) are characterized by direct export of large volumes of
sediment and OM to the lower continental margin due to:
(1) a narrow (active continental margin) shelf (Kineke et al.,
2000; Mullenbach and Nittrouer, 2006); (2) progradation of
the deltaic clinoform in the late Holocene near to the shelf
edge (Coleman et al., 1998); (3) density-driven, cold shelf water
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(winter) advection (Puig and Palanques, 1998); or (4) landward
incision of the associated submarine canyon so that it intercepts
along-shelf transport pathways (Johnson et al., 2001; Michels
et al., 2003). The Mississippi River margin possesses two of these
characteristics (2 and 4), making it a candidate for large-scale OM
export.

Much of the OM from the Mississippi River and shelf may
accumulate in the deeper slope and canyon regions (Bianchi et al.,
2006). The Mississippi and Atchafalaya Rivers deliver 60% of
the suspended matter (2.1 × 1014 g) and 66% of the dissolved
materials (3.1 × 1012 g OC) transported from the conterminous
U.S. to the ocean. POM introduced by the river or biologically
fixed on the Louisiana shelf is carried along-shelf, decomposed,
buried, or transported to deeper regions in the Gulf of Mexico.
Vertical fluxes of OC in the Mississippi River plume as high as
1.80 g C m−2 d−1 have been observed during spring (Redalje
and Fahnenstiel, 1994), but are lower during other seasons
(0.29–0.95 g C m−2 d−1) and away from the immediate plume
(0.18–0.40 g C m−2 d−1). In fact, the highest OC burial rates
in sediments (∼300 g C m−2 y−1) occur near the mouth of
Southwest Pass (Sampere et al., 2011).

The active (Plaquemine-Balize) lobe of the delta has
prograded in the last ∼1300 year close to the shelf break.
Sediment accumulation rates on the shelf (based on 210Pb) are
higher in a tongue extending outward from the depocenter on
the delta front toward the canyon head, which may allow for
the rapid transport of shelf-derived primary production to the
canyon floor, derived largely from diatoms (Lohrenz et al., 1999;
Wysocki et al., 2006). In fact, past studies have observed that
labile OM, likely produced by in situ diatom production in the
Mississippi River plume, is rapidly transported to the Mississippi
Canyon (Bianchi et al., 2006; Waterson and Canuel, 2008). These
observations suggest that productive LDEs and adjacent shelf
regions, such as the Mississippi, may be important conduits for
transporting fixed carbon from highly productive plume waters
on the shelf to deeper benthic communities.

In other settings, such as the Mediterranean Gulf of Lions
margin, dense shelf water cascading (DSWC) has been observed
to result in extensive export of water, sediment, and associated
OM (Canals et al., 2006). DSWC is the result of contrasting
seawater densities due to cooling and/or evaporation, and, as
such, varies seasonally and is potentially sensitive to global
climate change. DWSC has been observed throughout the
world’s coastal margins in both high and low latitude settings
(Whitehead, 1987; Shapiro et al., 2003; Ivanov et al., 2004).

The largest 25 rivers by discharge drain ∼28% of the Earth’s
landscape, resulting in over 40% of the global flux of DOC
from rivers to the ocean (McKee, 2003). The oceanic fate
of this terrigenous DOC has important ramifications for the
global carbon cycle, but remains enigmatic. Multiple studies
have observed the remineralization of a large fraction of the
terrigenous material exported to ocean margins (Letscher et al.,
2011; Fichot and Benner, 2014). This is because terrigenous
DOM can experience substantial alterations over relatively
short time scales (Hernes and Benner, 2003; Hansell et al.,
2004), often due to a combination of photo-oxidation (Spencer
et al., 2009), microbial degradation, and flocculation (Sholkovitz,

1978). Despite this, a portion of the terrigenous DOM can be
transported offshore in many coastal regions (Vodacek et al.,
1995; Bates and Hansell, 1999), escaping the continental margin
(e.g., Fichot et al., 2014; Medeiros et al., 2015a) where it can
be entrained in large scale ocean circulation and potentially
contribute to the long-term storage of terrigenous production
and to the millennial-aged DOM pool found in the deep ocean
(Opsahl and Benner, 1997; Medeiros et al., 2016).

OM Transport from Small Rivers and
Groundwater
The majority of studies on riverine OM export have focused on
large river fluxes measured at gauging stations upstream of tidal
influences (e.g., Hedges et al., 1986; Goñi et al., 1997; Bianchi
et al., 2004). Although large rivers contribute significantly
to global OM export, the integration of heterogeneous
watershed characteristics such as vegetation, hydrology,
and land management in large river channels makes it difficult to
determine the relative importance of upland processes on OM
export. Likewise, typical biomarkers have undergone extensive
alteration prior to reaching large river channels as previously
discussed. These issues are somewhat less problematic in streams
and small rivers because watershed characteristics and hydrology
responses are generally more homogeneous over smaller areas
(Dalzell et al., 2005). Small rivers (i.e., basin area <10,000 km2)
have received attention as previously overlooked systems that
export large quantities of organic carbon to the ocean (e.g.,
Milliman and Syvitski, 1992; Farnsworth and Milliman, 2003),
and represent a direct connection between terrestrial and aquatic
biospheres.

Small watersheds have less basin area for storing flood-driven
sediments and are, thus, more likely to respond to event-driven
floods (Milliman and Syvitski, 1992). The importance of floods
in mobilizing allochthonous OM and its subsequent influence
on heterotrophic productivity has been demonstrated in an
Appalachian stream, where bacterial growth was∼5 times higher
during a storm flow event compared to base flow discharge
(Buffam et al., 2001). Different landscapes are functionalized
during flooding events in small streams, resulting in a shift in
terrestrial OM sources to receiving waters compared to base
flow (Dalzell et al., 2005). Recent studies have focused on
characterizing the OM transported by small systems draining
both passive (Raymond and Bauer, 2001; Medeiros et al., 2012)
and active margins (e.g., Komada et al., 2004; Leithold et al., 2006;
Medeiros and Simoneit, 2008). In general, these investigations
demonstrated that the export of predominantly aged POM is an
important source of ancient sedimentary OM to ocean margins
(Blair et al., 2003; Komada et al., 2004; Leithold et al., 2006).

Along coastlines, intertidal sediments and coastal wetlands
are important land-sea interfaces (Figure 1.12). Groundwater
fluxes and tide-driven outwelling are large sources of nutrients
and OM to the coastal ocean (Kristensen et al., 2008; Moore,
2010). Permeable coastal sediments are controlled by surface
flow-driven convection, waves, and tides. The resulting seawater
circulation drives the rapid exchange of chemical species between
the shallow sediments and the water column (Huettel et al.,
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2014). High mineralization rates in sediments can cause a
strong benthic-pelagic coupling of nutrient cycles (Rusch and
Huettel, 2000; Gibbes et al., 2008; Røy et al., 2008). There is
also accumulating evidence that reactive marine-derived OM
is rapidly degraded in shallow permeable sediments (Huettel
and Rusch, 2000; Ehrenhauss et al., 2004; Santos et al., 2009;
Avery et al., 2012), which has led to their characterization as
efficient biogeochemical filters for bioavailable compounds from
coastal seawater (Rocha, 2008; Anschutz et al., 2009). However,
submarine groundwater discharge from tidal flats and beaches to
the coastal ocean also transports terrestrial DOM, a part of which
may be relatively unreactive (Dittmar et al., 2012; Seidel et al.,
2014, 2015b; Couturier et al., 2016).

Land and sea are further connected through subterranean
estuaries, where fresh meteoric groundwater mixes with seawater
that has entered the aquifer (Moore, 2010). Historically, the
flow of coastal groundwater was considered to be low compared
to rivers. Nutrient concentrations in groundwater, however,
can exceed surface water concentrations and, thus, the supply
of carbon and nutrients to the coastal ocean via submarine
groundwater discharge can be regionally more important than
the supply by rivers (Slomp and Van Cappellen, 2004; Moore
et al., 2008). For example, groundwater fluxes and outwelling
were found to be the dominant OM and nutrient sources to the
adjacent water column in tidal flats, salt marshes, and mangroves
(Moran et al., 1991; Dittmar et al., 2001; Moore et al., 2011;
Medeiros et al., 2015b).

Distinguishing between surface and sub-surface sources of
terrestrial OM is challenging and quantitative estimates of
groundwater-driven fluxes of terrigenous DOM to the ocean are
therefore still sparse, but the sub-surface fluxes are likely to be
significant (Dittmar et al., 2001). For example, mangroves were
estimated to be responsible for >10% of the transport of less-
reactive terrigenous DOM to the oceans, globally, although they
cover less than 0.1% of the continents (Dittmar et al., 2006).
Consequently, while submarine groundwater discharge has now
been recognized as an important carrier of nutrients, its role on
the export of less reactive terrigenous DOM to the global ocean
remains largely unexplored. This is a difficult issue to address
considering the utility of biomarker signatures becomes more
obscure further along the aquatic continuum as physiochemical
processing becomes more complex and heterogeneous.

Estuarine OM Transport, Burial, and
Transformation
Coastal sediments store large amounts of OM, accounting for as
much as 90% of the global burial of Holocene OM in the ocean
(Berner, 1982; Hedges, 1992; Burdige, 2005). Fjords have been
noted to be “hotspots” for the burial of terrestrially-derived OM
due to their physical and biogeochemical characteristics (Hallet
et al., 1996; Smittenberg et al., 2004; Nuwer and Keil, 2005; Hood
and Scott, 2008;Walinsky et al., 2009; Hinojosa et al., 2014; Smith
et al., 2015; Cui et al., 2016a). For example, it has been suggested
that surface area-normalized OC burial rates are nearly 5 times
greater in fjords than other marine systems and 100 times greater
than the global ocean average (Smith et al., 2015). Sedimentation

rates in fjords generally decrease from high to mid latitudes due
to differences in watershed structure such as glaciated vs. non-
glaciated and forested vs. bare bedrock land cover, with mid-
latitude fjords storing more terrestrial and marine derived OM
relative to petrogenic OM compared to high-latitude fjords (Cui
et al., 2016b).

Relatively little vascular plant-derived OM is exported to
the ocean through fjords considering the high efficiency in
sediment trapping (Syvitski et al., 1987) and a primary OM
source from the watershed (Hood et al., 2009; Addison et al.,
2013). The accumulation of petrogenic OM in fjords, on the
other hand, is typically attributed to glacial denudation of
sedimentary and metasedimentary rocks (Hallet et al., 1996).
Vascular plant derived OM stored in fjord sediments is generally
fresher and has a less degraded signature compared to OM stored
in river-dominated shelf sediments (Goñi et al., 1998; Cui et al.,
2016b). Regions with extensive coastal marshes, on the other
hand, can export large amounts of vascular plant-derived OM
originating from mangroves and grasses (Figure 1.10; Odum
et al., 1979; Twilley, 1985). Fjords are further suspected to
be important sinks of CO2 with respect to the global carbon
cycle due to high rates of primary production and burial of
autochthnous OM (Chmura et al., 2003). Along with fjords,
large-river and small mountainous river-dominated continental
margins represent the primary regions for OM deposition in the
world’s oceans (Blair and Aller, 2012; Smith et al., 2015). Large-
river open shelf settings, on the other hand, are the least efficient
at burying OC most likely due to extensive oxidation prior to
burial and respuspension/export processes (Galy et al., 2015). For
example, terrestrially-derived OM burial decreases from 50% in
the Mackenzie River delta to less than 20% in the Amazon River
and Mississippi River deltas (Showers and Angle, 1986; de Haas
et al., 2002; Cai and Lohrenz, 2010).

Chen and Borges (2009) estimated that ∼70% of the POM
exported from river systems must be remineralized in estuaries
in order to support the global evasive CO2 flux based on an
evaluation of the Amazon system by Keil et al. (1997) considering
that only 10–50% of river-derived DOM was observed to
be decomposed in estuaries (Moran et al., 1999; Raymond
and Bauer, 2000; Abril et al., 2002). Cai (2011) suggests that
the processing of this river-borne POM must occur primarily
offshore in shelf sediments (Aller, 1998; Aller et al., 2004),
rather than in the inner estuary for large river-influenced coastal
systems, considering the short residence time for water in the
inner plume. However, these assumptions are based on an
incomplete knowledge of the flux of OM from large rivers. For
example, for the Amazon River, most estimates of OM fluxes
are based on data from Óbidos, which is 800 km from the river
mouth.

The first study to assess OM abundance and composition at
the actual Amazon River mouth observed a 75% decrease in
particulate organic carbon (POC) and a 7.7% increase in DOC
concentrations from the historic gauging station, Óbidos, to the
river mouth (Ward et al., 2015). OM is degraded quite rapidly
with respect to transit times of several days to weeks in tropical
regions such as the Amazon, where vascular plant derived DOM
can be converted to CO2 on time scales ranging from minutes to
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hours (Ward et al., 2013, 2016). In addition to exporting OM, the
Amazon River, and most rivers world-wide export large amounts
of CO2 to estuaries and coastal oceans, which also supports
estuarine CO2 outgassing. For example, CO2 levels are generally
supersaturated in the inner plume, leading to degassing, whereas
there is typically a net uptake of CO2 in the outer plume where
primary production is stimulated due to river nutrient inputs
and decreasing turbidity as sediments settle (Cooley et al., 2007;
Subramaniam et al., 2008; Ibánhez et al., 2015). An important
note is that none of these studies were able to resolve CO2 fluxes
along the near-shore coastline or close to the actual zero salinity
river endmember due to terrestrial contamination of remote
sensing signals near the coast and a lack of measurements in the
inner plume.

Two recent studies have evaluated the evolution of DOM
composition along the river to plume continuum of the
Amazon River based on ultra-high resolution mass spectrometry
measurements performed along the continuum and after
week-long dark incubations (Medeiros et al., 2015a; Seidel
et al., 2015a). DOM composition patterns suggested continuous
transformation of DOM via removal of oxygen-rich aromatic
terrestrial DOM and a relative enrichment of more aliphatic
microbial and marine compounds, with an overall decrease
in molecular formulae complexity (Figure 5). This decrease
in DOM complexity appears to be a common feature along
river-ocean transects (Sleighter and Hatcher, 2008). The
relative accumulation of highly unsaturated compounds
(compounds present in both terrestrial and marine DOM;
Figure 5D) can partly be explained by the microbial production
of (semi)-refractory DOM, including carboxylic-rich alicyclic
biomolecules, which is presumably stable for hundreds to
thousands of years in the global ocean (Hertkorn et al., 2006;
Hansell, 2013; Lechtenfeld et al., 2015; Osterholz et al., 2015).
Most of the reactive DOM exported by the Amazon River is lost
in the very early stages of the plume and a large fraction of the
river DOM is transported through the plume unaltered. In rivers
there is a constant input and recycling of reactive OM from the
watershed and floodplains (Figure 4), but this source is cut off as
soon as river water enters the ocean.

Microbial degradation, photo-oxidation, and dilution are
generally the three main processes that control the composition
of DOM in large river plumes (e.g., Medeiros et al., 2015a).
Photo-oxidation is particularly important in the outer edges of
river plumes where turbidity decreases, as well as in the open
ocean (Wetzel et al., 1995; Kitidis et al., 2006; Gonsior et al., 2009;
Stubbins et al., 2010, 2012b; Mopper et al., 2015). The fate of
photo-oxidized DOM depends on temperature. For example, at
lower temperatures DOM is generally oxidized directly into CO2,
whereas at higher temperatures DOM is broken into intermediate
molecules prior to mineralization into CO2 (Porcal et al., 2015).
In some cases, the alteration of DOM molecular structure via
photo-oxidation (e.g., Rodríguez-Zuniga et al., 2008) can result
in enhanced biological decomposition (Tranvik and Bertilsson,
2001; Cory et al., 2007, 2014; Judd et al., 2007).

Microbial respiration, growth, and reproductive rates also
respond to temperature, with warmer temperatures generally
stimulating these processes (Gillooly et al., 2001, 2002; Brown

et al., 2004). The response of aquatic ecosystems to warming
temperatures is complicated, but is expected to greatly affect the
rates and mechanisms for OM production and decomposition
(Canuel et al., 2012). Some studies suggest that metabolism
may be more impacted by varying temperatures compared
to primary production under warming temperatures (López-
Urrutia et al., 2006), which could result in lower biomass yields
throughout trophic levels along with altered microbial metabolic
pathways and trophic linkages (Weston and Joye, 2005; Robador
et al., 2010), particularly in waters affected by eutrophication
(O’Connor et al., 2009). Alterations to the delivery, storage,
processing, and transport of material through estuaries due to
perturbations such as land use change and increased urbanization
in watersheds are recorded in marine sediment records. For
example, geochemical characteristics of sediments buried in
Chesapeake Bay illustrate the ecosystem response to reductions
in submerged aquatic plants (Orth and Moore, 1983), increased
urbanization (Brush, 2009), increases in eutrophication and
hypoxia, and decreases in fish stocks (http://chesapeakebay.net)
over the last 50 years (Zimmerman and Canuel, 2002).

CURRENT CARBON BUDGETS ACROSS
THE CONTINUUM

Below-Ground Carbon Storage and Fluxes
The largest reservoirs of stored OM are rocks, marine sediments,
and soils, which store 70,000,000; 3000; and 2500 Pg C year−1,
respectively (Hedges and Keil, 1995). Respiration within soils
accounts for a large fraction of plant respiration, producing a
flux of CO2 to the atmosphere of 68–77 Pg C year−1 (Raich
and Schlesinger, 1992; Raich and Potter, 1995), which is greater
than the 50–60 Pg C year−1 flux from terrestrial net primary
production (Field et al., 1998) and the flux of fresh litter to the
soil surface (Matthews, 1997; Schlesinger and Andrews, 2000).
Soil respiration is also linked to temperature (Davidson and
Janssens, 2006; Feng et al., 2008; Li et al., 2008), and, as such,
soil respiration rates are expected to increase under a warming
climate, making the recycling of terrestrially-derived OM more
efficient and limiting the amount of OM stored in soils over
modern time scales (Kirschbaum, 1995; Jobbágy and Jackson,
2000). However, it is unclear how soil microbial community
compositions will change in response to modified hydrologic
regimes (e.g., wetter or drier) and the effect that this will have
on soil OM decomposition rates and ultimately the ecosystem
structure of river networks, whose micro-organisms are tightly
linked to organisms present and mobilized from water-saturated
soils.

Throughout the Holocene (e.g., the last ∼12,000 years)
roughly 420–820 Pg C has been stored in lake sediments, which is
on the same order of magnitude as the amount of carbon stored
in terrestrial biomass and soils (460–560 Pg C and 2500 Pg C,
respectively) (Sundquist, 1993; Hedges and Keil, 1995; Einsele
et al., 2001; Cole et al., 2007). Lake and reservoir sediments in
the conterminous U.S., alone, store 0.02 Pg C year−1 and burial
rates are directly linked to the type/size of the lake/reservoir;
the abundance and sources of in situ OM; and land cover,
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FIGURE 5 | The bio-transformation of DOM leaves distinct molecular imprints along the Amazon-River-to-ocean continuum. Van-Krevelen plots

(hydrogen-to-carbon, H/C, and oxygen-to-carbon, O/C, ratios) reveal, which DOM molecular formulae changed significantly (p ≤ 0.05) in relative abundance in

incubation experiments with water from the Amazon River (A), Amazon River mouth (B, both salinity = 0), and Amazon River plume (C, salinity = 30). For these

experiments, filtered water was incubated in the dark at ambient water temperature to determine the molecular fingerprints of microbial degradation. The color scale

depicts the relative increase (red) or decrease (blue) of compounds after the incubation. The combination of bio- and photo-transformation leads to a decrease of

molecular formulae richness and an increase of H/C ratios of DOM along the river-to- ocean continuum (D), where the color-code depicts factor loadings from

principal component (PC) analysis of compounds that were relatively enriched in the Amazon River (green) or the ocean (cyan) and compounds that were present in

both (black) (modified from Medeiros et al., 2015a; Seidel et al., 2015a).

soil characteristics, and vegetation types in the surrounding
watershed (Clow et al., 2015).

Carbon Fluxes from Inland Waters
Tranvik et al. (2009) modified the global inland water carbon
budget presented by Cole et al. (2007), estimating that 1.4 Pg
C year−1 is outgassed from inland waters (Figure 6). It was
estimated that 0.9 Pg C year−1 is delivered to the ocean, with 0.6
Pg C year−1 being stored in inland water systems. Raymond et al.
(2013) updated the global inland waters CO2 emissions estimates,
calculating a flux of 1.8 and 0.3 Pg C year−1 for rivers and
lakes, respectively (Figure 6). Roughly 75% of these emissions
occur in the tropics, which only represent∼35% of the terrestrial
landscape. In productive tropical regions such as the Amazon,
CO2 evasion from rivers can nearly match annual sequestration
from the terrestrial biosphere (Richey et al., 2002). The global
outgassing estimates by Raymond et al. (2013) excluded carbon
remineralization in wetlands, for which more coarse data is
available (Aufdenkampe et al., 2011). Wetlands are estimated to
have an equivalent CO2 flux to the atmosphere of 2.1 Pg C year−1,

which means that if export and storage terms are held constant,
the terrestrial biosphere transports ∼5.7 Pg C year−1 through
inland water and wetland systems, of which 74% is returned to
the atmosphere (Wehrli, 2013; Le Quéré et al., 2015).

Estimates for CO2 evasion from inland waters and wetlands
are the same order of magnitude as anthropogenic CO2

emissions from fossil fuel burning (7.9 ± 0.5 Pg C year−1) and
deforestation/land use change (1.0 ± 0.7 Pg C year−1), uptake
of carbon in the oceans (2.4 ± 0.6 Pg C year−1), and uptake
of carbon by the terrestrial biosphere (2.7 ± 1.2 Pg C year−1)
(Figure 6; Regnier et al., 2013). Regnier et al. (2013) estimated
that ∼0.9 Pg C year−1 of the carbon taken up by the terrestrial
biosphere is stored, however, recent higher estimates of CO2

outgassing from inland waters suggests that this storage term
needs to be re-evaluated.

It is most likely that current global budgets underestimate
the total flux of CO2 from inland waters to the atmosphere. For
example, estimates for the Amazon River, whichmakes up 25% of
the current global CO2 flux from inland waters to the atmosphere
(Raymond et al., 2013), are hypothesized to be underestimated
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FIGURE 6 | Global estimates for the flux of CO2 from rivers and lakes to the atmosphere have substantially increased over the last decade. The most

recent estimates by Sawakuchi et al. (in review) updated estimates of Raymond et al. (2013) to include more recent basin scale calculations for the Amazon River to

include (A) the lower Amazon River and modified gas transfer coefficients for the upper and central Amazon (i.e., Rasera et al., 2013), and (B) extending calculations

for the Amazon River to its offshore zero salinity endmember. It should be noted that these estimates do not include lower rivers and offshore freshwaters for other

large systems, which will likely increase these estimates further. Dashed lines indicate estimates of the range of annual uptake of carbon by the terrestrial biosphere

(brown) and the open ocean (cyan) (Regnier et al., 2013; Le Quéré et al., 2015).

based on conservative upscaling assumptions that did not
account for the variability in gas exchange coefficients observed
between small (<100m) and large rivers (>100m), which could
considerably increase the previous estimate (Alin et al., 2011).
With this in mind, Rasera et al. (2013) estimated that the Amazon
River may outgas as much as 0.8 Pg C year−1, and including
small streams could add another 0.1 Pg C year−1 to this estimate
(Johnson et al., 2008).

Neither the original estimate nor the most recent estimates for
the Amazon River described above include the lower Amazon
River, which extends ∼800 km downstream of Óbidos to the
actual mouth and represents ∼13% of the basin’s surface area
(Ward et al., 2015). A recent study calculated that the lower reach
of the Amazon River emits ∼0.5 Pg C year−1 (Sawakuchi et al.,
in review), which is equivalent to basin-scale budgets by Richey
et al. (2002). When the lower river is included with the most
recent upper/central Amazon River estimates (Johnson et al.,
2008; Rasera et al., 2013), the basin-wide outgassing rate is 1.4 Pg
C year−1, which is 2.8 times higher than the estimates included
in current global budgets (Figure 6; Richey et al., 2002; Raymond
et al., 2013). Incorporating this new basin-wide budget into the
global inland water budget results in a 44% increase in the global
budget (3.0 Pg C year−1). Further, the completely freshwaters of
the Amazon River extend an additional 60 km into the Atlantic

Ocean prior to mixing (Molinas et al., 2014), and if this region
is included it could add an additional 0.8 Pg C year−1 to the
Amazon River budget (Sawakuchi et al., in review). However,
no observations have been made in this offshore region and it is
not included in plume studies (Cooley et al., 2007; Subramaniam
et al., 2008), revealing a critical gap in data coverage along the
aquatic continuum, not just in the Amazon River, but rivers
worldwide.

Carbon Fluxes from Estuaries and Coastal
Oceans
Estuaries represent only 0.3% of the Earth’s ocean-covered
surface, compared to 7.2 and 92.5% for coastal shelves and open
oceans, respectively (Woodwell et al., 1973; Walsh, 1988; Duarte
et al., 2005; Bouillon et al., 2008). However, estuaries emit 0.25 Pg
C year−1 of CO2 to the atmosphere, which is roughly equivalent
to the amount of CO2 absorbed by continental shelves, and a
similar order of magnitude as the amount of CO2 absorbed by
the open ocean (∼1.5 Pg C year−1) (Borges et al., 2005; Cai et al.,
2006; Chen and Borges, 2009; Takahashi et al., 2009).

Model estimates suggest that continental shelves were net
heterotrophic prior to the industrial revolution, emitting CO2 to
the atmosphere, and have since switched to a non-steady state
supporting net autotrophy, perhaps due to an increase export of
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FIGURE 7 | Characterizing the evolution of biogeochemical constituents and processes along the aquatic continuum, from the terrestrial biosphere to

the ocean, requires an integrative approach to characterizing spatiotemporal dynamics, defined here as the Environmental Coupled Observations

(ECO) framework. In situ measurements and experimentation (1) made across traditional ecosystem boundaries (2) can be used to develop remote sensing

algorithms (3) capable of resolving high-resolution spatiotemporal dynamics of ecosystem properties that can be optically parameterized. An empirically derived

conceptual and quantitative understanding of the network of ecosystems across the continuum can then be described by coupled physical-biogeochemical models

(4) to enable predictions of the sensitivity of modeled parameters to changes in forcings such as climate, land use, and infrastructure. Images courtesy NASA (2);

Ward, unpublished (3); and UW Center for Environmental Visualizations (4).

nutrients to the ocean (Bauer et al., 2013). However, this trend
may not actually result in enhanced carbon storage over longer
timescales considering that calcification rates are expected to
decrease with increasing CO2 concentrations in the atmosphere
and oceans (Mackenzie et al., 2004). The mechanisms driving
these coastal fluxes have been further expanded upon by Smith
andHollibaugh (1993),Wollast (1998), Ducklow andMcCallister
(2004), and others. Although in situ observations of pCO2 in
rivers and oceans have increased over the last several decades,
direct measurements are still sparse in low latitudes, particularly
in the southern hemisphere (Borges, 2005; Zhai et al., 2007; Jiang
et al., 2008; Guo et al., 2009).

Limitations of Current Budgets
The largest factors limiting our ability to accurately quantify
global CO2 emissions from inland waters, estuaries, and coastal
oceans is sparse coverage of actual direct measurements of pCO2

and difficulty in constraining gas transfer velocities (Regnier
et al., 2013). Further, there are large gaps in our current

coverage of CO2 flux estimates across the aquatic continuum
with the entirety of the earth’s surface not being accounted for,
particularly along ecosystem transitions. For example, remote
sensing-based studies of CO2 outgassing/uptake in large river
plumes are unable to resolve regions of the plume near the
coastline due to satellite-product land contamination. In the case
of the Amazon River plume, water that is likely enriched in CO2

travels northward up the coastline with ocean currents and is
not adequately accounted for. As these waters are increasingly
included, plume CO2 budgets have changed from undersaturated
(i.e., net uptake) to near equilibrium (Cooley et al., 2007; Ibánhez
et al., 2015).

Underestimating surface area is also a problem within inland
water systems. For example, previous basin-scale budgets for the
Amazon, and most, if not all, large river systems, miss a large
amount of surface area near the mouth and tidally-influenced
reaches. Gas transfer velocities are among the most difficult
parameters to constrain, particularly with sparse meteorological
observations or direct flux measurements (Raymond et al., 2013).
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Gas transfer velocities in the lower reaches of large rivers have
been shown to be much greater than further upstream due
to large channel widths, long fetch, tidally-influenced current
velocities, and stronger winds closer to the sea. Although CO2

concentrations may decrease along downstream gradients, these
enhanced gas transfer velocities can result in equivalent or
greater CO2 evasion rates in lower rivers compared to upstream
(Sawakuchi et al., in review).

Estimates for CO2 outgassing/uptake in inland waters and
estuaries have changed drastically over the last decade, essentially
increasing by a factor of ∼2 for each new rendition (Cole et al.,
2007; Raymond et al., 2013), and this trend will likely continue
into the near future based on the factors described above. There
is still a long way to go in terms of simple accounting for inland
waters (e.g., surface area and observations). Ocean carbon cycling
budgets, on the other hand, have benefitted frommore expansive
observations and detailed statistical and modeling approaches
that allow uncertainties to be identified and constrained (Cai,
2011) similar to the field of paleoclimatology, which has moved
beyond exploratory observations and has identified and began
constraining the major factors leading to uncertainty (Tierney
and Tingley, 2014). This is a necessary progression for inland
water studies.

CONCLUDING REMARKS

Characterizing the evolution of biogeochemical constituents and
processes along the aquatic continuum, from the terrestrial
biosphere to the ocean, requires an integrative approach
to characterizing spatiotemporal dynamics, defined here as
the Environmental Coupled Observations (ECO) framework
(Figure 7). In situ observations and experimentationmade across
traditional ecosystem boundaries are at the core of this integrated
approach.

Scientists have studied aquatic carbon cycling in regions near
centers of human population such as North America and Europe
quite extensively (e.g., Cai, 2011; Regnier et al., 2013), largely
due to ease of access. However, many of the world’s medium
and large rivers are poorly characterized, particularly in the
lower reaches where discharge becomes tidally-influenced (Ward
et al., 2015). Achieving high temporal resolution in remote
ecosystems is difficult due to the cost and effort required to
accomplish large-scale research studies. In many cases it is only
feasible for researchers to complete 1–2 research expeditions
per year in remote locations. Funding is typically only available
for three-year periods, meaning one study can only minimally
characterize seasonal and inter-annual trends and often ignores
rapid processes that can change by orders of magnitude in the
course of minutes to hours during hydrologic events such as
rainstorms or snow melting.

One solution to increasing temporal resolution is to build
infrastructure and enhance the scientific capacity of local
populations in regions of scientific interest. Training and
deploying teams of citizen scientists is another invaluable
approach to increasing both spatial and temporal resolution

(Silvertown, 2009). As bulk analyses become more feasible using
simple and inexpensive probes or test strips, the utility of this
approach will expand. Correlations between optical parameters
and organic biomarker signatures is another way to gain useful
insight on OM composition quickly and inexpensively. However,
there is only somuch that can be achieved by physically deploying
humans into the field. As such, relating in situ observations with
remote sensing products will push the boundaries of our ability to
resolve spatiotemporal dynamics (Borges et al., 2005; Bauer et al.,
2013). For example, chromophoric DOM (CDOM) is related
to bulk DOC concentrations, and in some cases terrestrially-
derived DOM, and can be visualized using ocean color sensors
(Chaichitehrani et al., 2013; Tehrani et al., 2013; Joshi and D’Sa,
2015). Optical parameters can also prove useful for interpreting
surface water quality in some cases (Singh et al., 2013). Resolving
the surface area of inland waters is another important task that
can be accomplished via remote sensing (e.g., Richey et al., 2002;
Raymond et al., 2013) and more attention needs to be paid
on the boundaries set for specific studies to ensure that the
earth’s surface is completely quantified. Improving algorithms to
separate distinct parameters from remote sensing products is an
essential step forward for the broader biogeochemistry field.

We live in an era where policy and development decision-
making needs to be informed by an understanding of how earth
systems function and interact, and also how these interactions
will change under altered conditions. The development of
numerical models based on an empirically derived conceptual
and quantitative understanding of how ecosystems function
is essential for predicting how coupled ecosystems across the
terrestrial to marine continuum will respond to perturbations
such as climate and land use change (e.g., Heffernan et al.,
2014; Lauerwald et al., 2015). A key aspect of such an effort
is bringing different research communities together to build
coupled physical-biogeochemical-ecological models informed
by real observations. Pushing the boundaries of this type of
coupled observation-modeling framework is a critical step in
constraining global carbon budgets and predicting the sensitivity
of biogeochemical fluxes, ecosystem services, and ecosystem
health to future change.
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