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The NASA PACE mission is a hyper-spectral radiometer planned for launch in the

next decade. It is intended to provide new information on ocean biogeochemical

constituents by parsing the details of high resolution spectral absorption and scattering.

It is the first of its kind for global applications and as such, poses challenges for

design and operation. To support pre-launch mission development and assess on-orbit

capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic

simulation of global water-leaving radiances, using an ocean model containing multiple

ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC),

and chromophoric dissolved organic carbon (CDOC) along with optical absorption and

scattering processes at 1 nm spectral resolution. The purpose here is to assess the

skill of the dynamic model and derived global radiances. Global bias, uncertainty, and

correlation are derived using available modern satellite radiances at moderate spectral

resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are

simultaneously assimilated to improve the fidelity of the optical constituent fields. A

5-year simulation showed statistically significant (P <0.05) comparisons of chlorophyll

(r = 0.869), PIC (r = 0.868), and aCDOC (r = 0.890) with satellite data. Additionally,

diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716)

were significantly correlated with in situ data. Global assimilated distributions of optical

constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral

Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for

the spectral range 250–800 nm. These unassimilated radiances were within −0.074

mW cm−2
µm−1 sr−1 of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and

667 nm. This difference represented a bias of −10.4% (model low). A mean correlation

of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These

results suggest skill in the global assimilated model and resulting radiances. The reported

error characterization suggests that the global dynamical simulation can support some

aspects of mission design and analysis. For example, the high spectral resolution of the

simulation supports investigations of band selection. The global nature of the radiance

representations supports investigations of satellite observing scenarios. Global radiances

at bands not available in current and past missions support investigations of mission

capability.
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INTRODUCTION

The now 19-year time series of routine global ocean color
observations from space has led to advancements in the
science of ocean biology beyond expectations. From chlorophyll
interannual variability to inherent optical properties to physical-
biological coupling, the time series has been an invaluable
resource for scientists in a broad range of ocean and atmosphere-
related fields. As is often the case in science, the proliferation
of information from these moderate resolution missions has
raised as many questions as it has answered. Coupled with
improvements in detector technology, the time is now right for
advancement of ocean biogeochemical science from space using
higher spectral resolution missions.

Higher spectral resolution can potentially improve detection
of optical constituents in the oceans that have important
effects on biology, biogeochemistry, and light transmission. One
major objective is the determination of phytoplankton groups
from space. Research to detect phytoplankton groups from
space has been going on for some time using the fleet of
moderate spectral resolution sensors (e.g., Kamykowski et al.,
2002; Alvain et al., 2005; Aiken et al., 2007; Bracher et al.,
2009; Brewin et al., 2010, 2011; Kostadinov et al., 2010; Masotti
et al., 2010; Hirata et al., 2011). Methods to identify size
classes have also been pursued (e.g., Loisel et al., 2006; Brewin
et al., 2011) but these only loosely relate to phytoplankton
functionality/taxonomy. Several phytoplankton discrimination
methods resolve dominant groups only (Sathyendranath et al.,
2004; Alvain et al., 2005, 2008; Hirata et al., 2008; Raitsos et al.,
2008). Hirata et al. (2011) provides taxonomic classifications,
with relative and even absolute abundances quantified. Using
satellite ocean chlorophyll concentrations rather than radiances,
this empirical methodology essentially assumes that abundance
reflects taxonomy, which is valid in many instances but not
always (Rousseaux et al., 2013).

Moderate resolution ocean color sensors containing only
a few discrete spectral bands, such as the global missions
flown to date, do not contain sufficient spectral information
to enable unequivocal phytoplankton functional/taxonomic
discrimination. Many phytoplankton species/groups have subtle,
but distinct spectral signatures. Use of hyper-spectral remote
retrievals with many bands spanning the visible and ultraviolet
spectrum holds potential for resolving these spectral distinctions

Abbreviations: aCDM, absorption coefficient of Chromophoric Dissolved and

particulate organic Matter; aCDOC, absorption coefficient of CDOC; BIOSOPE,

Biogeochemistry and Optics South Pacific Experiment; CDOC, Chromophoric

Dissolved Organic Carbon; CZCS, Coastal Zone Color Scanner; DOC, Dissolved

Organic Carbon; EnMAP, Environmental MAPping and Analysis Program;

GMAO, Global Modeling and Assimilation Office; MAP, Modeling, Analysis

and Prediction; MERRA, Modern-Era Retrospective Analysis for Research and

Applications; MODIS, MOderate Resolution Imaging Spectroradiometer; NIR,

Near InfraRed; NOBM, NASA Ocean Biogeochemical Model; OASIM, Ocean-

Atmosphere Spectral Irradiance Model; PACE, Plankton, Aerosol, Cloud and

ocean Ecosystems ; PIC, Particulate Inorganic Carbon ; PRISMA, PRecursore

IperSpettrale della Missione Applicativa; PSU, Practical Salinity Units; SeaWiFS,

Sea-viewing Wide Field-of-view Sensor; S-NPP, Suomi National Polar-orbiting

Partnership.

(e.g., Bracher et al., 2009; Sadeghi et al., 2012; Palacios et al., 2015;
Neukermans et al., 2016).

To close this knowledge gap, NASA has proposed the
PACE mission, a global hyper-spectral sensor to test the ability
to retrieve phytoplankton population distributions, as well as
other important ocean constituents with optical signatures.
The mission, proposed for launch in the early 2020’s, can
potentially demonstrate the feasibility and capability of hyper-
spectral observations from space and enable scientists to observe
and quantify these important ocean biological features. PACE is
intended to follow future planned hyperspectral missions PRISM
(Meini et al., 2015) and EnMAP (Foerster et al., 2015) with
extended spectral range into the ultraviolet, faster observational
repeat times, and emphasis on global ocean observational
capability.

Since there is no global observational precedent, many
mission development activities, design tradeoff assessments,
operational strategies, and other issues, are speculative. Here
we develop a dynamic global model at extreme hyper-spectral
resolution (1 nm) to provide a platform to approximate realistic
ocean conditions and help with resolving at least some of
these issues and understand if such a simulation can assist in
resolving many of the issues that inevitably arise in the design
and testing of a new mission. The objective of this effort is to
quantitatively assess the skill of a global model using a forward
radiance representation to simulate global ocean water-leaving
radiances. The skill is evaluated spectrally with explicit error
characterization.

METHODS

Global Ocean Physical-Biogeochemical
Model Configuration
The underlying biogeochemical constituents are simulated by
the NOBM which is coupled to a global ocean circulation
model, Poseidon (Schopf and Loughe, 1995). It spans the domain
from −84◦ to 72◦ latitude in increments of 1.25◦ longitude by
2/3◦ latitude, including only open ocean areas, where bottom
depth >200m. NOBM incorporates global coupled physical-
biological processes, including four phytoplankton groups
(diatoms, chlorophytes, cyanobacteria, and coccolithophores),
which span much of the functionality of the global oceans,
four nutrients (nitrate, ammonium, silicate, and dissolved iron),
three detrital components (particulate organic carbon, silicate,
and iron), and two carbon components (dissolved organic and
inorganic carbon). It is a three-dimensional representation of
coupled circulation/ biogeochemical processes in the global
oceans (Gregg et al., 2003; Gregg and Casey, 2007).

Optically-active constituents have been added to NOBM
to improve realism and complexity of the ocean simulation
and better represent the ocean optical variability that will be
observed by PACE. We have added particulate inorganic carbon
(PIC) and chromophoric dissolved organic carbon (CDOC) as
prognostic state variables. PIC is produced by coccolithophores
as detached coccoliths and is lost via sinking and dissolution.
PIC is produced as a fraction (25%) of the coccolithophore
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growth rate (Gregg and Casey, 2007) minus respiration. The
PIC sinking rate is represented here as an exponential function
of concentration, assuming that large concentrations of PIC are
associated with larger coccolith size.

ws(PIC) = ao exp(a1∗PIC) (1)

where ws is the PIC sinking rate (m d−1), PIC is in units of µgC
l−1, a0 = 0.1m d−1 and a1 = 2.0 l µgC−1 (Gregg and Rousseaux,
2016). Dissolution follows Buitenhuis et al. (2001), except that
no dissolution is allowed for depths shallower than the calcium
carbonate compensation depth, which we define as 3500m.

Chromophoric dissolved organic carbon (CDOC) represents
the biogeochemical constituent necessary for the simulation of
absorption by aCDOC(λ), the absorption coefficient, which is an
optical quantity. CDOC is formed and destroyed the same as
DOC, using Aumont et al. (2002) with an assumed DOC:CDOC
production/loss ratio of 0.5. It is additionally destroyed by the
absorption of spectral irradiance. We follow the methodology of
Gregg and Rousseaux (2016) for photo-destruction (photolysis)
of CDOC per unit irradiance quanta, with a different quantum
yield ϕCDOC of 3.0E-6 (µM µmol photons absorbed m−3)
for results in reasonable agreement with MODIS-Aqua data
(Maritorena et al., 2010).

Ocean-Atmosphere Spectral Irradiance
Model
NOBM is coupled to OASIM (Gregg and Carder, 1990; Gregg,
2002; Gregg and Casey, 2009) to simulate the propagation of
downward spectral irradiance in the oceans and the upwelling
irradiance/radiance. The irradiance pathways for OASIM are
shown in Figure 1. The atmosphere and ocean portions of the
downwelling and upwelling irradiance are implemented at 25-
nm spectral resolution. Higher spectral resolution is impractical
for global models that integrate at 30 min time steps in our case.
Upwelling radiance is produced at 1 nm resolution, however.
Biases and uncertainties in the atmospheric component of
OASIM have been characterized for clear sky high spectral
resolution (1 nm; Gregg and Carder, 1990) and under mixed
cloudy and clear skies for integrated spectral resolution (Gregg
and Casey, 2009). We elaborate here on the ocean optical
calculations.

Optical Properties of Ocean Constituents
The coupled NOBM-OASIM model includes optically active
constituents, including seawater, phytoplankton, detritus, PIC,
and CDOC each with unique spectral characteristics (Figure 2).
All are prognostic state variables, with independent sources and
sinks. The optical properties of each constituent are taken from
various efforts in the peer reviewed literature.

Water
The spectral absorption and scattering properties of seawater
was reported by Smith and Baker (1981) for the 200–800 nm
spectral domain. Pope and Fry (1997) revised this for the range
380–720 nm, but this was for pure water. Morel et al. (2007)
derived new data for absorption and scattering for the spectral

range 300–500 nm using information in the clearest ocean waters
of the South Pacific (although absorption values >420 nm were
taken from Pope and Fry, 1997). Finally, Lee et al. (2015) reported
absorption coefficients in the range 350–550 nm derived using
remote sensing reflectance algorithms for the same clear ocean
water data used by Morel et al. (2007). Mason et al. (2016) used
laboratory observations to obtain new absorption coefficients for
the spectral range 250–550 nm. Like Pope and Fry (1997), their
results were specific to pure water.

Water absorption data used here are from Smith and Baker
(1981) for 200–300 nm and 730–800 nm, Morel et al., 2007) for
300–350 nm, Lee et al. (2015) for 350–550 nm, Pope and Fry
(1997) for 550–720 nm, Circio and Petty (1951) for 800 nm–2.5
µm, and Maul (1985) for 2.5–4 µm. Water scattering is from the
method of Zhang et al. (2009), which accounts for temperature
and salinity dependence. The backscattering-to-total scattering
ratio b̃bw for water is 0.5.

Phytoplankton
Phytoplankton optical properties are obtained from various
sources. Chlorophyll-specific absorption coefficients a∗p(λ)
are derived by taking reported spectra and normalizing to
the absorption at 440 nm [a∗p(440)]. Normalized specific
absorption spectra [a∗p(λ)]N are computed for each of the
four phytoplankton groups: diatom and chlorophyte [a∗p(λ)]N
are taken from Sathyendranath et al. (1987), cyanobacteria
from Bricaud et al. (1988), and coccolithophores from Morel
and Bricaud (1981). Then the specific spectral a∗p(λ) values
are derived using mean values at 440 nm. Diatom a∗p(440)
represents the mean of 5 observations containing 4 different
spp., chlorophytes 6 observations from 4 spp., cyanobacteria 5
observations from 3 spp., and coccolithophores 3 observations
of 1 spp.

Phytoplankton specific scattering coefficients b∗p(λ) are
obtained from measurements at 590 nm and extended to the
entire spectrum from specific attenuation coefficients (Bricaud
et al., 1988). Diatom and chlorophyte specific scattering
coefficients at 590 nm, b∗p(590) and b∗p(590), are the mean
of 5 observations and 6 observations, respectively, from Morel
(1987), Bricaud and Morel (1986), and Bricaud et al. (1988).
Cyanobacteria b∗p(590) is themean of 8 observations fromMorel
(1987), Bricaud and Morel (1986), Bricaud et al. (1988), and Ahn
et al. (1992). Coccolithophore b∗p(590) is derived from the mean
of 3 observations from Bricaud and Morel (1986), Bricaud et al.
(1988), and Ahn et al. (1992).

We assume no spectral dependence in the backscattering-
to-total scattering ratio b̃bp. Ahn et al. (1992) suggested a
spectral dependence for cyanobacteria but generally none for
the other groups. Reported values for b̃bp are 0.002 for diatoms
(Morel, 1988), 0.00071 for chlorophytes, 0.0032 for cyanobacteria
(Ahn et al., 1992), and 0.00071 for coccolithophores (Morel,
1988). Some of these values have come under question based
on non-sphericity of many natural phytoplankton populations
(Vaillancourt et al., 2004; Whitmire et al., 2010). Based on these
results, we increased b̃bp for chlorophytes and coccolithophores
by a factor of 10, but kept them as reported for diatoms and
cyanobacteria.
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FIGURE 1 | irradiance pathways in OASIM. Ed is direct downwelling irradiance, Es is diffuse downwelling. ρ surface reflectance, Eu is diffuse upwelling irradiance,

and LwN is normalized water-leaving radiance. All irradiances and radiances are spectrally resolved at 25 nm for Ed, Es, and Eu. and 1 nm for LwN.

Detritus
Detritus both absorbs and scatters light (Figure 2). Absorption
is typically considered an exponential function of wavelength
(Roesler et al., 1989; Gallegos et al., 2011).

ad(λ) = Da∗d exp[−Sd(λ − 440)] (2)

where ad(λ) is the absorption coefficient of detritus (m−1), D
is the concentration of detritus µg C m−3, Sd = 0.013 nm−1

(Gallegos et al., 2011) and a∗
d
is the mass-specific absorption

coefficient of detritus, which is set to 8.0E-5 m2 mg−1 for small
detritus as typically found in oceanic waters (Gallegos et al.,
2011). Only organic carbon detritus in the model is used for
detrital optics.

Detritus scattering is also taken from Gallegos et al. (2011).

bd(λ) = D b∗d (550/λ)
0.5 (3)

where bd is the total scattering coefficient, and b∗ d is the mass-
specific scattering coefficient, which is set as 0.00115 m2 mg−1,
and the backscattering-to-total scattering ratio b̃bd is 0.005.

PIC
PIC optical properties have been evaluated by Gordon et al.
(2009). We adopt this formulation for our simulation. PIC
scatters irradiance but does not absorb

bPIC(λ) = PIC b∗PIC (λ) (4)

where PIC is the concentration of PIC (mgC m−3) and b∗ PIC(λ)
is PIC-specific spectral scattering coefficient from Gordon et al.

(2009) in units of m2 mgC−1. The backscattering-to-total
scattering ratio b̃bpic is from Balch et al. (1996), using their lower
bound of 0.01.

CDOC
As a dissolved component, CDOC only absorbs and does not
scatter. Its spectral absorption is similar to detritus but with a
different slope

aCDOC(λ) = a∗cdoc exp[−Scdoc(λ − 443)] (5)

where a∗
cdoc

is the mass-specific absorption coefficient of CDOC

(m2 mg−1), Scdoc = 0.014 nm−1 (Bricaud et al., 1981, 2010).
S is in the low end range of observations in surface waters of
the Equatorial Atlantic (Andrew et al., 2013) but only slightly
lower than those observed in the Mediterranean Sea (Organelli
et al., 2014). There are few reports of the mass-specific absorption
coefficient of CDOC a∗

cdoc
. We have found three observations

in the literature (Carder et al., 1989; Yacobi et al., 2003; and
Tzortziou et al., 2007). The more recent two are in agreement at
2.98 × 10−4 m2 mg−1 in 4 rivers in Georgia, USA (Yacobi et al.,
2003) and 2.78 × 10−4 m2 mg−1 as the mean of 4 stations in the
Rhode River, Maryland, USA (Tzortziou et al., 2007). Carder et al.
(1989) reported a mean over about nearly an order of magnitude
lower in the Gulf of Mexico (4.74 × 10−5 m2 mg−1). We choose
Yacobi et al. (2003) for our simulation.

Upwelling Spectral Radiance
OASIMuses 25-nm spectral resolution in the 350–7700 nm range
in the coupled model for downwelling and upwelling irradiance

Frontiers in Marine Science | www.frontiersin.org 4 March 2017 | Volume 4 | Article 60

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Gregg and Rousseaux Simulating PACE Global Ocean Radiances

FIGURE 2 | Spectral absorption and scattering coefficients of water, phytoplankton, detritus, PIC, and CDOC in OASIM.

needed for phytoplankton growth and CDOC destruction. For
enhanced realism of the PACE simulation of upwelling radiance
we increase the spectral resolution to 1 nm. Since all of the
optical properties data are available at 5 nm resolution or
less, it is reasonable to simply interpolate the 5 nm data.
The computation of upwelling spectral radiance LwN(λ) is
derived from the coupled expressions of downwelling and
upwelling irradiance by Aas (1987) as modified by Ackleson et al.
(1994).

dEd(λ)

dz
= − Cd(λ)Ed(λ) (6)

dEs(λ)

dz
= − Cs(λ)Es(λ) + Bu(λ)Eu(λ) + Fd(λ)Ed(λ) (7)

dEu(λ)

dz
= − Cu(λ)Eu(λ) − Bs(λ)Es(λ) − Bd(λ)Ed(λ) (8)

where Ed(λ) is the spectral downwelling direct irradiance at
the bottom of a model layer, Es(λ) is the downwelling diffuse

irradiance, and Eu(λ) is the upwelling diffuse irradiance. The
attenuation terms Cx (where x is an indicator for the irradiance
pathway d for direct downwelling, s for diffuse downwelling, and
u for diffuse upwelling), backscattering terms Bx, and forward
scattering Fx differ for each of the irradiance pathways because
of different shape factors (Aas, 1987; Ackleson et al., 1994) and
mean cosines.

Cd(λ) = [a(λ)+ b(λ)]/µ
d

(9)

Cs(λ) = [a(λ)+ rsbb(λ)]/µs
(10)

Cu(λ) = [a(λ)+ rubb(λ)]/µu
(11)

Bd(λ) = bb(λ)/µd
(12)

Bs(λ) = rsbb(λ)/µs
(13)

Bu(λ) = rubb(λ)/µu
(14)

Fd(λ) = (1− b′b)b(λ)/µd
(15)

where a is the absorption coefficient, b is the total scattering
coefficient, bb is the backscattering coefficient, b′

b
is the ratio
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of backscattering to total scattering, and µ is the mean cosine
(constant for diffuse irradiance, but varies with solar zenith
angle for direct irradiance). The shape factors are indicated by
the rx terms, and are specified as in Ackleson et al. (1994).
Equation 5 can be solved a priori, which can then be used as
a boundary condition, greatly simplifying the solution of the
coupled Equations 6, 7.

Equation 8 can be simplified for normalized upwelling
radiance since by its definition the surface downwelling
irradiance does not include attenuation effects of the atmosphere
and the solar zenith angle is assumed to be 0◦ with overhead
sun (Gordon, 1997). Substituting the mean extraterrestrial
irradiance (Thuillier et al., 2004) for downwelling irradiance,
we can obtain upwelling normalized water-leaving radiance
solving the Aas (1987) expressions and correcting for surface
reflectance.

LwN(λ) = Fo(λ, 0
−)(1− ρ)/(n2Q) (16)

where Fo is the mean extraterrestrial irradiance (mW cm−2

µm−1) just below the ocean surface (0−) derived using
Aas (1987), ρ is the surface reflectance (0.021), n is the
index of refraction (1.341) and Q is the radiance:irradiance
distribution function (= π for normalized surface
irradiance).

Using 1 nm spectral resolution LwN not only supports testing
PACE sensor and mission concepts, it also simplifies comparison
with MODIS-Aqua LwN by virtue of avoiding band mismatches.
The pathways of optical constituents to optical properties to
upwelling normalized water-leaving radiances as represented
by the NOBM-OASIM global coupled physical-biogeochemical-
optical model is depicted in Figure 3.

Data Assimilation
Global total chlorophyll from MODIS is assimilated into NOBM
using the method described in Gregg (2008). Additionally, global
PIC from MODIS (Balch et al., 2005) is assimilated, using the
same methodology except that the data are not log-transformed
before assimilation. CDOC is assimilated, however, it requires
a transformation before the process is executed. There is no
available satellite data for CDOC, but a satellite product called
aCDM is available (Garver and Siegel, 1997; Maritorena and
Siegel, 2005; Maritorena et al., 2010). We use the products
from MODIS-Aqua in this effort. This product represents the
absorption of both CDOM and detritus (hence the usage of
CDM tominimize confusion about its nature). Siegel et al. (2002)
estimated the detrital contribution as 12%. We assume this is
globally constant and apply a correction of 0.88 to the aCDM(443)
data fields prior to assimilation. We recognize this is a potential
error, but it is difficult to separate the two in a reflectance
inversion methodology because the spectral slopes of absorption
are quite similar. The satellite aCDM(443) is assimilated with
model aCDOC(443), which is then easily converted to CDOC
using the mass-specific absorption coefficient of CDOC (Yacobi
et al., 2003).

Upwelling radiances are not assimilated. They are computed
using the distributions of optical constituents in the model, their
optical properties (Figure 2), and Equation 16 at 1 nm spectral
resolution.

Model Setup
The model is integrated for 35 years from an initial state using
climatological atmospheric forcing, with the new variables PIC
and CDOC initialized to 0 concentrations. The model is then
run forward in time from 2003 through 2007 using transient
atmospheric forcing from MERRA (Rienecker et al., 2011) and
assimilating MODIS-Aqua total chlorophyll, PIC, and CDOC.

FIGURE 3 | OASIM spectral upwelling radiance and dependencies in the ocean. Shown are the visible bands. The spectral resolution for upwelling radiance is

1 nm. Inherent optical properties are derived from spectral characteristics of water, phytoplankton groups, detritus. PIC, and CDOC.
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Statistical Comparison
The optical constituents of the NOBM-OASIM assimilation
model are compared to in situ and/or satellite (MODIS) monthly
data where and when available. Phytoplankton groups are

compared to in situ data while total chlorophyll, PIC, and aCDOC
are compared to satellite estimates. The statistics are aggregated

over the 12 basins of the global oceans, mean differences (biases)
computed, and then correlations computed over the basins.
This provides an estimate of large scale correlations and is

very stringent considering the low number of observations.

The major ocean basins are divided into 3 main regions, high
latitudes (poleward of ± 40◦ latitude): North Atlantic and

Pacific and Southern Ocean, mid-latitudes (between ± 40◦

and ±10◦ latitude): North Central Atlantic and Pacific, South

Atlantic, Pacific and Indian, and North Indian, and tropical
basins (between ± 10◦ latitude): Equatorial Atlantic, Pacific,
and Indian. Comparison of assimilated model results with the
data used for assimilation is typically insufficient for assessing
assimilation performance (Gregg et al., 2009). However, in this
case the objective is to simulate dynamic global water-leaving
radiances to support a proposed mission, not to assess the
assimilation methodology. Here, knowledge of the biases and
uncertainties in the underlying ocean optical constituents derived
from the assimilation model is best achieved using the satellite
data inputs for assimilation. Normalized water-leaving radiance
using OASIM and the computed optical constituent distributions
are compared to MODIS at the available MODIS bands, 412, 443,

488, 531, 547, and 667 nm. Using 1 nm upwelling radiances at
the center of MODIS bands, we can evaluate the simulated bias
and uncertainty with MODIS data and avoid model/data band
misalignment. These statistics are not aggregated by basin.

RESULTS

We evaluate ocean optical constituents, specifically
phytoplankton, total chlorophyll, PIC, and aCDOC, the latter three
of which are provided as data sets from MODIS-Aqua. Water

TABLE 1 | Comparison of simulated optical constituents in NOBM-OASIM

with data (in situ or satellite).

Optical constituent Difference Correlation N (ocean basins)

Diatoms 17.0% (in situ) 0.890 P < 0.05 11

Chlorophytes −16.2% (in situ) −0.318 NS 10

Cyanobacteria −2.4% (in situ) 0.732 P < 0.05 11

Coccolithophores 5.3% (in situ) 0.716 P < 0.05 10

Total Chlorophyll −35.9% (satellite) 0.869 P < 0.05 12

PIC −28.5% (satellite) 0.868 P < 0.05 12

aCDOC −24.6% (satellite) 0.890 P < 0.05 12

Detritus NA NA NA

NS indicates not significant at 95% confidence. NA indicates data not available for

comparison. The satellite comparison uses MODIS-Aqua and model data used are

co-located and coincident with monthly mean MODIS data.

FIGURE 4 | Model assimilated total chlorophyll for June and December 2007 compared to MODIS-Aqua chlorophyll.
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is a constant background and we are not aware of global data
on detritus. We evaluate water-leaving radiances by comparing
model upwelling radiances at MODIS-Aqua wavelengths with
those MODIS-Aqua radiance data.

Global Ocean Optical Constituents
Total chlorophyll from the assimilated NOBM-OASIM model is
within −35.9% of satellite data (model low), with a correlation
across basins of 0.869 (P < 0.05; Figure 4; Table 1). The model is
low because of uncorrected aCDM in the satellite data, especially
near coasts and river mouths, which artificially drives up the
estimates of chlorophyll.

Phytoplankton group relative abundances are positively
correlated with in situ data for diatoms, cyanobacteria, and
coccolithophores (P < 0.05) but chlorophytes are not correlated
(Table 1). All four groups have relative abundance biases <

±20% compared to in situ data, with diatoms the largest at 17%.
Assimilated PIC is correlated with satellite estimates (P <

0.05) and concentrations are within −28.5% (Figure 5; Table 1).
Simulated PIC is overestimated and more widespread in the
Southern Ocean in December, but otherwise exhibits similar
variability as indicated by the correlation coefficient (r = 0.868).
It is unable to capture the localized extreme high concentrations
in June in the northern high latitudes, which leads to model
underestimates globally. Model comparison of aCDOC (443 nm)
is within −24.6% of satellite estimates of aCDM (443 nm)
(Table 1), which represents the combined absorption of dissolved

matter and particulate matter (detritus). A basin correlation
coefficient of 0.890 (P < 0.05) is obtained (Table 1). Maps of
global distributions for June and December 2007 illustrate the
comparison between model and data (Figure 6). Although river
discharge is not included in the model, high aCDOC is produced
at major river mouths (e.g., Amazon, Orinoco, Congo) via the
assimilation of aCDM (see Figure 6).

Global Normalized Water-Leaving
Radiances
The mean of the global median difference of model normalized
water-leaving radiances with MODIS-Aqua radiances for all 6
bands for the period 2003–2007 is−0.074 mW cm−2

µm−1 sr−1

(−10.4%) with a mean semi-interquartile range of 0.077 and a
significant correlation of 0.706 (P < 0.05). There is a positive
and significant correlation with all the simulated radiances with
satellite data (Figure 7). The largest relative difference (−30%)
and lowest correlation (r = 0.48) occurs in the longest MODIS
band, 667 nm (Figure 7). Band 1 (412 nm) has the largest
absolute difference (−0.19 mW cm−2

µm−1 sr−1; Figure 7), but
only the third largest relative difference with a mean of −12.5%,
and it has a high correlation of 0.946. All simulated radiances are
low relative to data (Figure 7). Correlations of the longer visible
wavelengths, 531, 547, and 667 nm are much lower than those of
the shorter wavelengths.

Global maps of water-leaving radiances illustrate the spatial
agreement and discrepancies between themodel and satellite data

FIGURE 5 | Model assimilated PIC for June and December2007 compared to MODIS-Aqua PIC.
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FIGURE 6 | Model assimilated aCDOC 443 nm for June and December 2007 compared to MODIS-Aqua aCDM 443 nm.

(Figures 8–10). The spatial distributions reflect the biases and
correlations shown in Figure 7. Low biases in model radiances
are apparent for all bands, but the locations differ. Low model
radiances are most apparent for the shorter wavelengths (412
and 443 nm) in the central gyres (Figure 8). Mid-range bands
(531 and 547 nm) show low model biases in the northern high
latitudes (Figures 9, 10). The longest MODIS band (667 nm)
does not exhibit a model bias as shown in Figure 7, but the bias
is below the spectral resolution of the figure.

Maps of normalized water-leaving radiances at various
wavelengths from the 1 nm hyper-spectral resolution capability
are shown in Figures 11, 12. The radiance wavelengths are
broken into the two figures to capture variability over the widely-
ranging radiance values shown. The second set of radiance maps
(Figure 12) uses a different scale for radiance values. Otherwise,
spatial variability in these radiances is not visible.

Two locations in the North Pacific Ocean are selected to
show hyperspectral variability in different oceanic environments
(Figure 13). One is a low-chlorophyll central gyre location which
is characterized by low chlorophyll, PIC and CDOC, southwest
of Hawaii. The other is in the high latitude North Pacific just
south of the Aleutian Islands, where high chlorophyll, PIC and
CDOC prevail. Hyperspectral 1 nm normalized water-leaving
radiances show considerable differences in magnitude and local
spectral slopes, suggesting the potential for discrimination of
ocean constituents from PACE.

DISCUSSION

We have described a comprehensive model of optical
constituents and their influences on hyper-spectral upwelling
radiance in the global oceans. The model contains a
representation of major optical constituents, namely, water, total
chlorophyll, four major phytoplankton taxonomic/functional
groups, organic detritus, PIC, and CDOC. All except water
are prognostic variables in the model with individual
sources and sinks, and with full dynamical capability
arising from advection and diffusion processes in the global
oceans.

Normalized water-leaving radiances from the global
distributions of optical constituents have been quantitatively
compared to MODIS-Aqua radiances for the 6 wavelengths
available at 412, 443, 488, 531, 547, and 667 nm. These 6
discrete wavelengths provide only a partial basis for estimating
the potential of a global dynamical model to represent the
hyper-spectral capability of the next generation PACE mission.
Thus, the error estimation is incomplete, and relevance to PACE
and its ability to simulate future global hyper-spectral radiances
is unconfirmed. However, the comparison of the model with
the 6 MODIS bands suggests a level of skill sufficient to support
some analysis of mission capability and design, and the level
of caution necessary to proceed in these activities is quantified
here.
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FIGURE 7 | Global statistics on model normalized water-leaving radiances LwN(λ) compared to MODIS-Aqua data for 2003–2011. Mean radiance and

difference is mW cm−2
µm−1 sr−1. Correlation is r-value. All correlations are significant (P < 0.05: N > 3.7 × 106. Error bars represent semi-interquartile range.

Global Ocean Optical Constituents
The global ocean biology model is optically comprehensive, but it
is not complete. There are optical constituents in the oceans that
are not included in themodel. Some can be important, sometimes
globally but most often regionally. For example, bacteria and
virus scattering is not present in the model. Bacteria scattering
is considered an important component of the scattering from
the living part of the particulate pool, possibly dominating the
phytoplankton (Balch et al., 2002; Stramski et al., 2004). However,
the scattering contributions from the living components are
estimated to be small relative to detritus (Stramski et al.,
2004). We assume here that bacteria covary with detritus. Virus
scattering is disputed. Balch et al. (2002) suggest it may be
important while Stramski et al. (2004) consider it negligible.

Minerals/suspended sediments are not included. These are
most important near river mouths at times of high discharge, but
they also occur from particulate deposition from the atmosphere,
such as desert dust (Wozniak Stramski, 2004) or organic carbon
from biomass burning. Absorption by mycosporine-like amino
acids (Moisan and Mitchell, 2001) is not included in the model.
This is most important in the ultraviolet spectrum, and casts
suspicion on the simulated representations of water-leaving
radiances in this spectral region by the model. PACE is nominally
expected to detect as low as 350 nm (PACE Mission Science
Definition Team Report, 2012), but there may be interest in

expanding that range if it is technically and economically feasible.
The most recent configuration concept is to expand the detection
limit to 320 nm. Inclusion of the effects of mycosporine-like
amino acids should be included in future improvements of the
biological global model.

Finally, four phytoplankton groups cannot possibly represent
the range and complexity of the phytoplankton taxa living in
the oceans. Unfortunately, detailed knowledge of the optical,
physical, and physiological properties of the world’s ocean
phytoplankton, which is required to parameterize our coupled
optical, physical, and biological model, is not available. We
recognize our four groups as a shortcoming, but they do
capture a substantial range of functionality. Diatoms represent
the fast growing, fast sinking component particularly important
in the carbon and silicon cycles. Cyanobacteria represent the
functional opposite, as a slow growing, nearly floating, very
small phytoplankton that occupy the nutrient-desolate vast
ocean gyres, and additionally have a limited nitrogen-fixing
capability (Rousseaux et al., 2013). Coccolithophores represent
a unique category of calcium-producing phytoplankton, which
scatter light out of the oceans effectively and play a role in the
carbon cycle by affecting alkalinity in addition to photosynthesis
and respiration processes. Finally, chlorophytes represent (or
at least are intended to represent) intermediate phytoplankton
with characteristics between diatoms and cyanobacteria. It
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FIGURE 8 | Model normalized water-leaving radiances LwN(λ) for 412 and 443 nm compared to MODIS-Aqua radiances.

is this intermediate category that is most under-represented
here and is where much of the diversity of the global ocean
arises.

The fact that chlorophytes are not significantly correlated with
in situ data in the model is particularly important because they

are the only group in the model representative of the diverse
phytoplankton component between the functional extremes of

diatoms and cyanobacteria, save for the unique coccolithophore
class. This is a deficiency in the model as it pertains to PACE

and we acknowledge that their lack of correlation with data
is important. However, in the model we assume chlorophytes
represent a very wide range of phytoplankton, often reported

to as nanoplankton. Since in situ data sets rarely specifically
identify chlorophytes, we compare our model chlorophytes to
in situ data reports of nanoplankton, non-diatoms or non-

pico-prokarytotes, representing this middle ground between
diatoms and cyanobacteria. We note that most of the lack of

correlation with in situ data occurs in the high latitudes, where
chlorophytes are not common, but other types on nanoplankton
are sometimes abundant. The abundance of these reported
nanoplankton in the high latitudes, coupled with the near-

absence of chlorophytes in the model, is the cause of the lack of
correlation. The model representation of chlorophyte abundance
corresponds much more closely with reported observations of
nanoplankton in the lower latitudes, suggesting that simulation
of PACE radiances in these basins is likely to be more
realistic.

Using Data Assimilation to Improve the
Representation of Global Optical
Constituents
The assimilation of chlorophyll has been demonstrated to
improve the representation of distributions regionally and
globally (Hu et al., 2012; Fontana et al., 2013; Gregg and
Rousseaux, 2014). Assimilation of PIC and aCDM has not
been attempted globally, to our knowledge. Our purpose in
assimilating PIC and aCDM is not novelty but fidelity. The optical
properties of PIC have been established (Balch et al., 1996;
Gordon et al., 2009) and one can find models of production
and dissolution in the literature (Buitenhuis et al., 2001; Gangsto
et al., 2011; Barrett et al., 2014). Our parameterization of sinking
processes is a matter of trial and error using global satellite
fields of PIC from MODIS-Aqua. Assimilation of aCDM is a
larger challenge. Although assimilation of optical properties,
in particular the diffuse attenuation coefficient, has shown
value (Ciavatta et al., 2014), the assimilation of aCDM is more
problematic because there a few examples of its use in coupled
physical-biogeochemical models (e.g., Buitenhuis et al., 2001;
Xiu and Chai, 2014; Dutkiewicz et al., 2015) We approach the
problem in a bottom-up fashion, adding a dynamical tracer
to the biogeochemical model suite, i.e., CDOC, which has the
optical properties of aCDOC(λ). The characterization of the
biological production and loss terms for CDOC is more or less
straightforward, as it can be related to those from the optically
inert DOC (e.g., Aumont et al., 2002). Loss of CDOC via the
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FIGURE 9 | Model normalized water-leaving radiances LwN(λ) for 488 and 531 nm compared to MODIS-Aqua radiances.

absorption of spectral irradiance is more difficult. Although the
absorption characteristics are well-established, how that relates
to CDOC concentration and subsequent destruction is difficult
to quantify. There is regional information on defining a quantum
yield for CDOC photolysis, ϕcdoc (e.g., Reader and Miller, 2012,
2014), but we require a global spectrally integrated solution. We
consider our parameterization of ϕcdoc to be tenuous, but we take
consolation that the assimilation guides us to a reasonable result
in the end, and even rectifies the absence of river input in the
model, which is a major source of CDOC to the oceans. For the
present purpose of providing a model to assist in the early stages
of development of a future mission, we believe our approach has
support as an initial step. The statistical comparison of CDOC
distributions with satellite data supports this approach as well
(Table 1; Figure 6).

Global Water-Leaving Radiances
The comparison of model water-leaving radiances with MODIS-
Aqua at the 6MODIS bands suggests some skill in the simulation:
the mean of the global median difference is −0.077 ± 0.079 mW
cm−2

µm−1 sr−1 (−10.4%). A statistically significant correlation
with all the simulated radiances with satellite data is found
(Figure 7), although some of the correlation coefficients are
low. We emphasize that the radiances are not assimilated. We
emphasize that the radiances are not assimilated. Rather, they are
the result of the distribution of optical constituents in the coupled
model.

The longer visible wavelengths, 531, 547, and 667 nm
have lower correlations with satellite data than the shorter
ones. There is much less spatial variability in the longer
wavelengths (Figures 9, 10). Ocean color sensors have much
larger uncertainty in these wavelengths (Mélin et al., 2016) which
contributes to the decrease in correlation of these radiances here.

The model is always low relative to the MODIS normalized
water-leaving radiances. The low model radiances occur in
different regions for the different bands. For the shortest MODIS
wavelengths, 412 and 443 nm, largest biases occur in the ocean
gyres (Figure 8), where ocean biological optical constituents are
at their lowest magnitudes. The 412 nm band has a larger model-
data discrepancy than the 443 nm band (Figure 7). For the mid-
range bands 531 and 547 nm, the model-data discrepancies occur
in the northern high latitudes.

The model low bias for LwN(412) and LwN(443) in the
central gyres suggests either missing scattering in the model
or overestimated absorption. These regions are biologically the
most barren regions in the global ocean, where the main
optical constituent is water. The southeast Pacific gyre has
been the subject of an intensive field campaign (BIOSOPE),
and several investigators have relied upon this data set to
revise the understanding of the optical properties of seawater
(Morel et al., 2007; Lee et al., 2015), CDOM and particulate
detrital absorption (Bricaud et al., 2010), and total particulate
backscattering (Twardowski et al., 2007). The Lee et al. (2015)
seawater absorption revision reduced the absorption coefficients,
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FIGURE 10 | Model normalized water-leaving radiances LwN(λ) for 547 and 667 nm compared to MODIS-Aqua radiances.

thus producing more scattering, which has helped in our
model here, since the revision is used in our calculations.
Residual underestimation of scattering and/or overestimation of
absorption still prevails in the simulation.

It is possible that the exclusion of mineral scattering in the
model is important in the central gyres. However, this argument
would be more persuasive for the North Central Pacific and
North Central Atlantic gyres than the South Pacific gyre, since
there are few atmospheric depositions to this region. One cannot
neglect the possibility of radiative model error as well. Perhaps
the use of empirical constants in a remote sensing reflectance
algorithm, such as Lee et al. (2002) or Gordon et al. (1988), would
improve radiances. However, this would sever connections in the
radiative modeling system, which uses an analytical model for
simulation of both irradiance transmittance in the ocean and the
irradiance and radiance re-emerging to and above the surface.

Finally, the spectral slope of detrital absorption Sd(λ) used
here, 0.013 nm−1, which was derived from assessment of small
particulates in the Chesapeake Bay (Gallegos et al., 2011), is
higher than that derived from the southeast Pacific by Bricaud
et al. (2010), 0.0094 nm−1. This could lead to the higher
absorption and subsequent lower backscatter, especially in the
shorter wavelengths, as we observe here. How much will depend
upon the concentration of detritus in this region and the other
central gyres.

The model also exhibits low radiances compared to MODIS
for the 531 and 547 nm bands (Figures 9, 10), except these are

mostly located in the northern high latitudes. These discrepancies
appear to be related to the distributions of PIC (Figure 5).
Model PIC distributions here largely correspond with satellite
distributions, although local maxima in the southern central
North Pacific and the Greenland Sea are subdued in the model
(Figure 5). These two locations are responsible for the largest
disagreements. However, additional local maxima in satellite PIC
occur in the northern Bering Sea and western Sea of Okhotsk
(Figure 5), that are not accompanied by high water-leaving
radiances in the MODIS 531 and 547 nm bands (Figures 10, 11).
High chlorophyll (Figure 4) and aCDOM (Figure 6) in the model
and MODIS likely suppress the scattering of PIC in the northern
Bering Sea and Sea of Okhotsk. But the lack of representation
of the high scattering by PIC in the south-central North Pacific
and Greenland Sea results from the spatially smoother PIC
distributions in the model compared to MODIS (Figure 5).
Overall widespread higher radiance dispersed throughout the
northern basins in likely due to inadequate PIC scattering
in the model, considering the correspondence between model
and satellite PIC distributions. Excessive absorption by other
constituents in the model can contribute to the differences in
radiances between model and data here. Such high absorption
would likely be due to phytoplankton (particularly diatoms,
which are predominant in the North Pacific), or coccolithophores
which are prevalent in the North Atlantic.

Global maps of selected normalized water-leaving radiances
other than those coincident with MODIS-Aqua show
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FIGURE 11 | Model normalized water-leaving radiances for selected wavelengths in the ultraviolet and visible region.

considerable spectral and spatial variability (Figures 11, 12).
The figures are divided into two groups because the spectral
range is so large that different scales must be utilized. Figure 10
shows radiances from two ultraviolet-b bands (300 and 320 nm),
to an ultraviolet-a band (340 nm), and 13 through mid-range
visible (360–560 nm). There is a steady increase in radiance
intensity as we progress from shorter to longer wavelengths
until about 400–410 nm, then a slow decline to 560 nm.
An exception to this trend is the radiance at 430 nm, which
shows a sharp decline relative to its neighbors at 420 and
440 nm (Figure 11). This is due to a local minimum in the
extraterrestrial irradiance that is employed at 1 nm resolution
(Thuillier et al., 2004). These local minima and maxima occur
occasionally in the radiance spectrum and represent a potential
issue when choosing band locations for PACE. There can
be very large swings in signal strength in short wavelength
segments.

The second selection of radiance wavelengths, at extreme
ultraviolet-b along with the long end of visible and 3 near
infrared wavelengths (Figure 12), shows increasing intensity
from 250 through 270 nm, and another from 600 to 630
nm, before reversing from 650 to 720 nm. There is very little
normalized water-leaving irradiance at 720 nm and spatial
variability will require another scale change to be visible.
There is another anomaly, this time a local maximum, at
270 nm, again due to the high spectral variability in the

extraterrestrial irradiance. This set of radiances, with the
possible exceptions of the shorter 600 nm bands, suggests
that ocean signal detection from a satellite will be challenging.
The longer 600 nm wavelengths are conventionally used for
atmospheric correction since there is so little ocean contribution
to the normalized water-leaving radiance (e.g., Gordon, 1997)
while NIR bands (e.g., Wang et al., 2016) have shown
additional promise for the rare conditions when the ocean does
contribute here.

Potential Uses for Pace Mission Design
and Analysis
The hyper-spectral 1 nm resolution ocean model presented
here suggests skill for simulating global normalized water-
leaving radiances, as shown by the comparison with the
moderate resolution bands for MODIS-Aqua. Quantitative
error characterization shows the limits of usefulness in the
MODIS bands and the potential for simulating radiances outside
the current satellite observational capability. This suggests
at least some usefulness for pre-launch PACE design and
analysis activities, guided by due caution of the limits of the
simulation.

Representation of remotely-sensed normalized water-leaving
radiances may be approached using airborne (e.g., Airborne
Visible/Infrared Imaging Spectrometer, Portable Remote
Imaging SpectroMeter), or in situ data, or coastal spaceborne
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FIGURE 12 | Model normalized water-leaving radiances for selected wavelengths in the ultraviolet, long visible, and near-infrared region. Note scale

change.

imagers, such as the Hyperspectral Imager for the Coastal
Ocean. However, the global observing simulation capability
of the present assimilated model can contribute in other
important ways that airborne, in situ and limited spaceborne
data cannot.

The most important attribute that separates PACE from
previous ocean color missions is its global hyper-spectral
resolution capability. The global simulation described here at 1
nm can help clarify questions about band selection, specifically
choice of bands, band widths, number of bands and their
center location. Variability over orbital tracks encountering a
range of solar and satellite angles complicates band selection
decisions in ways that in situ and most airborne activities
cannot resolve. The global seasonal nature of the simulation
assists in understanding potential signal strength issues over the
diverse regions and seasons encountered in a global mission.
It is possible to sample the simulated 1 nm bands in various
scenarios to observe and optimize their location and widths,
subject to the viewing constraints of an orbiting platform. Optical
effects, such as spectral response function can be included
in the analysis. As mission design and construction proceeds,
issues can arise and tradeoffs must be assessed. These often
include signal-to-noise ratios, detector saturation effects, gain
selection and operation (if applicable), stray light, and bright
target recovery. The existence of the simulation described here

can provide numerical answers from an orbital perspective,
even if approximate, as these issues emerge. The limitations
of the model are quantitatively characterized here and can
be factored into the decisions on how to proceed. A much
more modest simulation, using only a single global map of
ocean color data derived from the entire CZCS mission (Gregg
et al., 1997), proved helpful in designing and managing the
SeaWiFS mission, which, like PACE, had no global observational
precedent.

The second most important feature of this simulation is
to provide a platform for algorithm development activities.
Although the phytoplankton differentiation in the model is
necessarily simplified, it can be used in coarse algorithm
activities. At worst, algorithms that cannot differentiate among
the simple phytoplankton assemblage in the simulation would
likely have difficulties in actual ocean observations, where the
phytoplankton diversity is enormous.

The simulation can also assist in studies of data
collection strategies on orbit. Seasonal variability in
phytoplankton/PIC/CDOC distributions is explicitly
incorporated in the simulation to include a full representation
of optical combinations as seen to date with current
missions. If coupled with a similarly comprehensive and
hyper-spectral atmospheric simulation, and an orbital
viewing platform, the combined models can be used to
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FIGURE 13 | Normalized water-leaving radiances from two locations in the Pacific Ocean: a gyre location (low chlorophyll) and a high latitude location

(high chlorophyll).

explore signal retrieval at the sensor and help maximize
the ability to meet the challenging goals of this ambitious
mission.
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