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There exists increasing evidence that top-down ecological processes, such as herbivory

are key in controlling marine ecosystems and their community structure. Herbivory has

the potential to be altered by numerous environmental and ecological factors that operate

at a variety of temporal and spatial scales, one such spatial factor is the influence of the

marine landscape. We know little about how ecological processes, such as herbivory

change throughout the marine landscape and how the effects of these processes

cascade. This is because most landscape scale studies observe species richness and

abundance patterns. In terrestrial systems the landscape is well documented to influence

ecological processes, but empirical evidence of this is limited in marine systems. In

tropical seagrass meadows direct herbivory by parrotfish can be readily observed due

to the clear hemispherical bite marks they leave on the seagrass. As with herbivory in

other systems, this leaf consumption is thought to assist with leaf turnover, positively

influencing leaf growth. Changes in its rate and extent are therefore likely to influence

the characteristics of the plant. The faunal communities of seagrass meadows alter with

respect to changes in the landscape, particularly with respect to connectivity to adjacent

habitats. It might therefore be expected that a key ecological process, such as herbivory

will change with respect to habitat configuration and have cascading impacts upon the

status of the seagrass. In the present study we examined indirect evidence of parrotfish

grazing throughout the marine landscape and assessed this relative to plant condition.

Seagrasses in locations of close proximity to mangroves were found to have double the

amount of parrotfish grazing than sites away from mangroves. Evidence of herbivory

was also found to be strongly and significantly negatively correlated to the abundance of

plant attached epicover. The decreased epicover in the presence of elevated herbivory

suggests increased leaf turnover. These results indicate that seagrass may have higher

levels of ecosystem resilience in the presence of mangroves. Our research highlights

how ecological processes can change throughout the marine landscape with cascade

impacts on the resilience of the system.
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INTRODUCTION

To understand how ecosystems function and predict how communities might shift in response
to anthropogenic impacts and/or management interventions, we require better knowledge
of the relative influences of different biological and physical factors and processes on
community structure (Gilby et al., 2016). Top-down ecological processes, such as herbivory
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have been shown to control ecosystems and their community
structure, and there is increasing evidence that such control
is much more pronounced in aquatic relative to terrestrial
environments (Shurin et al., 2006). In marine systems it is
estimated that herbivores graze up to 70% of global benthic
primary production, and removing such species can lead to
phase-shifts in tropical habitats (Poore et al., 2012; Vergés et al.,
2014). Although we have increasing knowledge of how these
ecological processes are critical in different ecosystems (e.g., kelp,
coral reef, and seagrass), we have a limited understanding of how
landscape may alter this (Olds et al., 2012). We also know little
about the ecological consequences of any changes at spatial scales
and what theymean in terms of the resilience of systems and their
environmental management (Mumby and Hastings, 2008; Olds
et al., 2012, 2016).

The composition of habitat types and their spatial
arrangement within a landscape has the capacity to be a
major source of influence upon ecological processes (Dunning
et al., 1992). For example, pollinator visitation has been found
to be substantially higher in small clover patches surrounded
by bare-ground than in larger patches embedded within grass
(Diekötter et al., 2007). In fragmented forests, parasitism on
the forest tent caterpillar altered depending on the proportion
of forested to unforested land (Roland and Taylor, 1997). The
spatial arrangement of habitats across the marine seascape also
profoundly alters marine faunal communities in terms of their
behavior, resource use, abundance, and diversity (Nagelkerken,
2009; Olds et al., 2016). These differences can result in significant
changes in floral and faunal communities and potentially
alter their functional ecology (Mumby and Hastings, 2008;
Pagès et al., 2014). This may be particularly the case when
one habitat may be absent from the configuration in a marine
seascape.

In tropical seagrass meadows herbivory is a key ecological
process. High rates of herbivory have been found to confer
resilience by causing a high turnover of plant tissue, resulting
in reduced buildup of epiphytic material (Christianen et al.,
2012). This herbivory also results in plants increasing their
aboveground net production (Valentine et al., 1997; Duarte
and Chiscano, 1999). Processes that influence the rate of this
herbivory therefore have the potential to result in cascading
feedbacks to the wider seagrass meadow (Maxwell et al., 2016).
Seagrass meadows are a globally important ecosystem under
significant anthropogenic threat (Waycott et al., 2009). The
management of these ecosystems requires a better understanding
of the functional ecological processes that ultimately confer
resilience upon it (Unsworth et al., 2015) and their interactions
throughout the seascape.

Tropical seagrass meadows exist in connectivity with reef
and mangrove systems, which results in the movement of
diverse communities of animals at different ontogenetic life
stages throughout this seascape (Nagelkerken, 2009). The relative
availability of mangrove and reef environments will therefore
potentially impact upon the value of seagrass meadows in
providing this corridor habitat for fish and invertebrates species
of different ages that utilize these diverse habitats (Skilleter
et al., 2005; Unsworth et al., 2008). Knowledge of this is of

particular value for managing functionally important species,
such as herbivores.

The present research examined the relationship between
seagrass herbivory by Parrotfish (Scarids) (a key ecological
process) and the spatial habitat arrangement within the tropical
marine seascape. The present study had the following a priori
null hypotheses: (1) Evidence of seagrass herbivory does not
vary with respect to proximity to mangroves, (2) Herbivory
does not reduce the build-up of attached epiphytic material
on seagrass.

MATERIALS AND METHODS

Data on seagrass and associated Scarid herbivory was collected at
six seagrass meadows in La Parguera Bay, Puerto Rico in January
2016. Seagrass meadows at San Cristobal, Laurel Cay and White
Pole were all on coral cays containing no mangrove whereas
seagrass sites at Collado, Majimo and Enrique Cay were all on
coral cays containing abundant mangroves (see Figure 1). All
sites were of a consistent depth and dominated by the seagrass
Thalassia testudinum.

Seagrass data was collected along three 25m transects that
were laid out at each site, perpendicular to the coral cay or
mangrove (15m distance from the island or mangrove). Six
0.5m2 quadrats were placed along each transect starting at 0 m.
Within each quadrat seagrass was assessed for percentage cover,
species composition, percentage epicover, percentage algal cover
and canopy height using standard seagrass protocols (McKenzie
et al., 2001). Our study design resulted in the collection of data
from 108 quadrats spread over 18 independent transects across 6
independent sites.

To assess herbivory, the percentage of shoots within each
quadrat containing scarid bite marks was estimated. Scarid bite
marks are easily distinguished on seagrass leaves due to their
hemispherical shape (Kirsch et al., 2002; Unsworth et al., 2007).
The size of scarid bites was determined in all quadrats by

FIGURE 1 | Location of seagrass sites in La Parguera Bay, Puerto Rico

that were examined in order to quantify scarid herbivory.
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measuring the width (using calipers) of the two bites closest to
the bottom left hand corner of the quadrat, nearest the transect
tape.

Statistical Analysis
A two-way nested ANOVA was conducted to assess the effect
of seascape and site (site nested in seascape) on the percentage
of leaves bitten, percentage seagrass cover, and percentage
epicover. All data (expect bite size) was found to initially fail
a key assumption of ANOVA (homogeneity of variance). Data
was therefore transformed in order to obtain homogeneity of
variance. Some data was ArcSin transformed (% seagrass cover,
% algae cover and % leaves bitten). Data on epicover was square
root transformed, whilst canopy height was transformed using a
natural log.

In order to examine the potential influence of herbivory on
attached epicover a Partial Least Squares Regression (PLS) model
was developed in Minitab (version 17) (Carrascal et al., 2009;
Haapkylä et al., 2011). PLS was used to investigate which of
the observed seagrass meadow variables correlated most with
epicover. PLS regression is particularly suited to incidences when
there is multi co-linearity among variables (Carrascal et al., 2009).
The study had variables that were co-linear. This technique has
commonly been used to analyse a range of ecological datasets
(Rasheed and Unsworth, 2011).

The % epicover on the seagrass was analyzed against five
variables (% seagrass cover, % algal cover, seagrass canopy, bite
size, % shoots bitten). PLS was conducted in a step-wise manner
that allowed for the successive removal of variables that did not
contribute to the model, enabling the strongest possible PLS
model to be created. The PLS analysis also calculated a predicted
residual sum of squares (PRESS) following cross-validation.

RESULTS

Seagrass percentage cover ranged from 1% cover to 100% cover
and was highly variable across the 108 quadrats with mean %
cover of 57.2 ± 27.3 (Table 1). Although the mean seagrass
cover near to mangrove was higher (77.6 ± 18.4) than far from
mangrove (37.0 ± 18.3) the high variability meant there was
no significant influence of mangrove proximity [F(1, 107) = 2.1,
p = 0.22] (Table 2). This pattern was consistent across sites
(Table 1). The seagrass had a taller canopy [F(1, 107) = 30.3,
p = 0.005] at sites closer to mangrove, creating more habitat
(see Table 1), however there were significant [F(1, 107) = 4.0, p =
0.005] inter-site interactions. Seagrass at sites close to mangrove
had significantly [F(1, 107) = 153.7, p = 0.000] lower levels of
epicover (phytic and biont) (13.3 ± 11.8%) than sites away from
mangrove (40.7± 17.8%). This pattern was consistent across sites
(Table 1).

TABLE 1 | Seagrass (Thalassia testudinum) metrics (mean ± SD) sampled in quadrats at six sites of varying proximity to mangroves in La Parguera Bay,

Puerto Rico.

Canopy height (cm) % Bitten leaves Bite size (mm) % Seagrass cover

Mean SD Mean SD Mean SD Mean SD

Collado 15.8 3.2 99.0 2.6 3.6 1.5 90.0 8.6

Enrique 16.8 5.1 92.4 16.7 3.2 0.6 73.6 21.9

Majimo 12.4 3.5 81.2 17.1 3.7 1.2 69.2 15.8

All mangrove 15.0 4.4 90.9 15.5 3.5 1.2 77.6 18.4

Laurel Cay 8.4 2.1 43.1 22.3 4.9 2.0 28.2 8.1

San Cristobal 8.1 1.7 54.9 26.7 6.3 2.1 29.3 17.6

White Pole Reef 8.9 1.9 34.2 14.9 6.0 2.2 53.3 15.3

All no mangrove 8.5 1.9 44.1 23.1 5.7 2.2 37.0 18.3

All sites 11.7 4.7 67.5 30.6 4.6 2.1 57.3 27.4

TABLE 2 | Analysis of variance (nested) statistics for seagrass (Thalassia testudinum) metrics sampled in quadrats at six sites of varying proximity to

mangroves (seascape) in La Parguera Bay, Puerto Rico.

Seagrass cover (%) Seagrass canopy height (cm) Seagrass epicover (%) Bite size (mm) Shoots bitten (%) Algae cover (%)

Seascape MS 0.06 6.95 236.30 135.56 0.15 0.07

F 2.07 30.30 153.65 24.50 9.07 34.15

P 0.224 0.005 0.000 0.008 0.039 0.004

Site MS 0.03 0.23 1.54 5.53 0.02 0.01

F 1.40 4.00 0.63 1.90 0.37 2.30

P 0.240 0.005 0.639 0.116 0.832 0.064

Sites were tested with respect to being near or far to mangroves (site nested in seascape). Statistics in bold are significant at the 95% level.
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At sites near to mangrove, seagrass contained a significantly
[F(1, 107) = 9.1, p= 0.039] higher proportion of shoots displaying
signs of scarid bite marks than shoots at sites far from mangrove.
The size of these were significantly smaller [F(1, 107) = 24.5, p =

0.008] (Table 2) at seagrass sites near tomangrove (3.5± 1.2mm)
relative to those on seagrass further from a mangrove forest (5.7
± 2.2mm). This pattern was also consistent across sites (Table 1).
Bite sizes varied between 1 and 13mm at sites far frommangrove
and 1–9mm at sites close to mangroves.

The percentage of seagrass shoots showing signs of herbivory
was found to significantly (P < 0.001, Pearson’s coefficient =
−0.787) and negatively correlate with the percentage of attached
epicover (Figure 2). Given the close colinearity of the potential
alternative correlates of epicover (Table 3) a Partial Least Squares
(PLS) model was developed to further examine this correlation.
54% of the seagrass epicover variability was explained in PLS by
the % of bitten seagrass shoots (correlation coefficient = −0.63)

FIGURE 2 | Percentage of seagrass (Thalassia testudinum) leaves

observed to show signs of parrotfish bites in relation to observed

coverage in epiphytic material. Seagrass sampled in quadrats at six sites

of varying proximity to mangroves in La Parguera Bay, Puerto Rico.

and canopy height (correlation coefficient = −0.15). After PLS
cross validation (i.e., randomly removing 25 data points at a
time then re-running the PLS analysis) this correlation remained
significant and explained variability reduced only slightly to 52%
(pred R-Sq), statistically indicating that the relationship was not
driven exclusively by a small proportion of data points.

DISCUSSION

Tropical marine landscapes are characterized by highly variable
habitat configurations (Nagelkerken, 2009). This variability is
further enhanced by anthropogenic loss of habitats across the
tropical seas (Orth et al., 2006; Duke et al., 2007). In the present
study we provide evidence that the position in this habitat
configuration influences an important ecological process, in this
case herbivory, leading to potential cascading impacts upon the
epiphytic and epibiont growth. Such growth may reduce the
resilience of the seagrass to stressors.

Seagrasses in locations of close proximity to mangroves had
approximately double the evidence of scarid grazing compared
to sites away from mangroves. This finding mirrors data from
other areas of the Caribbean where increased scarid abundance
and species richness has been recorded in seagrass adjacent to
mangroves relative to seagrass without (Nagelkerken et al., 2001).

Evidence of enhanced herbivory at sites close to mangroves is
proposed to be the result of an increased presence of parrotfish
using seagrass as a nursery habitat. Our finding that bite marks
on seagrass close to mangroves were smaller in size supports
this premise, presumably as a result of the higher abundance
of juvenile fish. Previous studies on tropical seagrasses find the
mangrove-seagrass continuum to provide a corridor for diel and
tidal feeding migrations of juvenile fish in shallow sheltered
habitats (Nagelkerken et al., 2001; Unsworth et al., 2009). Many
fish typically spend time in mangroves during the day and move
into nearby seagrass meadows at night to feed upon leaves (Igulu
et al., 2015).

The present study found strong correlative evidence that
increasing presence of herbivory is associated with reduced
epicover suggesting increased leaf turnover and higher resultant
levels of resistance to potential impacts (e.g., poor water quality)

TABLE 3 | Correlation coefficients and probability values between metrics of seagrass meadows sampled in quadrats at six sites of varying proximity to

mangroves (seascape) in La Parguera Bay, Puerto Rico.

Leaves bitten (%) Algae Cover (%) Canopy height (mm) Seagrass Coverage (%) Epi Cover (%)

Algae Cover (%) −0.437

0.000

Canopy height (mm) 0.712 −0.388

0.000 0.000

Seagrass Coverage (%) 0.683 −0.322 0.68

0.000 0.001 0.000

Epi Cover (%) −0.732 0.291 −0.598 −0.527

0.000 0.000 0.000 0.000

Bite Size (mm) −0.34 0.211 −0.359 −0.336 0.323

0.000 0.029 0.000 0.000 0.001
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(Unsworth et al., 2015). Attached flora or fauna on seagrass leaves
has the potential to reduce photosynthetic rate due to shading
(Oh et al., 2009). The present study recorded that such attached
material can cover over 60% of the leaf area. This shading
reduces the capacity of the plant to resist the effect of any further
shading from problems, such as periods of poor water quality
(Unsworth et al., 2015). We recorded a significant negative
correlation between the percentage of leaves bitten and total
epiphyte and epibiont coverage. We suggest that the increased
removal rate of leaf material may allow quicker turnover rates
of plant biomass, leaving less time for epiphytes to colonize the
leaf surface (Christianen et al., 2012). This would be due to a
compensatory growth response of the plants to herbivory. Such a
response has been recorded in many plant species (McNaughton,
1983). Studies on seagrass fish herbivory have previously shown
increased seagrass shoot density after herbivory (Valentine et al.,
1997; Heck and Valentine, 2006). Research on Green Turtle
grazing has found the presence of epiphytic material on seagrass
leaves to be associated with high nutrient loads that could cover
seagrass meadows if grazers are not present (Christianen et al.,
2012).

Although the present study showsmarked differences between
the amounts of evidence of herbivory at sites of differing
distance from mangrove, the evidence is indirect and temporally
restricted, therefore we provide a word of caution with respect to
extrapolating the findings wider. The findings of this study need
to be further examined by quantifying the herbivory directly in
terms of the rate of seagrass consumption relative to growth by
conducting tethering experiments and cage manipulations.

The present study demonstrates a strong case for greater
integration of spatial ecology into ecosystem-based management
(Foley et al., 2010; Massol et al., 2011; Olds et al., 2016) and
suggests that by explicitly incorporating habitat configuration
into conservation planning, we may be better placed to ensure
the long-term resilience of such tropical ecosystems (Olds et al.,
2012).

In conclusion, we find seagrass meadows in proximity to
mangroves have double the amount of evidence of herbivory
than those meadows far from mangrove. We use correlative
evidence to hypothesize that mangroves play a significant
functional role in decreasing levels of attached flora and
fauna on seagrass leaves enhancing ecosystem resilience.
Our research highlights how ecological processes can vary
throughout the marine landscape with potential cascade impacts.
This study also highlights the need for spatial planning to
consider how the configuration of habitats influences ecosystem
resilience.
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