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Knowledge of the dynamics of micronekton at seamounts is critical to understanding

the ecological role of these ecosystems. Active acoustic techniques are an effective

tool to monitor the distribution and movements of pelagic organisms. We carried out

several day- and nighttime active acoustic surveys over a 3-year period (2009–2011)

to characterize the spatial and temporal distribution of micronekton backscatter on two

seamounts (Condor and Gigante) in the Azores and in the surrounding open-waters.

The highest mean volume backscattering strength (MVBS) was consistently found in

the water column over the seamount summits, regardless of the season and diel

period. MVBS over the summits was 14–26 times higher than over the slopes, and

10 times higher than in open-waters. Diel variations in backscatter intensity were more

pronounced in open-waters and in Gigante seamount, with higher values during the

day in open-waters, and at night over the summits and slopes of Gigante. Over

Condor seamount, diel changes in backscatter intensity were small, but MVBS was

generally higher at night than during the day, as in Gigante. Persistence of strong

acoustic backscatter over the summits of Condor and Gigante seamounts is a key

finding of this study and may be explained by the presence of a seamount-associated

micronekton community and by the retention of vertically migrating micronekton. The

latter hypothesis is consistent with observed day-night differences in backscatter,

suggesting that nocturnal migrants may be passively transported or actively swim above

seamount summits and slopes. Possible physical mechanisms leading to the observed

patterns in micronekton distribution are discussed. This study contributes to a better

understanding of how seamounts may influence the spatial and temporal dynamics of

micronekton assemblages.
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INTRODUCTION

Sound-scattering layers (SLs) are dense aggregations of
planktonic and nektonic organisms that reflect sound in
water and can be observed acoustically. Scattering layers
of micronekton are taxonomically diverse, consisting of
small (mostly 2–20 cm long) pelagic crustaceans (adult
euphausiids, decapods, and mysids), cephalopods (namely
sepiolids, pyroteuthids, and enoploteuthids) and fishes (mainly
mesopelagic and juvenile stages of pelagic species) (Barham,
1966; Brodeur and Yamamura, 2005).

Micronekton SLs are abundant worldwide and form a
substantial biomass in oceanic waters (Atkinson et al., 2009;
Irigoien et al., 2014). The organisms that make these layers
are critical components of oceanic food webs: they consume
large quantities of phytoplankton and small zooplankton (e.g.,
copepods) and serve as primary prey for higher trophic levels,
including charismatic and endangered marine mammals and
seabirds, as well as commercially harvested fishes and squids
(Harrison and Seki, 1987; Pauly et al., 1998; Watanabe et al.,
2009). Most micronektonic taxa undergo diel vertical migration
(DVM), residing in deeper waters during the day and swimming
toward the surface to feed at night (Sutton, 2013). Extensive
diel horizontal migrations between oceanic and slope waters
have also been documented in some areas (Benoit-Bird and
Au, 2006). Thus, micronekton SLs also play an important role
in the transport of carbon and nutrients between mesopelagic
and epipelagic environments (Hudson et al., 2014), and between
oceanic and neritic systems (Benoit-Bird and Au, 2004).

Like other topographic features, seamounts can shape the
aggregation of pelagic organisms and many seamounts support
unusually high biomass of micronekton SLs compared to the
surrounding ocean (e.g., Boehlert, 1988; Johnston et al., 2008;
Letessier et al., in press). Various non-exclusive mechanisms may
explain increased micronekton biomass over seamounts. The
abrupt topography of seamounts can interact with background
ocean circulation promoting a range of physical processes
(e.g., deflection of impinging currents, rectification of internal
tides, amplification of internal waves, and formation of Taylor
columns) that intensify flow over the summit and upper slopes
of the seamount (Genin, 2004). This, in turn, enhances the
flux of food particles and plankton over these areas, attracting
micronekton foraging on surface layers during the night, and
increasing the horizontal advection of migrating and non-
migrating micronekton (Koslow, 1997; Porteiro and Sutton,
2007; Morato et al., 2009). Vertically migrating micronekton
swept onto seamounts by prevailing currents may also become
trapped over the seamount summit and upper slopes (Isaacs
and Schwartzlose, 1965). Finally, seamounts may provide
calm suitable shelter at the benthic boundary layer for
some micronekton (Genin, 2004). Therefore, micronekton may
conserve energy by taking advantage of this quiescent habitat
during non-feeding intervals, whereas in open-waters they must
swim constantly.

The effectiveness and magnitude of each of these mechanisms
in increasing or aggregating micronekton biomass will depend
on a range of factors, including the topography of the

seamount, the extent, and depth of the summit and plateau,
the distance to the continental shelf and to other bathymetric
features, the hydrographic conditions, and the community
composition (Porteiro and Sutton, 2007). For instance, bottom
trapping will only be effective for seamounts shallower than
the daylight depth of micronekton organisms (Genin, 2004;
Martin and Christiansen, 2009; Denda and Christiansen, 2014).
Moreover, because different organisms migrate to different
daylight depths, the deeper the seamount summit, the fewer
the species retained and the lower the biomass (Genin
and Dower, 2007). Strong variability in impinging currents
leading to instability of Taylor columns can also impact the
retention potential over seamounts and affect concentration
of micronekton organisms (Diekmann and Piatkowski, 2004).
In addition, micronekton may suffer increased predation from
benthopelagic predators inhabiting the seamount or they may
actively avoid seamount shallow topographies (Pusch et al.,
2004).

In fact, not all seamounts appear to hold high SL densities.
Denda and Christiansen (2014) found no significant differences
in zooplankton biomass at Ampère and Senghor seamounts
(summits of 55 and 90m, respectively) relative to open-waters.
Reduced zooplankton biomass was found above the summits
of Sedlo (750m) and Seine (170m) seamounts compared to
the slope and far-field sites (Martin and Christiansen, 2009).
Abundance and biomass of mesopelagic organisms was also
lower above the summits of Cross seamount (330m; De
Forest and Drazen, 2009; Drazen et al., 2011) and over the
summits and slopes of the Great Meteor (330m) (Pusch et al.,
2004).

While most of these studies suggest some kind of effect
of seamounts on micronekton communities, they provide only
limited information about the spatial and temporal dynamics
of SLs around seamounts. Prior research on seamount pelagic
communities has largely been based on trawl sampling. Trawl
surveys sample only specific depth layers at discrete locations
and because they are expensive and time-consuming, usually a
small number of samples are obtained from each area. Thus,
trawl catches provide a snapshot of the pelagic community living
at seamounts. In contrast, active acoustics provide continuous
measurements of organisms’ abundance and depth distribution
and are increasingly used to assess the density and study the
movements of fish and zooplankton at various spatial and
temporal scales (Benoit-Bird and Au, 2003). Acoustic studies
on a wide range of seamounts, especially in different ecological
settings, can contribute to our understanding of the dynamics
of micronekton communities and provide insights into the
underlying forcing mechanisms.

We conducted several day- and night-time active acoustic
surveys over a 3-year period (2009–2011) to characterize the
spatial and temporal dynamics of micronektonic backscatter
at two seamounts in the Azores archipelago. This region has
one of the highest densities of seamounts in the Northeast
Atlantic (Morato et al., 2013). Several of these seamounts
host commercially valuable pelagic and demersal fish species
important for local fisheries (Morato et al., 2008b; Menezes
et al., 2013) and act as foraging posts for sea turtles, seabirds,
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marine mammals, and large pelagic fishes (Santos et al., 2007;
Morato et al., 2008b; Silva et al., 2013; Afonso et al., 2014b;
Tobeña et al., 2016). However, with few exceptions (e.g.,
Hargreaves, 1975; Martin and Nellen, 2004), previous studies
on acoustic backscatter distribution in the Azores have focused
only in open ocean areas (e.g., Moore, 1950; McElroy, 1974;
Smailes, 1976; Wade and Heywood, 2001). Here we compare the
distribution of micronekton backscatter in open ocean waters
and at two seamounts with different physical properties to (i)
investigate the influence of seamounts in driving distribution
patterns of acoustic scatterers, (ii) determine how this effect
varies over diel and seasonal scales, and (iii) discuss physical and
biological processes controlling dynamics of micronekton in the
study areas.

METHODS

Study Area
Acoustic surveys were conducted in Condor and Gigante
seamounts in the Azores archipelago and in adjacent open-waters
(Figure 1). Morato et al. (2008a) classified both seamounts as
“large seamount-like features,” i.e., seamounts rising more than
1000m from the surrounding seafloor.

Condor seamount (38◦33′N, 29◦02′W) is located
approximately 17 km to the WSW of Faial Island and 100 km
east of the Mid-Atlantic Ridge (MAR) (Figure 1). Condor is
an elongated feature about 26 km long and 7.4 km wide at the
1000-m depth contour. It is a shallow-intermediate seamount
with two major peaks: the main summit 182m depth on the
western side, and a secondary peak 214m deep on the eastern
side of the seamount. The summit at the 300-m depth contour
is nearly flat, with a total surface area of 11.6 km2 (Figure 2A).
The nearest large seamount is at 39 km to the south, while the
nearest small seamount (200m ≤ height < 1000m) is 23 km to
the SSE (Morato et al., 2008a). Tempera et al. (2012) describe
in great detail the geomorphological structures on Condor
seamount. Condor is characterized by peculiar multi-scale
dynamics involving localized upwelling–downwelling patterns,
enhanced mixing, and pronounced closed circulation structures
over the seamount (Bashmachnikov et al., 2013).

Gigante seamount (38◦59′N, 29◦53′W) is situated about 98 km
to the WNW of Faial Island and 6 km east from the MAR
(Figure 1). It is approximately 16 km long and 6–13 km wide at
the 1000-m depth contour. It is a shallow seamount, reaching
161m depth, and the summit has a small surface area of 0.7
km2 at the 300-m depth contour (Figure 2B). The nearest large
seamount is located 31 km to the south, while the nearest small
seamount is 15 km to the SW with a deep summit of 787m
(Morato et al., 2008a). The distance between Condor and Gigante
seamounts is about 80 km. No hydrographical data are available
for the Gigante area.

In addition to the seamounts, surveys were carried out at
an open-water far-field site (38◦30′N, 29◦13′W), with depths
ranging from 1770 to 1900m (Figure 2A). This station was
located 7 km west of Condor seamount (at the 1000-m depth
contour; ∼10 km from the summit of Condor) and 35 km to the
WSW of Faial Island (Figure 1).

Data Collection
Acoustic backscatter data were collected using a split-beam
Simrad EK500 scientific echosounder system aboard R/V
Arquipélago, operating at 38 and 120 kHz frequencies. Both
elliptical transducers had approximately 7◦ beam widths (38
kHz: 7.2◦ along and 6.8◦ athwart; 120 kHz: 7◦ along and 7.1◦

athwart). They were set to operate with 1.024 and 0.256 ms
pulse durations at 2000 and 1000 W transmit power for the 38
and 120 kHz frequencies, respectively. These settings allowed
for 1000 and 300m sampling depths for the 38 and 120 kHz
frequencies, respectively. The transducers were calibrated every
year prior to the first survey using a 60-mm-diameter copper
sphere for 38 kHz and 23-mm sphere for 120 kHz, according to
standard procedures (Demer et al., 2015). To exclude unwanted
scatterers, such as plankton and other smaller organisms, the
minimum threshold for themean volume backscattering strength
(Sv, hereafter designated as MVBS) was set to −70 dB re 1 m−1.
While this threshold level may exclude some scattering from
low-density micronekton, −70 dB was selected based on known
aggregative behavior of micronekton (Saunders et al., 2013) and
to exclude backscatter from larger zooplankton.

Acoustic surveys on Condor and Gigante seamounts and
at the control site were conducted during the day and at
night in spring (March), summer (June–August), and autumn
(September and November) from 2009 to 2011. Surveys followed
a systematic design, and acoustic backscatter data were collected
continuously along a pre-defined transect. Acoustic surveys over
seamounts covered nine transects: five transects perpendicular to
seamounts (each 11.11 km) and four transects along seamounts
(each 5.56 km), totaling 77.78 km (Figure 2). Sampling in open-
waters followed a single transect 18.52 km long (Figure 2A).
Survey speed varied between 7 and 8 knots, depending on sea
conditions.

In 2010, trawl surveys were conducted concurrently with
acoustic surveys to determine the contribution of different
species or taxa to the acoustic backscatter and to estimate
the abundance of organisms sampled acoustically. Twenty-
five oblique tows were made in open-waters and around
Condor using an Isaacs Kid Midwater Trawl (3-m IKMT).
Unfortunately, these surveys failed to capture meaningful
samples of micronektonic organisms (average of 2.3 fishes
captured/tow, no zooplankton or cephalopods were captured),
preventing groundtruthing of acoustic data.

Data Analysis
Data Processing
Acoustic backscatter data were recorded usingMovies+ software
(Ifremer) and then processed using Echoview software (Myriax
Pty Ltd, Hobart, Tasmania). Data were pre-processed to avoid
unreliable backscatter in the analysis. First, the surface layer
(0–10m depth) was excluded to avoid surface bubbles, noise,
and near-field effects of the transducers. Then, each echogram
was visually inspected to remove bottom echoes and acoustic or
electrical noise from the sampled water column.

Only the 38 kHz data were used in this study to characterize
the spatial and temporal distribution of acoustic scatterers, since
themaximum penetration depth of the 120 kHz echosounder was
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FIGURE 1 | Study area. Map of the study area indicating the locations where acoustic surveys were conducted: Condor seamount, Gigante seamount, and

open-water far-field site (green star). MAR: Mid-Atlantic Ridge. Azores bathymetry data credits: (Lourenço et al., 1998).

FIGURE 2 | Acoustic surveys. Surveys to collect acoustic data on Condor seamount (A), Gigante seamount (B) and in open-waters (A). Surveys at seamounts

were composed of nine transects, while surveys in the open-waters followed a single transect. Condor and Gigante’s transects were categorized into five regions:

summit, East (E), North (N), South (S), and West (W). Warmer colors indicate shallower depths. On Condor seamount, transect 7 runs across the main summit (182m

deep) and transect 5 crosses the second peak (214m deep). On Gigante seamount, transect 5 runs across the shallowest peak of 161m depth. Bathymetry data

credits: Open-waters—MeshAtlantic, IMAR-DOP/UAz; Condor—EMEPC, DOP/UAz, Project STRIPAREA/J.Luís/UAlg-CIMA; Gigante—EMEPC, IMAR-DOP/UAz.

only 300m and, therefore, unable to capture the full vertical range
of the deep scattering layer (∼400–700m depths). At the 38 kHz
frequency, acoustic backscatter is dominated by organisms with

gas-filled structures (Kloser et al., 2009; Davison et al., 2015).
Many epipelagic and mesopelagic fishes possess a gas-filled
swimbladder that present a high density contrast with seawater,
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making them the most significant contributors to acoustic
backscatter at the 38 kHz (Davison et al., 2015). Conversely, large
crustaceans, squids and non-gas bearing fishes, are relatively
weak scatterers at this frequency (Lavery et al., 2002; Kang et al.,
2005) and their importance to total backscatter in this study was
likely small. Gelatinous organisms with pneumatophores may
also be important sources of scattering at 38 kHz (Warren et al.,
2001). Bongo net catches indicate that pteropods, siphonophores,
and salpids are not abundant in the surface waters around
Condor and at a nearby open-water site (Carmo et al., 2013),
and their scattering would have been masked by the much
stronger scattering of the dominant swimbladdered fish. Thus,
acoustic backscatter patterns reported in this study are likely to
be primarily attributed to gas-bearing swimbladder fish.

Since most acoustic scatterers were aggregated in schools or
layers, single-target echoes could not be identified. Therefore,
acoustic density of micronekton fish was estimated by calculating
the MVBS (dB re 1m−1). We initially calculated MVBS over
10-m deep by 100-m long bins. These data were used to
construct variograms to determine the extent and scale of spatial
autocorrelation in the acoustic observations (Rivoirard et al.,
2000). Analysis of the variograms indicated that data were no
longer correlated at distances >1 km. MVBS was recalculated for
the entire water column (from 10m depth to the sea floor) by
1-km long bins.

Day- and night-time acoustic data were examined separately,
excluding crepuscular data from the analysis (1 h before and after
sunrise and sunset) to avoid migratory periods of the sound
scattering organisms. The sunrise and sunset times for the Azores
were acquired from the U.S. Naval Observatory Astronomical
Applications Department database. Echograms were visually
inspected to ensure no migratory periods were included.

Statistical Analysis
Generalized Linear Models (GLMs) and Generalized Additive
Models (GAMs) were used to investigate spatial and temporal
differences in MVBS in the study areas, and to assess the
influence of physiographic variables. Latitude and longitude were
strongly collinear (0.96) and were therefore not included in
the analysis. We also tried to model the spatial distribution of
backscattering strength using transect as a covariate, but these
models provided a poor fit to the data. Instead, MVBS was
compared between locations (open-waters, Condor, Gigante)
and between seamount regions (summit, East, North, South,
West) identified based on their orientation relative to the
summits (Figure 2). Bottom depth at sampling locations was
derived from in situ measurements of the echosounder, and
slope values were extracted from a Digital Terrain Model
created from depth data using ArcGISTM Spatial Analyst tools.
Possible effects of physical and biological variables other
than physiography, such as currents, temperature, salinity, or
chlorophyll-a, were not investigated because spatial and temporal
resolution of those variables was too coarse to compare with
backscatter data.

Prior to analysis, normality of the data was verified by plotting
histograms and normal Q-Q plots of all variables, and boxplots
were used to detect extreme values and outliers in the data.

Boxplots, coplots and lattice graphs were used to inspect the
relationship between covariates and the response variable, and
pairplots were used to assess collinearity among covariates.

The GLM approach was inappropriate for our dataset since
the relationship between MVBS and bottom depth was non-
linear. Thus, backscattering data were modeled using GAMs with
a Gaussian distribution and an identity link function, using the
“mgcv” R package. Two different models were fitted to investigate
the effect of bottom depth, slope, diel period, and season inMVBS
in seamounts (summits and slopes) and open-waters (Model 1),
and to compare MVBS and its diel pattern between the slopes of
each seamount (Model 2):

Model 1 : MVBS = α + Location× Diel+ Location× Season

+ f (Bottomdepth)× LocationO

+ f (Bottomdepth)× LocationC

+ f (Bottomdepth)× LocationG + f (slope)

× LocationO + f (slope)× LocationC

+ f (slope)× LocationG + εi

where MVBS was the response variable, α the intercept, f the
smoothing function for predictor variables, and εi the residuals.
The model contained three categorical explanatory variables:
location (open-waters—LocationO, Condor—LocationC, and
Gigante—LocationG), diel (day and night) and season (spring,
summer, and autumn). Bottom depth and slope were fitted as
smoothing functions, and the model allowed for a different
smoother at each location.

Model 2 : MVBS = α + Region× Diel+ f (Bottomdepth)+ εi

where region had four levels corresponding to seamount sides
(East, North, South, and West), and diel and bottom depth were
fitted as in the previous model. Bottom depth was included as
a covariate to account for differences in topography between
seamount regions. A separate model was built for Condor and
Gigante.

A backward stepwise selection procedure was used to identify
the best fitting model based on the Akaike Information Criterion
(AIC) value and analysis of deviance. The adequacy of the best
fitting model was inspected using normal Q-Q plots, histograms
of the residuals, and plots of residuals and observed values versus
fitted values (Supplementary Figures 1, 2).

Maps of predicted MVBS were produced to visualize the
distribution of acoustic scatterers in the study areas. As
differences in MVBS between seamount slopes were small and
not significant (see Results below), maps were generated using
the best fitting Model 1. A 1 × 1 km spatial grid was created
for the study area and values for the variable bottom depth
were extracted at the mid-point of each grid cell. MVBS and
respective standard errors were predicted for each grid cell,
diel period, and season. Standard errors of predicted MVBS
were also mapped to visualize regions of model uncertainty
(Supplementary Figures 3, 4).
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TABLE 1 | Summary of the acoustic surveys.

Year Season Date Condor Gigante Open-waters

Day Night Day Night Day Night

2009 Summer 15/06–18/06 9 9 9 9 1 1

Summer 10/08–13/08 9 9 9 9 1 1

Autumn 03/11–04/11 7 9

Autumn 25/11–27/11 9 9 1 1

2010 Spring 29/03–31/03 8 9 1

Summer 05/07–10/07 9 8 9 9 1 1

Autumn 14/09–18/09 9 9 9 9 1 1

2011 Spring 15/03–16/03 1 1

Spring 19/03–20/03 9 9

Total transects 53 53 52 54 6 7

Total distance covered (km) 402 419 422 434 108 122

Number of transects carried out in each location (Condor and Gigante seamounts, and in

open-waters) per diel period and season.

RESULTS

Over 3 years, nine acoustic surveys were completed in 29 days,
totaling 1907 km surveyed (Table 1). Similar sampling effort was
achieved at Condor (821 km) and Gigante (856 km) seamounts,
whereas in open-waters 230 km of acoustic surveys were carried
out. The day-night sampling was equally distributed at each study
location, but there were considerable differences in sampling
between seasons. Most of the survey effort was conducted
in summer due to favorable weather conditions, followed by
autumn and spring. Sampled bottom depths around Condor
seamount ranged between 182 and 1604m, at Gigante between
161 and 1609m, and in open-waters between 1774 and 1904m.
Seamounts had steeper slopes (Condor: 0.05◦–73.08◦; Gigante:
0.16◦–51.30◦) than open-waters (0.02◦–3.94◦).

Distribution of Acoustic Scatterers:
Open-Waters vs. Seamounts
Acoustic scatterers were observed throughout the study area in
all seasons and diel periods. Overall, the highestMVBSwas found
in the open-water site (−73.50 ± 2.47 dB), followed by Condor
(−75.20 ± 5.19 dB) and Gigante (−75.74 ± 4.40 dB). MVBS
was significantly related to seamounts bottom depth (Table 2).
In Condor and Gigante seamounts, the highest MVBS was found
over the shallowest areas. Backscattering strength then decreased
rapidly with increasing seafloor depths with the lowest values
occurring in areas 800–1100m deep (Figures 3A,B). Conversely,
in open-waters, MVBS decreased linearly but only moderately
with depth (Figure 3C). Average backscattering strength above
the summits of Condor (−63.28± 4.71 dB) and Gigante (−63.59
± 6.76 dB) was 18 times higher the MVBS measured over the
slopes (Condor: −75.90 ± 4.29 dB; Gigante: −76.04 ± 3.88 dB)
and about 10 times higher MVBS in open-waters (Figure 4).

There was also a significant interaction between location
and diel period, and between location and season (Table 2).
In open-waters, the highest backscattering occurred during

TABLE 2 | Results from the best GAM of MVBS in open-waters and

seamounts.

Parametric terms df F p-value

Location 2 17.360 <0.001

Diel 1 4.839 0.028

Season 2 2.685 0.069

Location×Diel 2 19.958 <0.001

Location×Season 4 26.538 <0.001

Smooth terms edf F p-value

s(Bottom depth)×LocationO 1.000 0.509 0.476

s(Bottom depth)×LocationC 4.837 146.345 <0.001

s(Bottom depth)×LocationG 5.862 60.386 <0.001

Deviance explained = 48.7% n = 1918

R-sq. (adj) = 0.48 AIC = 10089.51

Significant terms (p < 0.05) are shown in bold. LocationO, open-waters; LocationC,

Condor seamount; LocationG, Gigante seamount.

the day, while the reverse pattern was observed in Gigante.
Diel differences in acoustic backscatter were small in Condor
(Figure 5A, Supplementary Table 1). In Condor,MVBS peaked in
spring, decreasing substantially in summer (1MVBS = 1.52 dB)
and autumn (1MVBS = 5.27 dB) (Figure 5B, Supplementary
Table 1). In contrast, mean backscatter was slightly higher in
summer than in the other seasons in Gigante and open-waters.

Distribution of Acoustic Scatterers
between Seamount Slopes
Model 2 was built to investigate differences in MVBS and its diel
pattern between the slopes of Condor and Gigante seamounts.
The best fitting models for each seamount explained 15.7–18.3%
of the deviance (Table 3). The interaction between region and
diel period, and the main term region had no significant effect
on MVBS in any of the seamounts. Little variation was observed
in MVBS between seamount flanks and the differences were not
consistent between seamounts (Figure 6). Slightly lower values
of MVBS were found on the eastern (−77.50 ± 3.87 dB) and
northern (−75.58 ± 4.38 dB) slopes of Condor, and on the
southern (−76.53 ± 4.10 dB) and northern (−76.27 ± 4.15 dB)
slopes of Gigante.

Predicted Spatial Density of Acoustic
Scatterers
The predictions of MVBS for Condor and Gigante seamounts
and for the open-water site for each diel and season from the best
fitting model (48.7% of deviance explained; Table 2) are shown
in Figures 7, 8. The maps highlight the spatial heterogeneity
in backscattering strength around seamounts related to the
depth gradient. The model predicted the highest MVBS over the
summits and upper slopes of Condor and Gigante seamounts,
irrespective of the season and diel period. Acoustic density
decreased drastically along the seamount slopes, reaching the
minimum values at the base of both seamounts. A slight
enhancement in backscatter was predicted toward deeper waters
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FIGURE 3 | Response curves for the GAM of MVBS relative to bottom depth for seamounts and open-waters. Fitted smoothing function (solid line) for

bottom depth for Condor seamount (A), Gigante seamount (B), and open-waters (C) obtained by the best GAM. Estimated degrees of freedom (edf) are displayed on

the y-axes. Tick marks on the x-axis show sample values. Shaded areas denote the approximate 95% confidence bands.

FIGURE 4 | Backscatter in seamount summits and slopes, and in

open-waters. Box plots of MVBS for the summits and slopes of Condor

seamount (white), Gigante seamount (light gray) and in open-waters (dark

gray). Black dots represent the mean; black bars the median; boxes the 25

and 75% quartiles; whiskers extend 1.5 times the interquartile range (spread)

from the box edges or indicate the most extreme values of the spread.

away fromCondor andGigante seamounts and in the open-water
site. Average MVBS predicted for the open-water site was 3%
higher (1MVBS=∼2.4 dB) thanMVBS in seamount slope areas
but 15% lower (1MVBS = ∼10 dB) than MVBS predicted for
Condor and Gigante summits.

Whilst the acoustic scatterer’s hotspot over the Condor
summit was a consistent feature in all seasons it decreased in
size from spring to autumn (Figures 5B, 7). Still, it was in
autumn that the spatial gradient in acoustic density was more
evident because of lower backscatter over the slopes and in areas
farther away from the seamount. Compared to Condor and to

the open-water site, diel differences in MVBS were much more
pronounced in Gigante (Figures 5B, 8) with consistently higher
nighttime MVBS over the summit and slopes.

DISCUSSION

Our results clearly show that Condor and Gigante seamounts
significantly affected the spatial and temporal distribution of
micronekton, and this effect could be detected up to∼7 km from
the seamount summit. Even though the two seamounts differ
in a number of physical characteristics (e.g., size, shape, flatness
of the summit, and distance to other topographic features),
patterns and estimates of acoustic density were similar between
them. Strong sound-scattering aggregations were a permanent
feature above the summits of Condor and Gigante in all seasons,
both during the day and at night. This contrasted with the
reduced scattering in the water column above the seamount
flanks, which was even lower than that measured in open
ocean waters just a few kilometers away. Also, differences in
scattering strength between seamount slopes were generally
small, providing no evidence for micronekton concentrations
at the upstream or downstream side of the seamounts. Finally,
on seamount summits and slopes, acoustic backscatter increased
during the night, while the opposite diel pattern was observed in
open-waters.

Aggregations of micronekton are taxonomically diverse
and include fish, cephalopods, and crustaceans but acoustic
observations at the 38 kHz frequency used in this study are
dominated by air-filled swimbladder fish (Kloser et al., 2009;
Davison et al., 2015). Therefore, we assume that variations in
backscattering strength mostly reflect changes in the relative
density of micronekton fish, although occasional contribution
of large nekton fishes cannot be completely ruled out. Still,
the sound scatter produced by organisms depends not only
on their numerical density but also on their morphological,
physiological and behavioral characteristics (Godø et al., 2009;
Davison, 2011; Davison et al., 2015). While it is impossible
to identify species from acoustic scattering alone, the acoustic
properties of micronekton fish, together with information on
micronekton composition from studies in Condor and at other

Frontiers in Marine Science | www.frontiersin.org 7 February 2017 | Volume 4 | Article 25

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Cascão et al. Micronekton Dynamics at Azorean Seamounts

FIGURE 5 | Diel and seasonal patterns in backscatter in seamounts and open-waters. Box plots of MVBS for: (A) day (white boxes) and night (gray boxes)

and (B) seasons—spring (white boxes), summer (light gray boxes) and autumn (dark gray boxes). MVBS for seamount summits and slopes were pooled into an

overall value. Black dots represent the mean; black bars the median; boxes the 25 and 75% quartiles; whiskers extend 1.5 times the interquartile range (spread) from

the box edges or indicate the most extreme values of the spread.

TABLE 3 | Results from the best GAM of MVBS between seamount slopes.

Condor Gigante

Parametric terms df F p-value df F p-value

Diel 1 43.21 <0.001

Smooth terms edf F p-value edf F p-value

s(Bottom depth) 4.21631.26 <0.001 4.18920.91 <0.001

Deviance explained = 18.3%

R-sq. (adj) = 0.18

AIC = 4279.48 n = 769

Deviance explained = 15.7%

R-sq. (adj) = 0.15

AIC = 4577.78 n = 849

Significant terms (p < 0.05) are shown in bold.

seamounts in the Atlantic, may provide clues about the identity
of sound scatterers and help explain the patterns documented
here.

Midwater trawls conducted over the slopes of Condor and
at a far-field station (located very close to our open-water site)
captured 46 taxa but only a few species/families were numerically
important (Porteiro et al., 2011). Cyclothone spp. represented
66% of the total catches in number, followed by myctophids
(18%), the stomiids Stomias boa ferox and Chauliodus sloani
(8%), and the sternoptychid Argyropelecus hemigymnus (2%).
The majority of fishes ranged from 20 to 80 mm, well within the
size range of micronekton.

Slope samples were dominated by species that also occurred
in open-waters (Porteiro et al., 2011). Mid- and deep-water
(400–800m) catches were largely dominated by Cyclothone
spp., a group of non-migratory mesopelagic fish very abundant
worldwide (Nelson, 2006). Most Cyclothone species are strong
scatterers at the 38 kHz frequency (Peña et al., 2014; Ariza et al.,
2016) and this group likely was the major source of the day and

nighttime backscatter over seamount slopes and in open-waters.
Another important contributor to the backscatter outside the
summits may be A. hemigymnus, also known to reside at depth
all day long (Peña et al., 2014). Myctophids (especially Lobianchia
dofleini,Diaphus rafinesquei, and Lampanyctus pusillus) were the
second most abundant group overall but the first in shallow
waters at night (Porteiro et al., 2011), consistent with their
well-known DVM (Sutton, 2013). Catches were dominated by
species with functional swimbladders as adults (Davison, 2011)
which are strong scatterers. However, swimbladder resonance
of myctophids and other mesopelagic fishes seems to increase
with depth depending on swimbladder size, potentially biasing
estimates of backscatter in deeper waters (Kloser et al., 2002;
Godø et al., 2009; Yasuma et al., 2010). The effects of this bias in
our estimates will be discussed below. In contrast to the former
taxa, the two stomiids possibly contributed little to acoustic
scattering because they lack air-filled swimbladders.

Unfortunately, a single nighttime trawl was conducted over
the summit of Condor, capturing 3 fish specimens (myctophids
D. rafinesquei and S. boa ferox; Porteiro et al., 2011). Video
images from a baited lander (Fontes and Menezes, 2011)
and from remotely operated vehicles (ROV) (Porteiro et al.,
2013) showed that, during the day, the pelagic fish fauna on
Condor summit was dominated by dense swarms of small
sized zooplanktivorous fishes, including the seaperches (Anthias
anthias and Callanthias ruber), the snipefish (Macrorhamphosus
scolopax) and the blue jack mackerel (Trachurus picturatus),
with occasional records of unidentified myctophids (Porteiro
et al., 2013). Care must be taken, however, as ROV observations
may be biased due to the known avoidance behavior of some
micronekton fishes, including myctophids (Porteiro et al., 2013).
Most zooplanktivorous fish were absent from the slopes of
Condor and the few species present below 300m depth had
densities 20 times lower than those observed at the summit
(Porteiro et al., 2013).
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FIGURE 6 | Backscatter in seamount slopes. Box plots of MVBS for the slopes in Condor seamount (A) and Gigante seamount (B). Black dots represent the

mean; black bars the median; boxes the 25 and 75% quartiles; whiskers extend 1.5 times the interquartile range (spread) from the box edges or indicate the most

extreme values of the spread.

These and other zooplanktivorous fish may well be part of
the permanent micronekton community inhabiting the summits
and upper slopes of Condor, and possibly Gigante, as reported
in other shallow and intermediate seamounts in the subtropical
Northeast Atlantic (see Morato and Clarke, 2007). Most of
these fishes are good sound reflectors and possibly accounted
for a significant part of the enhanced backscatter above the
summits of Condor and Gigante in all seasons and diel periods.
Seamount-associated micronekton fishes live a benthopelagic
lifestyle, feeding in the water column above the seamount
when conditions are right and resting at the benthic boundary
layer (Boehlert, 1988; Genin, 2004). Presence of a resident
micronekton community implies the existence of an abundant
and predictable supply of prey. While there is no information
on the oceanographic conditions or biological communities in
Gigante, physical processes at Condor may be responsible for
concentrating prey for resident micronekton fish. Condor is
characterized by a quasi-persistent anticyclonic cap located 50–
60m above the summit, possibly generated by tidal forcing
and/or a steady impinging flow (Bashmachnikov et al., 2013).
Taylor caps penetrating into the euphotic zone can locally
enhance primary production by bringing nutrient-rich waters
to the surface (Genin, 2004). In the case of Condor, however,
trapping induced by the Taylor cap occurs mostly below 170m
depth (i.e., below the seasonal pycnocline) (Bashmachnikov
et al., 2013) and is unlikely to boost primary production. In
addition, changes in water circulation and mixing result in
periodic shedding of the Taylor cap lasting from weeks to months
(Bashmachnikov et al., 2013). Thus, presence of the Taylor cap
will hardly cause a persistent enrichment in primary productivity
over Condor. Consistent with these findings, there is no evidence
of increased phytoplankton concentrations in the top 100m
above the summit and slopes of Condor (Santos et al., 2013).
Rather, the Taylor cap may retain sufficient concentrations of
autochthonous or allochtonous prey above the seamount to
enable self-sustainability of the resident micronekton (Genin,

2004; Genin and Dower, 2007). Alternatively, or in combination
with this mechanism, the seamount micronekton community
might rely on vertically migrating zooplankton that becomes
trapped above the seamount summits.

Similar DVM behavior by mesopelagic fishes would add
to the backscatter from the seamount resident community,
amplifying the contrast between summits and slopes and causing
diel changes in backscatter above the summits. Mesopelagic
fish ascending from deeper waters in the vicinity and above
the seamount flanks could be attracted to the summits to
feed on concentrations of zooplankton created by physical
forcing or topographic blockage. Despite being strong swimmers,
micronekton may also be passively advected onto the summits
by currents (Kaartvedt et al., 2009). The seamounts’ shallow
topography aggregates these fishes in near-surface waters at
night and possibly retains part of this community during
the day (Genin, 2004). Obviously, this would result in fewer
fishes returning to bottom waters at the seamount flanks. The
effect of topographic blockage should be more pronounced
in Condor than in Gigante, because the smaller plateau of
Gigante likely is less efficient at blocking the fish descent. We
believe this is one of the reasons for the much clear day-night
differences in backscattering intensity in Gigante, as opposed
to Condor where diel changes were small. Although video
imagery and net sampling provided only limited evidence of
the presence of vertically migrant fishes on the Condor plateau
(Porteiro et al., 2011, 2013), topographic blockage has been
suggested as one of the mechanisms responsible for the increased
nighttime micronekton abundance at other shallow/intermediate
seamounts (Boehlert, 1988; Johnston et al., 2008).

As a result of the interaction of the local flow field with the
seamount topography, distribution of micronekton fish often
exhibits small-scale spatial variability, with enhanced biomass or
densities on the downstream flanks of seamounts. At Southeast
Hancock Seamount, micronekton fish moving into waters above
the seamount on a diel basis were usually displaced by strong
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FIGURE 7 | Predicted backscatter in Condor seamount and in open-waters. Predicted MVBS obtained from the best GAM (Model 1) for each diel period

(day—left; night—right) and season (spring—top; summer—middle; autumn—bottom). Warmer colors indicate higher Sv. Green lines illustrate transect surveys.

currents to the downstream side of the summit by the end of
the night (Wilson and Boehlert, 2004). Porteiro et al. (2011)
reported lower abundance and biomass of midwater fishes on
the northern slope (upstream) of Condor when compared to
the southern slope (downstream), consistent with the northern-
southerly direction of the upper ocean current (Bashmachnikov
et al., 2013). Since Gigante is under the influence of the same
regional current, we assumed that acoustic density would be
higher on the southern slope of the two seamounts. Against our
expectation, total backscatter and its diel patterns were similar
upstream and downstream the seamounts. In the case of Condor,
it is possible that the effects of the anticyclonic vortex prevail
over the background oceanic flow (Bashmachnikov et al., 2013),
trapping micronekton fish and their prey and preventing them
from being advected downstream the summit. Nonetheless, the
presence of a Taylor cap has not been documented in Gigante
and the potential retention of such mechanism in Condor is

unknown. Concurrent acoustic and oceanographic observations
will help understanding how different physical processes shape
micronekton distribution at the scale of the seamounts.

Another interesting finding of this study is the reduced
acoustic density above the seamount slopes in comparison to
open-waters. As already mentioned, samples from midwater
trawls conducted over the slopes and off the seamount were
similar (Porteiro et al., 2013), suggesting that differences
in species composition are unlikely to be responsible for
backscattering variations between those regions. Assuming
identical composition of scatterers, then a difference in mean
backscattering strength of 2.4 dB indicates that density of
micronekton above the slopes was nearly half of that found
in the open ocean (Simmonds and MacLennan, 2005). Such
difference may result from: (i) the retention at summit of part
of the population of migrant fishes that never return to their
daytime depths above the slopes, and (ii) the upward migration
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FIGURE 8 | Predicted backscatter in Gigante seamount. Predicted MVBS obtained from the best GAM (Model 1) for each diel period (day—left; night—right) and

season (spring—top; summer—middle; autumn—bottom). Warmer colors indicate higher Sv. Green lines illustrate transect surveys.

in open-waters of some mesopelagic species from depths beyond
the seamount base (∼1000–1200m depth).

Contrasting with the diel pattern at seamounts (more
evident in Gigante), backscatter measured in open-waters was
consistently higher during the day. Different behavioral processes
and physical mechanisms may explain this pattern. On one
hand, the upward migration of taxa from depths beyond >1000
m; i.e., outside the range of the 38 kHz (Domokos, 2009)
should contribute to greater nighttime backscattering. This
could be offset by the effects of the horizontal movements of
micronekton and of swimbladder resonance. During the day,

myctophids occur in discrete, dense patches, but at night they
tend to disperse horizontally and vertically in the upper water
column (Benoit-Bird and Au, 2006). As the horizontal range
of myctophids increases, estimates of volume backscattering
strength decrease. Swimbladder resonance increases acoustic
backscatter from fishes and such effect is more pronounced
at greater depths (>300 m) (Godø et al., 2009; Yasuma et al.,
2010). Consequently, bias from swimbladder resonance mainly
affects daytime acoustic observations, when mesopelagic fish
occur deeper in the water column. At present, it is impossible to
know to what extent resonance may have overestimated daytime
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backscatter measurements. Future studies examining the vertical
distribution of micronekton may help elucidating the role played
by each of these factors.

We found a well-defined seasonal pattern in acoustic density
at Condor seamount, with an evident peak in spring, lower
backscatter in summer and the lowest values in autumn. In
comparison, seasonal variations were not so clear in Gigante
and in open-waters. In Condor, maximum concentrations of
chlorophyll-a occurred in spring, associated with the well-mixed
water column and lower surface temperature, whereas minimum
values were recorded in summer with stratified, warmer waters
(Santos et al., 2013). Zooplankton develops rapidly following the
onset of the phytoplankton bloom, with the highest abundances
recorded from spring to early summer (Carmo et al., 2013). More
importantly, increased prey availability likely attracts greater
numbers of micronekton fish to the seamount. As zooplankton
becomes scarcer in upper layers in late summer and autumn,
due to the decline in primary production and to predation, but
also because some species descend to mid-waters to overwinter,
several mesopelagic fishes, including myctophids, restrain from
migrating to the surface at night (Dypvik et al., 2012 and
references therein). Density of migrant micronekton fish above
the seamount summits will therefore decrease, following the
decrease in zooplankton biomass after the spring-early summer
peak. In addition to prey distribution, life history patterns
of seamount fishes may also contribute to seasonal peaks
in backscatter. While several species are year-round residents
at seamounts, others aggregate at seamounts periodically
for spawning (e.g., M. scolopax, Capros aper) (Morato and
Clarke, 2007). Arrival of high-density spawning aggregations
at seamounts (Jorgensen et al., 2016) could potentially explain
seasonal variations in acoustic density, although we have no way
of confirming this hypothesis.

Acoustic sampling is a powerful method to estimate the
distribution and biomass of micronekton fish but it has its own
limitations, uncertainties and potential bias, which ultimately
constrained interpretation of some of the findings of this study.
First, our study area is certainly inhabited by many micronekton
species not visible in the echograms, either because they are non-
resonant at the 38 kHz frequency or because their weak signal
is masked by dominant sound reflectors. Second, acoustics does
not allow direct taxonomic identification of sound scatterers nor
does it provide certain quantitative data (e.g., size and weight of
organisms) necessary to estimate absolute density or biomass. In
this study we did not attempt to convert MVBS into biomass;
instead, MVBS was interpreted as a proxy for the relative density
of micronekton. We also didn’t assume equal composition of
scattering layers within the study area or across the water column
but tried to support our findings on available (albeit limited)
knowledge about local pelagic communities. As an example, we
avoided comparisons between Gigante and Condor because we
lacked information on possible scattering layer constituents in
Gigante. Future studies should consider using multi-frequency
acoustics to better discriminate sound scatterers, providing
insights into the relative composition and density of micronekton
layers. Another constraint of this study is that acoustic data were
not integrated with oceanographic observations to determine

how bio-physical parameters influenced the distribution of
sound-scattering micronekton fish. The only data available on
sea surface temperature or chlorophyll-a were weekly averages
at 4-km resolution which was judged too coarse considering the
size of the seamounts, the duration of the surveys and the spatial
variability of the SL. Therefore, we chose to use static seabed
features (bottom depth and slope), as well as spatial (location
and region) and temporal (diel and season) variables. Future
work will be necessary to refine these analyses by including
more biological-relevant environmental variables. Despite these
shortcomings, this work fills an important knowledge gap of
micronekton, the “missing link” between lower and higher
trophic levels, and provides some clues to the mechanisms
responsible for the variation in micronekton distribution
across and within seamounts, contributing to our growing
understanding of the functioning of seamount ecosystems.

SUMMARY

Through a series of acoustic surveys conducted over a 3-
year period, this study provides the first comprehensive view
of the distribution and temporal dynamics of micronekton
at seamounts in the Azores. Our work showed that presence
of seamounts affected the horizontal distribution of acoustic
scatterers, contributing to the formation of persistent higher
MVBS in near-surface waters over the summits, which contrasted
with lower acoustic density in the water column above the slopes
and in the open ocean. The dynamics of micronekton around
seamounts likely result from a combination of behavioral and
physical mechanisms acting over different spatial and temporal
scales. The DVM brings huge concentrations of mesopelagic
fishes to surface waters to feed under the cover of darkness. Fishes
may actively seek seamounts to take advantage of prey aggregated
around the top by the Taylor cap (Bashmachnikov et al., 2013).
Micronekton fishes may also be advected from upstream the
summit and become entrained in the circular flow generated
by the Taylor cap (Pitcher and Bulman, 2007). Fishes present
in the water column immediately above the plateau could then
be trapped at the seamount when trying to descend the next
dawn. In addition to vertically migrant fishes, we suggest these
seamounts support an abundant community of year-round or
seasonal residents.

The dynamics of micronekton likely has profound effects
on the structure and function of seamount ecosystems, and on
their linkages to other pelagic or coastal systems. Stable isotopes
analysis showed that the food chain on Condor seamount is
composed of five trophic levels, and that mesopelagic organisms
play a crucial role in the trophic web, linking the epipelagic
environment to benthic, and benthopelagic organisms (Colaço
et al., 2013). Increased micronekton abundance at seamounts
likely supports important biomasses of benthic fishes and
attracts numerous pelagic visitors (Morato et al., 2008b). Studies
conducted in the Azores have shown that several benthic and
benthopelagic fish species rely on SL constituents for food
(Gomes et al., 1998; Morato et al., 2001; Colaço et al., 2013)
and that the vertical distribution of these fishes at seamounts
is driven by the dynamics of the SL (Afonso et al., 2014a).
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Large pelagic predators, such as tuna, seabirds, and marine
mammals, feed on various micronektonic organisms (Choy et al.,
2016). The effect of seamounts at aggregating micronekton may
play an important role in the feeding success of these top
predators, especially in oligotrophic environments, where food
is often scarce and too patchy to be efficiently exploited. Indeed,
several of these predators are known to intensively use and
forage at seamounts (Awkerman et al., 2005; Garrigue et al.,
2015; Jorgensen et al., 2016). In the Azores, several dolphin
species preferentially distribute in areas with high density of
seamounts (Tobeña et al., 2016) and baleen whales instrumented
with satellite tags spent days to weeks apparently foraging
around seamounts (Silva et al., 2013). Preliminary analyses of
long-term acoustic recordings from hydrophones deployed at
Condor and Gigante showed that dolphins use these seamounts
nearly every day (Silva and Cascão, 2011). By concentrating
micronekton prey in near-surface waters, these seamounts
likely provide increased foraging opportunities for shallow
divers.
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