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Understanding the phenology of phytoplankton species is a challenge and despite a

lot of theoretical work on competition for resources, this process is under-represented

in deterministic models. To study the main driver of the species selection, we

used a trait-based model that keeps phenotypic variability through physiological trait

parameterization. Next, we validated the results by using the toxic dinoflagellate

Alexandrium minutum which is a toxic species. Due to their monitoring, we show that

harmful algae are ideal models for studying ecological niches and for contributing to this

more global challenge. As a first step, a dimensionless model of an estuary (France)

was built with water temperature and water exchanges deduced from a hydro-dynamic

model. The biological parametrization takes into account the size (from pico- to

microphytoplankton) and the type of assimilation. The results show that temperature,

competition for nutrients and dilution are important factors regulating the community

structure and Alexandrium minutum dynamics (more especially the bloom initiation and

magnitude). These drivers contribute to the determination of the ecological niche of

A. minutum, influence the shape of its blooms and provide potential explanations of

its interannual variability. This approach makes the community structure more flexible

in order to study how environmental forcings could drive its evolution.

Keywords: Droop, competition, inter-specific, estuary, Bay of Brest, Alexandrium minutum, phenology, niches

1. INTRODUCTION

Over the past few decades, the frequency and intensity of observed events termed Harmful Algal
Blooms (HABs), and commonly called red tides, have rapidly increased in global coastal waters
(Hallegraeff, 1993, 2010). These phenomena are characterized by the fast growth or accumulation
of one phytoplankton species (which can grow up to several million cells.L−1) which can color
the surface water. Being photosynthetic, their occurrence is mainly dependent on light, nutrient
availability and temperature. However, although phytoplankton enhances biological productivity
and plays an outstanding role in the regulation of atmospheric carbon by scavenging it into deep
water (Falkowski andOliver, 2007), these algal blooms can be harmful by causing hypoxia or anoxia
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during bloom degradation or by spreading toxicity through the
food chain for species producing toxin. They have a dramatic
impact on aquaculture, fisheries, tourism and public health and
often lead to severe economic losses. Among the dinoflagellates
which are only a part of the marine phytoplankton, it is estimated
that at least 60 species produce endogenous toxins (Burkholder,
1998) that can accumulate in shellfish (clams, mussels, oysters,
scallops), fish, and even in birds and mammals to levels that can
be lethal for humans.

Monitoring programs dedicated to these algae have provided
a large (twice a month to weekly measurements on several years)
data sets at the species level to test assumptions on ecological
process such as the ecological niche definition. The description
of species niches (specially for toxic species) and their evolution
through abiotic and sometimes biotic factors is an important and
useful goal to forecast the evolution of communities (Wiens et al.,
2009; Elith et al., 2010; Kearney et al., 2010) but it requires a
detailed understanding of the mechanisms driving their fitness.
Our capacity of realistic predictions of species niches with
mechanistic model remains however weak and mainly because
mechanistic models still include a great deal of empirical fitting
that decreases their generic aspect. Although our understanding
of HABs events has increased, it remains complex and difficult to
assess all the pathways that generate a succession of monospecific
blooms (resources, predation, life cycle, etc...). Among all
ecological processes and despite its use in conceptual models
(Margalef, 1978; Reynolds, 2003), competition has been only
poorly or partially used bymechanistic models for understanding
and/or predicting future outcomes. However, during a bloom;
when the resources required for phytoplankton growth become
limited, strong interspecific competition should occur in most
cases. The familiar assumption in aquatic microbiology (Bass
Becking, 1934) that all the species are in the environment
(Everything Is Everywhere) but environmental selection leads
to species succession, also identifies interspecific competition as
one of the key processes in coastal environment management.
However, HABs species are mainly simulated in the environment
alone (MacIntyre et al., 2004; Fauchot et al., 2008; He et al.,
2008; Jeong et al., 2015 for three of the four groups proposed)
or with a physiological description that differs between the
other phytoplankton functional types (Lacroix et al., 2007). The
relevance of the competition for resources is thus difficult to
estimate because a great part of the community adaptation is
removed by this reduction. A trait-based approach (Litchman
et al., 2012) associated with the EIE assumption provides
an interesting methodology that allows us to go further in
understanding bloom events.

Thus, we present the first trait-based model that simulates
the competition for resources between several phytoplankton
species (including the toxic speciesA.minutum) with a consistent
physiological resolution and in realistic conditions. Obtained
from trade-offs, this consistency enables species fitness to be
analyzed in a more reliable way. With this general model
framework, the challenge was to reproduce phytoplankton
phenology and A. minutum bloom dynamics. The approach
was based on trait-based models that already exist on a
global scale (Dutkiewicz et al., 2009; Barton et al., 2010) and
one of the difficulties initially considered was the selection

of traits and their parametrization for coastal waters. The
parametrization of traits was achieved with a random process
using a range of realistic values. In doing so, defining the
trade-offs (evolutionary compromise for the resource allocation
between different functional traits) was also an important step.
By using this general approach, we also propose a way of studying
phytoplanktonic bloom by understanding which relevant factors
may favor A. minutum blooms and how the diversity of trait
values can control species invasion and succession. The study was
applied in the Bay of Brest due to the fact that since summer
2012, the bay has been affected by one of the most problematic
organisms, i.e., the dinoflagellate Alexandrium minutum (Erard-
Le Denn, 1997), which gives rise to toxic events. The selection
of this species was driven by the large set of physiological
parameters provided by the literature and previous studies with
local strains (Labry et al., 2008). We focused on the simulated
timing of A. minutum and its maximal intensity values for
comparison with in-situ observations. This capacity to predict A.
minutum blooms could be a good step toward improving coastal
management measures.

2. MATERIALS AND METHODS

2.1. Study Site
The Mignonne estuary, located within the Bay of Brest
(Figure 1), was chosen as a good example of a so-called
“invasion” by a toxic pelagic species. The Alexandrium minutum
blooms started in 2012 despite a few earlier observations of
low densities in the water (close to the detection threshold
of the methodology used by the monitoring program: 10,000
cells.L−1 ). This site is a typical shallow estuary of Brittany
with a mean depth of 3.75m subjected to tidal effects. The
Mignonne is a small coastal river with a mean discharge
of 1.47m3.s−1. The Mignonne river inputs exhibit very high
concentrations of nutrients such as nitrate, silicate and phosphate
with concentrations reaching 2,000 µmol.L−1, 2,000 µmol.L−1

and 20 µmol.L−1 respectively.

2.2. Area Definition and Forcings
To simulate inter-specific competition in a simple way, we chose
to remove the spatial dimension by using a model similar to a
chemostat with a Droop model (Droop, 1968, 1974) which is
more reliable to physiological traits (Flynn, 2005) and accurate
in many comparative studies (Grover, 1991, 1992). With this
simplification, only the temporal variability of the niches in
this small environment was analyzed and the spatial definition
of this environment was fixed according to the recurrent
observed distribution of Alexandrium minutum blooms during
the 3 years considered: the Mignonne estuary (Figure 1). This
approximation was possible because the strong tidal mixing
and shallow depths in this area prevent front and stratification
formation.

The considered area which sometimes provides favorable
conditions for A. minutum growth; undergoes water exchanges
associated with tide and river inputs. All these physical values
(water residence time, water depth, nutrient exchanges and
water temperature) were estimated using the hydrodynamic
model MARS3D (Lazure and Dumas, 2008) configured for
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FIGURE 1 | Bay of Brest with the A. minutum maximum abundance during the last 6 years and at the different monitoring stations. Black box shows the

spatial coverage of the Mignonne estuary used by the hydrodynamic model to estimate water exchanges.

the Bay of Brest and forced by realistic weather conditions
(wind, air temperature, relative humidity and atmospheric
pressure from Météo-France AROME model, Seity et al., 2011)
as well as by the measured daily Mignonne flow (HYDRO
database, Governmental Environmental Agency, monitoring
station Irvillac, see Figure 1 for river location). These forcing
fields constitute the best set available for this area and
the water residence time remains rather insensitive to the
weather conditions. The model bathymetry was provided by
the SHOM (French Naval Hydrographic and Oceanographic
Service). Three years of interest (2012, 2013, and 2014) were
simulated. The dilution rates (D) were computed by a classic
methodology of tracer dilution over a time period close to 25
h (the period between two high tides): a passive tracer was
initialized in the whole area at high tide and the decreasing
concentration due to dilution was simulated by the three-
dimensional (3D) model during 25 h until the next high tide.
The dilution rate was computed as the difference between the
two concentrations divided by the exact time lag between the
two high tides, and the tracer was re-initialized for the next 25
h. Concomitantly, the simulated water temperature was recorded
to calculate the mean temperature. Then, both dilution rates
and temperatures were interpolated to provide values for a 24-
h period. The mean water volume of the Mignonne estuary
(V) was estimated at mean sea level height using the model
bathymetry.

Commonly used to simulate phytoplankton dynamics in
experiments or coastal waters (Flynn, 2005), the selected

resources for phytoplankton competition were light and
three macronutrients: nitrogen (as ammonium and nitrate),
phosphorus (as phosphate) and silicium (as silicate). Light
intensity was estimated from Sea Surface Irradiance (SSI) of
daily satellite data (provided by METEOSAT Second generation
satellites, full description available on the OSI-SAF web server
www.osi-saf.org/index.php, validation by Le Borgne et al., 2006).
The SSI is the mean daily solar irradiance reaching the earth’s
surface in the 0.3–4 m band expressed in W.m−2. It was
multiplied by 0.95 to remove sea surface albedo and then
by 0.425 (fraction of the total spectra wavelengths that is
used by photosynthetic pigments) in order to estimate the
mean daily Photosynthetically Active Radiation (PAR, I0). Then,
instantaneous PAR was calculated as a sinusoidal function of
the mean daily PAR and the Julian day length was calculated
following the method described in Forsythe et al. (1995). The
light extinction coefficient due to the water column (Kpar) was
calculated following Gohin et al. (2005) using OSI-SAF satellite
data for suspended matter (SM in mg.L−1) and chlorophyll a (in
mg.L−1).

Nutrient concentrations in Mignonne waters were
calculated by taking into account (i) the nutrients brought
by the Mignonne River (interpolated from monthly data
measured by Brest Metropole Oceane) and (ii) the nutrient
concentrations prevailing in the rest of the Bay of Brest
(interpolated fromweekly data provided by the SOMLIT “Service
d’Observation en Milieu Littoral,” INSU-CNRS, at the Porzic
station).
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2.3. Traits Description of Phytoplankton
Model
A large diversity of traits and trade-offs associated can structure
phytoplankton communities (Litchman et al., 2007; Litchman
and Klausmeier, 2008). From these, we pragmatically selected
only the traits (cell size, optimal temperature and silicate
dependence, see Figure 2) relevant for the considered area and
well defined for phytoplankton groups and species.

2.3.1. Cell Size and Cell Quotas
Cell size is a key trait that impacts growth, metabolism and access
to resources (Litchman and Klausmeier, 2008). Major parameters
of nutrient uptake and growth scale with cell size and the size
is here considered as a fixed trait for each phenotype. The size
range covers the whole size spectrum usually used to characterize
the phytoplankton community from 1 to 120 µm (Figure 2).
Size corresponds to the equivalent spherical diameter (Equivalent
Spherical Diameter - ESD) and allows calculating cell volume
which is next used to simulate trade-offs with nutrient uptake and
growth. The Capacity of the phytoplankton cells to modify their
size (Smith and Zhao, 2001; Arino et al., 2002; Flynn, 2005) was
not considered here as we decided to simulate nutrients storage
capacity (quota). In fact, the quota-based approach was used
(Droop, 1968, 1974) because it is more reliable for physiological
traits (Flynn, 2005) and simulations. All previous comparative
studies concluded that growth is better described as a function
of internal rather than environmental nutrient concentration
(Grover, 1991, 1992). This approach and its application to
species competition has been widely investigated in the literature
(Pascual, 1994; Legovic and Cruzado, 1997; Smith, 1997; Smith
and Zhao, 2001; Sunda et al., 2009) and the theoretical results
are also fully applicable in our study. As the conditions are not
stationary and perturbations occur at several frequencies from
the seasonal cycle to tidal oscillations, the exclusive competition
in our simulations was better reproduced by a Droop model.
In this way, our approach is close to Sommer (1991) work and
novative compared to Darwin model (Follows and Dutkiewicz,
2011). Intracellular cell quotas of phosphate and nitrogen were
also considered.

2.3.2. Optimal Temperature
Temperature is a major environmental parameter that governs
physiological functions like photosynthesis, respiration, growth,
resource acquisition, motility and sinking (Eppley, 1972;
Litchman and Klausmeier, 2008). This dependence may be
characterized by the optimal temperature. It has been used here to
model phytoplankton maximal growth rate with all other factors
(nutrient, light) being optimal.

2.3.3. Silicate Dependence
Diatoms are one of the major microphytoplankton group
observed in the Bay of Brest. All species in this taxonomic
group are silicified species and this major trait induces a silicate
assimilation. Without considering any relation between this trait
and physiological rate (uptake, growth...) in our simulation, we
wanted to determine how the relevance of the potential specific
limitation of this large cell size could occur to permit a higher

growth of non-silicate large size species (including Alexandrium
minutum).

Other traits proposed by Litchman and Klausmeier (2008)
such as toxin production, light adaptation and swimming
capacities were considered but rejected. Chemical cues are
relevant processes for species interactions (Ianora et al., 2011).
Several metabolites have allelopathic effects and toxins of toxic
algae are obviously widely studied in this way (Hulot and
Huisman, 2004; Graneli et al., 2008). A. minutum thus produce
allelopathic substances that would shift the grazing pressure to
non-toxic species (Guisande et al., 2002) or decrease the growth
rate of other phytoplankton species (Arzul et al., 1999). However,
the “toxin” property is linked to a negative effects on humans
(from a food safety aspect) and/or macro-organisms (fish or
shellfish). This characteristic is not linked to the competition
for resources or interactions with specific grazers. Even the
toxic blooms can be grazed extensively (Jeong et al., 2015).
We can thus assume that many other cellular metabolites can
have allelopathic effects without affecting animal physiology
and conversely, are not measured. The action of toxins in the
environment is still being debated in the scientific community
(Hulot and Huisman, 2004; Jonsson et al., 2009), we therefore
chose to neglect this trait despite its potential implication in the
results of competition (Roy and Chattopadhyay, 2007; Grover
and Wang, 2014). The optimal irradiance for a cell is also a key
parameter and is modulated by the quantity and quality of its
pigment content. Although, the tidal mixing in the considered
area removed the possibility of a vertical discretization of the
phenotypes (Hickman et al., 2010), the bloom timing of each
one could be modified according to their optimal irradiance.
MacIntyre et al. (2004) used a remarkable adaptation to low
light levels of one phytoplankton species to simulated its
bloom initiation. However, despite the interest of such trait
integration, we first used a constant optimal irradiance for all
phenotypes by considering that, at the first order, the relevance
should remain low because the light resource is rarely limiting
during the blooming period of Alexandrium minitum (mid-
May to August). One of the last critical traits considered is the
organism’s behavior and mobility. Dinoflagellates have especially
significant swimming capacities (Kamykowski, 1995) that can
lead: to heterogeneous vertical distributions (Kamykowski et al.,
1992) and accumulation processes (Anderson and Stolznbach,
1985; Janowitz and Kamykowski, 2006) and to higher nutrients
uptakes in oligotrophic conditions due to the depletion around
the cell (Falkowski and Oliver, 2007). However, according to
the hydrodynamic of the considered estuary (Raine, 2014),
stratification (haline or thermal) never occurs over the year in
the estuary because the mixing intensity is mainly driven by
the interaction of the tide and the bathymetry. We therefore
assume that this physical-biological interaction remains stable
over the year and is included in the parametrization of the uptake
rates.

2.3.4. Modeling the Phytoplankton Diversity
The large variability was implemented by using 50 species (or
phenotypes for the selected traits) (Ns) with random trait values.
Each species is defined by its cell size, its capacity or not to
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FIGURE 2 | Conceptual model of the size class spectrum used. For each cell size, a quota of nitrogen and phosphate controls the growth rate (µ). The quota

and the cellular volume (Vol.C−1 ) are based on allometric laws. For the diatoms, the silicates are not stored in the cells but directly used with a potential limitation

directly on the growth rate. The size was randomly selected between 1 and 120 µm of ESD.

assimilate silicate and its optimal temperature. As it isnt linked
to precise species, it can also be considered as phenotype. Only
one species was fixed and defined for A. minutum. 51 phenotypes
were thus in competition for a limited number of resources
in each simulation. To analyze the outputs of the simulated
phytoplanktonic community, 2 or 4 cell groups were created
according to their size (or volume, see Figure 2). The small
cells include the picoplankton (0.5–5 µm3) and a fraction of
the small nanoplankton (ESD < 5 µm) while the large cells
include the largest cells of the nanoplankton (ESD < 5 µm) and
the microplankton (4,000–106 µm3). This size range covers the
whole size spectrum (pico-, nano-, and micro-phytoplankton)
usually used to characterize the phytoplankton community. The
size division in nanoplankton is related to the identification limit
by optic microscopy (ESD > 5 µm). Alexandrium minutum
belongs to the microplankton group with a volume close to
the value of 5,832 µm3 (18 µm of ESD, Maranon et al.,
2013).

2.4. Mathematical Model Description
The differential equations governing the dynamics of the
system are usual. The abundance of each species (Ni), nutrient
concentrations ([PO4], [NH4], [NO3], and [Si]) and intracellular
cell quotas of phosphate and nitrogen (QP,i and QN,i) are state
variables whose evolution over time can be expressed as follows
(for symbols and parameter values, see Tables 1, 2, respectively):

dNi

dt
= µiNi − DNi

d[PO4]

dt
= −

Ns
∑

i= 1

VP,iNi − D[PO4]

+ [PO4]riv
F

V
+ [PO4]bay(D−

F

V
)

d[NH4]

dt
= −kNH4 ,i[NH4]−

Ns
∑

i= 1

VNH4 ,iNi − D[NH4]

+ [NH4]riv
F

V
+ [NH4]bay(D−

F

V
)

d[NO3]

dt
= kNH4 ,i[NH4]−

Ns
∑

i= 1

VNO3 ,iNi − D[NO3]

+ [NO3]riv
F

V
+ [NO3]bay(D−

F

V
)

d[Si]

dt
= −

Ns
∑

i= 1

QSi,iµiNi − D[Si]

+ [Si]riv
F

V
+ [Si]bay(D−

F

V
)

dQP,i

dt
= VP,i − µiQP,i

dQN,i

dt
= VN,i − µiQN,i

(1)

(2)
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TABLE 1 | Table of symbols.

Symbol Description Unit

Ns Total number of phenotypes –

Ni Abundance of phenotype i cells.L−1

Nmin,i Minimum abundance of phenotype i cells.L−1

Qj,i Variable cell quota for N and P for phenotype j µmol cell−1

QSi,i Fixed cell quota for silicate µmol cell−1

[NO3] Nitrogen concentration µmol L−1

[NH4] Ammonium concentration µmol L−1

[Si] Silicium concentration µmol L−1

kNH4
Nitrification rate d−1

µi Growth rate of the phenotype i d−1

µmax,i Maximal growth rate of phenotype i d−1

VNH4,i Ammonium uptake rate µmol cell−1d−1

VNO3 ,i Nitrogen uptake rate µmol cell−1d−1

VN,i Ammonium+Nitrogen uptake rate µmol cell−1d−1

VP,i Phosphate uptake rate µmol cell−1d−1

fT,i Temperature limitation ∈ [0, 1] –

fL,i Light limitation ∈ [0, 1] –

fN,i Nitrogen quota limitation ∈ [0, 1] –

fP,i Phosphate quota limitation ∈ [0, 1] –

fSi,i Silicate quota limitation ∈ [0, 1] –

Qminj,i Min Cell quota of the element j µmol cell−1

Qmaxj,i Max Cell quota of the element j µmol cell−1

Vmaxj,i Max uptake rate of the element j µmol cell−1 d−1

Kj,i Half saturation for the element j µmol L−1

D Dilution rate d−1

V Volume of sea water m3

F River flow m3 d−1

T Temperature ◦C

I0 PAR at the sea surface W.m−2

I PAR at the depth Z W.m−2

Kpar Light attenuation coefficient –

The net growth rate (µnet
i ) of change in the abundance (Ni)

is the gain from the growth rate (µi) minus the dilution (D).
There is no specific term for a mortality process because it
was overlooked compared to the dilution values. To prevent
the extinction of a species due to dilution and to simulate
a possible migration after unfavorable conditions, a minimal
concentration (Nmin,i) is considered for each species. Due to the
exponential distribution of the cell abundance according to their
sizes, it is calculated in such a way that the total cell volume
of each species is equal to 106µm3 L−1. This approach gives
lower abundances for big cells (at least 1 cells.L−1) compared
to small cells (at least 106 cells.L−1). Concerning A.minutum,
the threshold is thus 171 cells.L−1 and similar to the detection
threshold by using the protocol of the monitoring program
(100 cells.L−1).

2.5. Parameter Values
The growth rate of each species is modulated by their maximal
growth rateµmax,i (d

−1), the temperature fT,i, and four limitation
factors fL,i, fN,i, fP,i, fSi,i (dimensionless ranging from 0 to 1)

TABLE 2 | Global parameters and allometric coefficients.

Parameter Process Value Unit References

α1 QminN , QminP , QSi 0.84 w.d. Maranon et al.,

2013

βQminN
2.3 10−9

µmol cell−1 /

βQminP
1.1 10−10 – /

βQSi 2.3 10−9 – /

α2 QmaxN , QmaxP 0.92 w.d. Maranon et al.,

2013

βQmaxN
6.9 10−9

µmol cell−1 /

βQmaxP
3.3 10−10 – /

α3 VmaxNH4
, VmaxNO3

,VmaxP04
0.97 w.d. Maranon et al.,

2013

βVmaxNH4
8.74 10−10

µmol d−1 cell−1 /

βVmaxNO3
4.37 10−10 – /

βVmaxPO4
4.18 10−11 – /

α4 KN, KP, KS i 0.33 w.d. Edwards et al.,

2012

βKN 0.2 µmol l−1 Cugier et al., 2005

βKP 0.01 – –

βKS i 0.1 – –

Iopt 20 W.m−2 Erard-Le Denn,

1997

kT 0.063 ◦C−1 Eppley, 1972

Knitrif 0.2 j−1 Cugier et al., 2005

where only the most constraining is retained (Liebig’s minimum
law):

µi = µmax, ifT, imin(fL, i, fN, i, fP, i, fSi, i) (3)

Temperature limitation (fT,i) is simulated in the same way for all
species with a function developed for A. minutum in the Bay of
Cork (Nì Rathaille, 2007):

fT,i =











0 if T < Topt,i − 10

0.1(T − Topt,i − 10) if Topt,i − 10 < T < Topt,i

1 if T > Topt,i

(4)

where Topt,i is the optimal temperature of growth for each species
and T is the simulated temperature. The light limitation (fL,i) on
phytoplankton growth rate is expressed by a hyperbolic tangent
(Jassby and Platt, 1976):

fL,i = tanh(
I

Iopt
) (5)

where I corresponds to the Photosynthetically Available
Radiation (PAR) and Iopt to the optimal light intensity. This
value is assumed to be constant for all the phenotypes. Variations
of the water depth associated with the tide are taken into account
by calculating I for each given depth (z) with the Beer-Lambert
law:

I = I0e
(−Kpar ·Z) (6)
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where Kpar is the light attenuation coefficient. The growth rate is
calculated for each depth and the mean of these growth rates was
used in the model.

Nitrogen (fN,i) and phosphorus (fP,i) limitations follow a
normalized Droop function (Droop, 1974), which is a hyperbole
depending on the minimum (Qmin

j,i ) and maximum (Qmax
j,i ) cell

quotas for the element j:

fj,i =
Qmax
j,i

Qmax
j,i − Qmin

j,i

(1−
Qmin
j,i

Qj,i
) (7)

According to Flynn (2008), silicate is not stored by siliceous
cells and is only used for the fabrication of the frustule which
occurs during cell division. The limitation in silicate is therefore
expressed through a simple Michaelis-Menten formulation :

fSi,i =
[Si]

Ksi,i + [Si]
(8)

where KSi is the half-saturation constant for siliceous species.
The nutrient uptake rates (Vmax

NO3 ,i
, Vmax

NH4 ,i
, and Vmax

P,i ) follow
Michaelis-Menten kinetics and decrease linearly when cell quotas
increase:

VNH4 ,i = Vmax
NH4 ,i

∗
[NH4]

kN,i + [NH4]

(Qmax
N,i − QN,i) · Ni

Qmax
N,i − Qmin

N,i

VNO3 ,i = Vmax
NO3 ,i

∗
[NO3]

kN,i + [NO3]

(

1−
[NH4]

kN,i + [NH4]

)

(Qmax
N,i − QN,i) · Ni

Qmax
N,i − Qmin

N,i

VP,i = Vmax
P,i ∗

[PO4]

kP,i + [PO4]

(Qmax
P,i − QP,i) · Pi

Qmax
P,i − Qmin

P,i

(9)

The absorption of nitrogen as nitrate is inhibited by ammonium
absorption (Parker, 1993) because the necessary reduction of
nitrate ions to ammonium ions requires a great deal of energy.

2.6. Key Physiological Trade-Offs
Some trade-offs are used in order to define competition between
all the species within the model ecosystem. Functional traits used
to simulate phytoplanktonic diversity thus follow different types
of distribution (see Table 3). Although, a large proportion of
the traits is related to the cell volume, phytoplankton maximal
growth rate is simulated by the temperature according to a global
exponential law (Eppley, 1972). There is a relationship with Topt

but not with cell size:

µmax,i = µmax,ref · e
(kT ·Topt,i) (10)

kT is the temperature coefficient for the growth rate and µmax,ref

is the growth rate at 0◦ without other limitations. The following
traits Qmin

N,i , Q
max
N,i , V

max
NH4 ,i

, Vmax
NO3 ,i

, Qmin
P,i , Q

max
P,i , Vmax

P,i , QSi,i, KN,i,
KP,i and KSi,i are dependent on the cell volume through an
allometric relationship in the form of a power function β ·Vα(see
Table 3 for the allometric coefficient values). Hence, some size-
related differences are introduced in the storage capacity and

TABLE 3 | Distribution of the functional trait.

Trait Type of distribution References

Siliceous or not Random law (Boolean) /

Volume (V ) Random and uniform law

∈ [1, 106]µm3
/

Optimal temperature (Topt ) Random and uniform law

∈ [10, 20]◦C

/

Maximum growth rate (µmax ) Eppley function Eppley, 1972

Minimum cell quota

(QminN ,QminP )

Allometric law Maranon et al., 2013

Maximum cell quota

(QmaxN ,QmaxP )

Allometric law Maranon et al., 2013

Half saturation constant

(KN,KP,KSi )
Allometric law Edwards et al., 2012

The optimum irradiance is fixed for all the species (20 Wm2).

maximal nutrients uptake rate. Indeed, large cells possess a bigger
storage capacity than small ones. The maximal uptake rate of
small cells is lower than that of large cells but the reverse is true
for nutrient affinity (1/KN,i, 1/KP,i). Consequently, small cells
will outcompete large ones in oligotrophic conditions.

Alexandriumminutum traits were obtained from the literature
(see Table 4 for references). Its maximal growth rate is identical
to species with the same volume but its distinction lies in its
maximum phosphate uptake rate and its maximum cell quota
which are both higher than in other cells (Chapelle et al., 2010).

2.7. Phenological Characterization of
A. minutum Bloom
Phenology refers to changes in the timing of seasonally re-
occurring biological events due to environmental changes. Due
to the random selection, 200 simulations were carried out with
different random draws and their mean values were analyzed.
To compare the simulated dynamics of A. minutum with the in
situ observations, the method developed by Rolinski et al. (2007)
was used instead of a simple correlation with the data. Some
particular points ofA. minutum phenology such as the maximum
abundance, the date of this maximum, the beginning, end and
duration of the bloom were thus obtained. To determine these
shape parameters, a Weibull function is proposed by Rolinski
et al. (2007):

w(x) =

(

d + e

(

−(x/e)f
))

. (1− a · exp(−(
x

b
)c)) (11)

After a log-transformation of the data, the values of the
parameters (a, b, c, d, e, and f ) that provide the best fit are chosen.
The maximum abundance and its date are directly provided by
theWeibull function. From these values, the area under the curve
is calculated. The start date of the bloom corresponds therefore to
the 2% quantile of the area under the curve before the date of the
maximum. By contrast, the 98% quantile of the area under the
curve after the date of the maximum, corresponds to the date of
the end of the bloom. The duration of the bloom is the difference
between the beginning and end of the bloom. This part aims to
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TABLE 4 | Specific parameters used for A. minutum.

Parameter Value References

V 5 800 µm3 /

Topt 18◦C /

µmax 0.9 d−1 /

QminN ,QmaxN 4.08 10−5, 27 10−5
µmol cell−1 Davidson and Gurney,

1999

QminP ,QmaxP 0.1951 10−5, 1.55 10−5
µmol cell−1 Labry et al., 2008;

Chapelle et al., 2010

VmaxNO3
, VmaxNH4

7.35 10−6, 14.7 10−5
µmol cell−1

day−1
Davidson and Gurney,

1999

VmaxP 1.53 10−5
µmol cell−1 day−1 Labry et al., 2008;

Chapelle et al., 2010

KN 3.93 µmol l−1 Davidson and Gurney,

1999

KP 0.28 µmol l−1 Labry et al., 2008

discover if the modeled phenology reveals strong variations over
the years as observed in the field.

Several ensembles of simulations were then carried out
through a selected range of phenotype numbers (Ns = 20, Ns
= 100, Ns = 150, and Ns = 200). Next, the cardinal dates
(beginning, maximum, and termination), timing and maximum
abundances of the A. minutum bloom were recalculated with the
same process (Table 5).

3. RESULTS

3.1. A. minutum Appearance and Bloom
Characteristics
Whatever the year and the simulation, the presence of A.
minutum is simulated from the beginning of May until
the beginning of September (Figure 3). Despite a simulated
interannual variability for the A. minutum bloom, the duration
of the bloom is quite constant (≈ four and a half months). The
random number of species is also sufficient to limit the variability
of each ensemble with some reduced differences between the
25TH and 75TH percentiles. This observation enables some
comparisons to be made between each year.

The model simulates the highest abundances of A. minutum
in 2012 with a mean value of 1 million cells.L−1 on 5TH
July. In 2014, the maximum abundance remains large (around
3.105 cells.L−1) but three times lower than in 2012. The lowest
values are observed in 2013 with 85,000 cells.L−1. Besides these
maximal values and close bloom duration, some differences in
the timing of the maximal abundances are also simulated in a
significant way. In 2014, the maximum is reached on 5TH July
which is a little bit sooner than in 2013 (8TH July) and 2012
(14TH July). Again, the percentiles indicate a low variability
in these values related to the random process. They are driven
by the phenotype succession and the environmental forcing.
Regarding 2013, the lowest maximum abundance is simulated
but with a long duration around this value (≈ one month).
The earliest bloom initiation is simulated in 2014 (4TH May)

TABLE 5 | Parameters obtained with the Weibull function fitted on

A. minutum blooms for the three years.

Year Dates of Max. for

Ns = [20;50;100;150;200]

bloom

initiation

bloom

termination

maximal

value

2012 [1;4;4;4;4] July 22 May 3 Oct. 959,000

2013 [13;18;14;10;19] July 5 May 19 Sept. 84,400

2014 [26;28;26;25;24] June 17 April 29 Oct. 253,000

Date of maximum was estimated for different number of phenotypes, and bloom initiation,
termination and maximal values (cells L−1) were estimated with only 50 phenotypes
(Ns = 50).

and the latest in 2012 (25TH May). Concerning the termination,
the bloom in 2014 ended earlier (end of August) whereas the
one in 2012 ended the latest (end of September). The small
oscillations during the bloom dynamics (notably in 2012) are
associated with the spring/neap tidal cycle which affects the
dilution rate.

3.2. Factors Controlling A. minutum

Blooms
The difference between sink and source terms (the net growth)
controls the simulated bloom timing and intensity, and thus
the potential A. minutum appearance period during 2012 is
four months from mid-May to the end of September (Figure 4).
The growth rate depends on the following factors: temperature,
nutrients (nitrogen and phosphate) and light. At the end of the
winter of 2012, despite nitrogen and phosphate cell quota values
close to their maximums, A. minutum growth is limited at low
water temperatures (below 10◦C). During the spring, the main
limitation remains the temperature until the beginning of May
after which the growth period occurs (Figure 5). Until mid-
June, the nitrogen limitation is the most important, followed
by a phosphate limitation that limits A. minutum growth
in summer (after mid-June) until October 2012. In autumn,
despite some new nutrient inputs from the river, the second
growth period remains limited to 1 month and the simulated
abundances remain very low due to light and temperature
limitations.

The same patterns are observed for subsequent years. There
is therefore a marked temperature control for bloom initiation
(Tables 5, 6). The shift of the onset toward an earlier period in
2014 is explained by a warmer temperature in mid April (12.8◦C)
compared to 2012 and 2013 (11.8 and 11.9◦C, respectively).
The simulated variability of the A. minutum bloom intensity is
next explained by nutrient concentrations. Phosphate limitation
is less important in 2012 due to higher flow rates from the
Mignonne river (respectively 1.5, 0.47, 0.66, 0.55·105m3s−1 mean
flow from May to August in 2012, 2013, 2014, and 2015)
which allow higher maximum abundances. The relationship
between river flow and nutrient concentrations is illustrated by
the mean in situ PO4 concentrations that have been weekly
measured in 2013, 2014, and 2015 with respective values of
0.12, 0.26, and 0.17 µmol.l−1. These measurements follow
A. minutum maximum abundances, 2012 being higher than
2013.
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FIGURE 3 | Interannual variability of A. minutum abundance for the

years 2012, 2013, and 2014. Abundances are the mean of the simulation

ensemble and 25th and 75th percentiles are plotted only for 2013 (dashed

lines). Positions of the three estimated Weibull parameters are added (date of

initiation, maximum and termination of the bloom).

FIGURE 4 | Net growth (µ − D) of A. minutum during the year 2012 and

temperature variability in the considered area. The period of potential A.
minutum occurence is indicated in gray.

3.3. Phenology of A. minutum and
Phytoplankton Successions
The outputs show a variation in the community structure that
is repeated for each year. In fact, large cells (ESD > 5 µm) are
the first to grow (Figure 6) and can be considered opportunist
phenotypes (higher growth rates when nutrients are high). They
are then replaced by smaller cells as the phosphate concentration
decreases with a low evolution from opportunists to gleaners
(more competitive cells when nutrients are low) from mid-May
to September. Small cell abundances increase at the beginning
of June and due to their higher affinity for phosphate than large
cells, they generate a sharp decrease in phosphate concentration
after 15th June (with a minimum of 0.01 µmol.L−1). Until
October, phosphate concentration is the most limiting factor,
which only rises in October because nutrient inputs from the
river increase. The model thus simulates a second peak of A.

FIGURE 5 | Temperature, nitrogen (N), phosphate (P) and light

limitations for A. minutum during 2012. The gray area indicates the

maximal limitation (Liebig’s Law).

minutum and large cell abundances well marked in October 2014
(with 2,000 cells.L−1). This is due to a lower dilution rate (0.2
d−1 in 2013 and 2012 against 0.1 d−1 in 2014). However, the
growth period remains too short to create a significant peak. At
the end of November in the 3 years simulated, A. minutum and
large cell abundances return to their initial and minimal values.
It is through an exclusive competition via phosphate limitation,
that the termination of the A. minutum bloom is simulated.

To sum up, simulated A. minutum bloom initiation is
controlled by temperature while the bloom duration and
termination are controlled by interspecific competition for the
nutrient resources (nitrogen and phosphate). The simulated
difference in the A. minutum bloom intensity for the three years
is due to the nutrient concentrations inside the area and the
simulated limitation in phosphate is less in 2012 thus leading to
higher values of maximum abundances.

3.4. Sensitivity Analysis and Comparison
with the Data Set
Due to the small variability within the ensemble (see the
percentiles in Figure 3), we assume the ensemble size sufficient to
permit comparison between average results. The sensitivity tests
were thus conducted on the number of selected phenotypes (Ns).
Four quantities of phenotypes in competition with A. minutum
inside the ecosystem were used (Ns = [20; 50; 100; 150]). By
doubling the number of species, (Ns = 50–100} and Ns = 100–
200}), the maximum abundance is divided by 2 for the 3 years
(Figure 7). The total cells per size class remain however constant
and show the redundancy between phenotypes. Except for the
lowest number (Ns = 20), the timing of the highest concentration
remains independent of the number of selected species (Table 5).
The small differences (±3 days) in 2013 are created by the fitting
of the Weibull function and the relatively large bloom duration
around the highest concentration.

Although the more realistic maximum values are obtained
with Ns = 20 for all 3 years, the beginning and end of
the associated bloom do not fit with these observations. By
comparison with the in situ observations, the simulation with
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TABLE 6 | Observed interannual variability of A. minutum blooms.

Year 2012 2013 2014

Temperature ◦C (15th April) 11.8 11.9 12.8

Temperature ◦C (1st May) 18 15 18

Maximal abundance cells L−1 42,000,000 360,000 1,500,000

Temporal feature of the bloom Restricted Spread Early and long

FIGURE 6 | Seasonal evolution of the phytoplankton community in

2012. Four size classes were used.

50 phenotypes is more realistic and this was the main reason for
choosing this value for the model validation.

For the 3 years and as explained above, the simulated intensity
of the A. minutum bloom is slightly underestimated and reaches
the values of 106, 4·105, and 7.8·105 cells.L−1 against 4.2·106,
8.4·105, and 1.5·106 respectively (Figure 8). Otherwise, for the
years 2012 and 2013, the model reproduces very well the seasonal
dynamics of A. minutum with a growth starting at the end of
May, a maximum at the end of June and a rapid decrease in
July. Concerning the year 2014, the growth of A. minutum occurs
earlier and is well reproduced by the model. However, it does not
fit with the decrease phase which is simulated on 29TH August
instead of the 16TH September.

The total microphytoplankton flora was compared to the
simulated dynamics of the large cells (large nanoflagellates +
microphytoplankton, A.minutum included). Their spring bloom
initiation is clearly not well simulated by the model (Figure 8).
In fact, this delay in the bloom timing is related to an
underestimation of the net growth rate and/or immigration. In
2012, the model simulates a maximum of 5.7·106 against 7.4·106

for the observations on approximately the same date. In 2013, the
maximum abundance simulated reached 2.8·106 against 5.5·105

for the observations.
Conversely, for all 3 years, the dynamics after the bloom

maximum fit well with the observations although small
differences do appear in 2014. These simulated values are higher
than the observations that were made that year (4.5·106 against
2.4·106). The decrease is also simulated earlier than observed
(one month of delay) and overestimated by the model. A second

FIGURE 7 | Variation in maximum abundance of A. minutum related to

the number of species for the years 2012, 2013, and 2014 in black, light

gray and gray, respectively.

increase in the abundance is simulated during October with
values again higher than the observations.

4. DISCUSSION

4.1. Dynamic of the Community Structure
Despite all the assumptions inherent to a model conception, the
simulations are in good agreement with the observations. The
community starts from opportunist phenotypes and during 2
months, progress to gleaners due to an increase of the resources
competition. The strong initial assumption that the predation
was negligible compared to dilution and constant over the years
appears consistent for the selected area and period. However, for
an application of the model in another area or over an extended
period, this assumption could be challenged. An integration of a
predation more or less specific could be required with a large set
of formulation available in the literature going from a generalist
grazer by keeping the same differences between phenotypes
fitness (its capacity to invade the environment considered) only
driven by their growth rates to the use of a “Kill The Winner”
(KTW) strategy (Prowe et al., 2012; Vallina et al., 2014) which
modifies the inter-specific competition by bringing the fitness of
phenotypes very close.

The main error of the model is the delay of the bloom timing
for diatoms and large flagellates. We link this bias to the lack
of spatial dimension and the migration processes through open
boundaries. The bloom timing of large cells is dependent on
the available light and temperature but is mainly driven by the
dilution rate. By considering another area or by increasing the
considered area, the dilution rate will be strongly modified. All
the connected areas, such as the up- and down-stream parts of the
estuary, are associated with different dilution rates and later or
earlier blooms can be expected with phenotypes having different
optimal temperatures. The results of the simulation can thus be
analyzed by assuming that an earlier bloom should take place
in the bay of Brest from March to April before an advection
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FIGURE 8 | Comparison between simulations of A. minutum (thin line)

and total cells (bold line) with density estimates for A. minutum and

large phytoplankton (> 5µm of ESD) in circles and black dots

respectively. Comparison are made for 2012, 2013, and 2014 in (A–C)

respectively.

in the estuary but that these phenotypes are not adapted to the
Mignonne estuary conditions.

4.2. Dynamic of A. minutum
The initial objective, to simulate one species of interest with
similar organisms inside a common framework based on
trait, was successful. Without any particular fitting of the
physiological parameters (all the parameters used are based
on the literature at the community and species levels) and
the same resolution of the biological processes for all the
organisms, the model shows very interesting capacities to
simulate the right timing and variability of the bloom intensity
over the 3 years. Only one condition was required for A.
minutum parameter set: for at least one trait, this species must
have an equivalent or a better fitness than other theoretical
species with the same size and optimal temperature. Without
respecting this condition, A. minutum would not be able to
invade.

The model also shows that the local growth is sufficient
to support the observed densities and that the timing and

intensities were driven only by local conditions and resources
competition. This simulated growth and presence period must
however be analyzed as the potential ecological niche defined
by abiotic factors and inter-specific competition for resources
with all external forcings being constant over time. Similar to
the community structure, a modification of the phenotype fitness
due to a variation of the selective grazing pressure will introduce
a bias between the simulated and the observed inter-annual
variability. Such variations over time in the grazers community
were already observed in similar estuaries in recent studies. The
grazer community observed was dinoflagellate parasites (Erard-
Le Denn et al., 2000; Guillou et al., 2008) that can be both
highly specific of their prey (Coats and Park, 2002; Chambouvet
et al., 2008) or not (Figueroa et al., 2008) and can change over
time.

The main difference between our work and previous
theoretical studies focused at the community level (Grover,
1991, 1992; Pascual, 1994; Legovic and Cruzado, 1997; Smith,
1997; Smith and Zhao, 2001; Sunda et al., 2009) is the
introduction of temperature preferences. This additional trait
is independent of all the others with an optimal temperature
that was randomly selected in the temperature range measured
in the area [10–20]◦C. The use of these two independent
traits (size and optimal temperature) explains the minimum
number of phenotypes required to obtain a good estimation
of the bloom duration. Fifty is the minimal value required
to sample correctly the traits-space. It must also be notice
that the maximal densities of A. minutum bloom are always
strongly correlated with this number of phenotypes (Figure 7).
With a random process to select size and temperature instead
of a regular distribution along the trait ranges, we accept the
possibility of a full redundancy between a few phenotypes
if the total number is large enough to sample correctly all
the traits-space. The biomasses of these redundant phenotypes
are obviously close but the temporal niche remains stable
and particularly the bloom initiation timing. The relevance
of the forcing on the timing is thus highlighted by the
model: temperature and dilution appear as the main drivers
of the bloom timing for A. minutum in the Mignonne
estuary; the nutrient inflows mainly drive the maximal
abundance values reached by the bloom while the inter-
specific competition can also drive the bloom magnitude and
termination.

The high capacity of the model to simulate correctly the right
timing of the bloom initiation with only one average phenotype
for one species raises the question of the phenotypic variability.
The parameters used here are provided by only a few strains
whereas intra-specific variability studies have highlighted a high
heterogeneity of physiological parameters (Aguilera-Belmonte
et al., 2011; Kremp et al., 2012; Hadjadji et al., 2012). The
“surprising” good fit between the observations and simulations
using this average phenotype could result from an average of
many local dynamics mixed by the tide and the average of
the ensemble simulation. Nevertheless, the effect of this intra-
specific variability on the species dynamics remains another
process to understand and a great challenge to the ecology of
communities.
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5. CONCLUSION AND PERSPECTIVES

The main interest of the model was to understand, due to
the mechanistic aspect, the processes driving the seasonal
and inter-annual variability of the niche successions in the
community. In this respect, this work was successful and
was validated by considering one particular species in this
area. Temperature and dilution appear to be the main factors
enabling bloom events but competition process is also an
important factor despite the high nutrient inputs. The trait
based approach that integrates some variability in the organisms
fitness instead of an empiric selection and limitation of the
ecosystem complexity keeps more flexibilities for the adaptation
of the community to environment pressure. We expect that
by using and developing (increase of the traits complexity)
this approach for ecosystem management, there will be larger
spectrum of potential replies by the phytoplankton community to
environmentmodifications. Despite that the forecasting potential
of the model was not the initial objective, the model thus shows
some very good capacities to simulate the ecological niche of
A. minutum as well as the potential link with warning period.
Finally, in the context of global change, these models could be
used to study the relevance of abiotic factors on the species
niches as well as their interaction through the competition

process which could lead to more efficient management
efforts.
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