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The dynamic nature of most environments forces many animals to move to meet their

fundamental needs. This is especially true in aquatic environments where shifts in spatial

ecology (which are a result of movements) are among the first adaptive responses

of animals to changes in ecosystems. Changes in the movement and distribution

of individuals will in turn alter population dynamics and ecosystem structure. Thus,

understanding the drivers and impacts of variation in animal movements over time is

critical to conservation and spatial planning. Here, we identify key challenges that impede

aquatic animal movement science from informing management and conservation,

and propose strategies for overcoming them. Challenges include: (1) Insufficient

communication between terrestrial and aquatic movement scientists that could be

increased through cross-pollination of analytical tools and development of new tools

and outputs; (2) Incomplete coverage in many studies of animal space use (e.g., entire

life span not considered); (3) Insufficient data archiving and availability; (4) Barriers

to incorporating movement data into decision-making processes; and (5) Limited

understanding of the value of movement data for management and conservation. We

argue that the field of movement ecology is at present an under-tapped resource for

aquatic decision-makers, but is poised to play a critical role in future management

approaches and policy development.
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INTRODUCTION

Animal movement studies are conducted for many reasons including basic scientific discovery,
as tools for education and outreach, to address management and conservation questions, as
part of environmental assessments, to determine the success or failure of management or
conservation interventions, and for long-term monitoring of environmental change. Theoretical,
methodological and technological advances have provided insights into aquatic animal behavior
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amid constantly-changing environmental conditions that could
not be obtained using traditional conceptual frameworks and
methods (Nathan et al., 2008; Costa et al., 2012; Hussey et al.,
2015). This paper complements recent reviews discussing key
achievements (Hussey et al., 2015) and key questions (Costa
et al., 2012) in the study of aquatic movement ecology, and
comprehensive reviews of how movement data have been used
successfully in conservation decision-making and practice (for
fish, see Cooke et al., 2016 and Crossin et al., accepted; for
seabirds see Burger and Shaffer, 2008 and Lascelles et al., 2016),
or how their use could be improved (McGowan and Possingham,
2016; McGowan et al., 2016).

A framework for linking movement ecology with wildlife
management and conservation was recently introduced
by Allen and Singh (2016) and adapted by McGowan and
Possingham (2016) to illustrate how information about
movement attributes of species can enhance conservation
planning. We submit that many conservation issues can benefit
from a more pro-active and strategic approach to integrating
movement ecology with conservation efforts given the dynamic
nature of aquatic ecosystems in space and time. We also
discuss recent criticisms of the ability of movement data to
aid conservation efforts. We review five key challenges to
maximizing the conservation impact of movement ecology
information in aquatic conservation, and we propose strategies
for overcoming them. Two challenges focus on the conduct
of movement science, one on building a culture of data
openness, and two on practical applications of movement
information. The challenges, while similar to other fields of
study, are nonetheless critical to aquatic conservation, and
management:

(1) Disciplinary divides: Inadequate integration of terrestrial
and aquatic movement science limits scientific advances and
practical applications.

(2) Limited coverage: Many studies are limited in their coverage
of the space animals use throughout their lifetimes.

(3) Insufficient data access and sharing: Improving data
archiving, access and use in collaborative research projects
is needed to enhance the study of animal movement.

(4) Incorporating movement data into decision-making: There
are often real or perceived barriers to incorporating
movement data into decision-making processes.

(5) Assessing the utility and impact of movement information:
The full value of movement data for management and
conservation is poorly documented.

BRIDGING THE TERRESTRIAL/AQUATIC

DIVIDE

The goal of movement ecologists in all ecosystems is similar:
gain a better understanding of animal distribution and resource
use by collecting individual-level location data. Despite inherent
differences, more integration between movement ecology studies
in aquatic and terrestrial ecosystems will enhance methods,
ecological knowledge, effort efficiency, and conservation or
management.

Strengths in Our Differences
A major difference between terrestrial and aquatic movement
data lies with the inherent ability to observe these ecosystems.
While it is often possible to observe tagged individuals for
behavior validation in terrestrial systems, this type of validation is
rare in aquatic systems. Aquatic observing systems often generate
temporally irregular data that include substantial measurement
error (due typically to the limits of satellite communication and
receiver coverage). These features generally make it harder to
infer “true” behavioral states of tagged aquatic animals. Behavior
ambiguity often affects the analytical focus (i.e., in aquatic
systems analyses typically focus on behavior segmentation
and habitat use, compared to terrestrial work that addresses
mechanistic drivers or resource use), and accuracy limitations
can cause substantial difficulties with aligning environmental
data for associated habitat modeling.

Both terrestrial and aquatic ecologists strive to link movement
patterns with environmental covariates, which tend to be better
mapped (more coverage, more diversity of data layers, and higher
spatial resolution) in terrestrial systems. Aquatic systems are
typically highly spatially and temporally variable (Carr et al.,
2003), emphasizing the need for dynamic environmental layers
acquired from satellites or in situ sensors.

Terrestrial movement data are typically two-dimensional,
reflecting the traditional view of terrestrial ecosystems (Carr
et al., 2003), although this is changing (e.g., deployment of
altimeters or accelerometers on birds) with growing attention to
the dynamics of air (Shepard et al., 2016) and the developing field
of aeroecology (Kunz et al., 2008). Aquatic movement data are
regularly interpreted in three spatial dimensions, for example,
vertical diving behavior of marine mammals coupled with
horizontal space-use. Additionally, terrestrial technologies allow
tracking of tiny animals (spiders: Persons and Uetz, 1997, fruit
flies: Berman et al., 2014), but aquatic efforts are often more size-
limited by the sizes of water-proof housings, captivity challenges,
capture/re-capture ability, and battery power demands.

Both marine and terrestrial systems are being impacted
by climate change and shared model frameworks will allow
ecologists to comparatively evaluate responses to environmental
change. Moreover, those managing and designing aquatic
protected areas can learn from successes and critiques of
the longer established and better studied terrestrial protected
area networks (Brockington et al., 2008; Watson et al., 2014).
Conversely, terrestrial managers can learn from aquatic efforts
at applying protected area approaches to dynamic features in
marine environments (Hyrenbach et al., 2000; Lewison et al.,
2015), and to river catchments and hydrologic regimes for
conservation of freshwater species and habitats (Saunders et al.,
2002). Anthropogenic impacts in the systems may be different,
but the goals of reduced impact and sustainable extraction align.

Pathways to Better Integration
• Align our analysis platforms and use standard terminology. A

unified analytical framework [through free software like R (R
Development Core Team, 2015) to ensure broad participation
and dissemination] and terminology system (see Holyoak
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et al., 2008) will enhance cross-pollination of methods and
findings.

• Analytical methods should be applicable to both ecosystems.
Opportunities to explore ecological systems more thoroughly
occur when methods that are applied predominantly in one
discipline are transferred to the other. For example, Byrne
and Chamberlain (2012) successfully applied first passage
time (Fauchald and Tveraa, 2003)—a traditionally marine
analysis method–on a terrestrial animal. Additionally, state-
space models are widely applied in aquatic systems to account
for location error (Auger-Méthé et al., 2016), which can
benefit terrestrial studies. Many aquatic movement studies
are “discovery science” because species’ distributions are still
being documented, whereas terrestrial studies are more likely
to involve advanced hypothesis testing and conservation
applications (Carr et al., 2003), such as understanding of
animal movement in human-altered landscapes (Anadón
et al., 2012), or theoretical studies on predator-prey dynamics
(Vanak et al., 2013; Courbin et al., 2014).

• Use ecosystem differences to enhance our collective ecological
understanding of animal movement patterns. For instance,
examine behavioral differences and similarities in animals that
cross ecosystem boundaries like semi-terrestrial crabs (Hübner
et al., 2015), alligators (Nifong et al., 2015) and gulls that
forage in both ecosystems (Christel et al., 2012). Furthermore,
studies that assess the mechanistic drivers of movement, such
as internal and external factors (Nathan et al., 2008), regardless
of ecosystem can inform conservation efforts.

• Encourage participation of terrestrial movement ecologists at
biologging conferences (Rutz and Hays, 2009, http://www.bio-
logging.net) where they are typically underrepresented.

• Cross-validate methods and ecological concepts through
comparative ecosystem meta-analyses. These efforts can
address pressing questions such as how movement patterns
scale with body size in different ecosystems. The recently
developed method, Residence in Space and Time (RST; Torres
et al., 2017), shows promise for such meta-analyses.

EXPANDING MOVEMENT STUDIES TO

COMPLETE LIFE HISTORIES AND FULL

LIFETIMES

Effective conservation andmanagement of terrestrial and aquatic
species requires a full understanding of changes in habitat
use and movement patterns as organisms age/grow. However,
the ability to study movement throughout the complete life
history of species and full lifetime of individuals remains a great
challenge, hampered in many cases by small body sizes, long
lifetimes, and challenging habitats for tracking of individuals. In
aquatic systems, technologies have expanded from inexpensive
traditional mark-recapture tagging approaches (Kohler and
Turner, 2008) to coordinated electronic telemetry efforts costing
millions of dollars and scaled to cover ocean basins (Block et al.,
2011; Cooke et al., 2011; Hussey et al., 2015). Innovative tags
have enabled movement studies throughout a greater range of
life stages and for longer durations (Hazen et al., 2012; Pinnix

et al., 2013; Mansfield et al., 2014; Lu et al., 2016). New platforms
(moored buoys, autonomous marine vehicles) are extending the
reach of acoustic telemetry studies, with the potential for global
networks of oceanographic, and other infrastructure (Hayes et al.,
2013). In addition, existing data highlight the need to recognize
differences in movement patterns among individuals, life stages,
and segments of populations (Secor, 1999).

When tracking is not technologically feasible or is cost-
prohibitive, other solutions are needed to understand the
consequences of movement for conservation. For example,
biogeochemical tracers in hard body parts can provide records
of environmental conditions throughout part or all of an
individual’s lifetime (including larval stages of fish, mollusks,
and other taxa) from which habitats used and trophic level
can be inferred (Rubenstein and Hobson, 2004; Thorrold et al.,
2007; McMahon et al., 2013). Model simulations can provide
insights into movement patterns when behavioral responses to
environmental conditions are known (e.g., Criales et al., 2015).
As we move to an ecosystem based management framework, the
costs of acquiring movement data may be reduced by focusing
studies on flagship species (Douglas and Verissimo, 2013), but
this approach deserves careful evaluation using multi-species
tracking datasets (Harrison, 2012).

Opportunities to Expand Movement

Studies
• Work with tag manufacturers to design and test new

technologies, recognizing that collaborations between
manufacturers and scientists can be risky for both sides due to
potential loss of investment, anticipated data, and time. Allow
for publication of such trials (even when negative) to provide
transparency and understanding of the process (Scarpignato
et al., 2016).

• Integrate conventional tagging, telemetry, biogeochemical
markers, and other emerging techniques to provide full life-
time data.

• Increase the geographic coverage and funding stability of
telemetry networks, including extending networks into the
open ocean by taking advantage of existing oceanographic and
industrial infrastructure.

• Initiate and prioritize funding for long-term studies of
movement of individuals and populations to evaluate
responses to global change.

STRENGTHEN OUR CULTURE OF

COLLABORATION

Animal movement studies are most often conducted by
individuals or small research teams doing time-limited work
on a single species within a restricted geographic range. While
this has been valuable, it fails to unlock the full potential of the
data (Nguyen et al., 2017). Archiving ecological data provides a
historic record against which future studies can be compared,
makes the information available for cross-species comparisons,
allows secondary analysis of data that may differ from the vision
of the original investigators, and provides other benefits to
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science and society (Whitlock, 2011). Although synthesizing
and archiving data is challenging (Thomas, 2009; Tenopir et al.,
2011), collaborations (Block et al., 2011), and data repositories
(e.g., http://www.Movebank.org, http://www.seabirdtracking.
org/, http://motus.org/, https://animaltracking.aodn.org.au/,
http://oceantrackingnetwork.org/, https://ioos.noaa.gov/project/
atn/) have fostered immense knowledge growth. Limitations
still exist including the lack of common metadata and data
standards; the need for secure data storage systems with long-
term funding for development, staffing, and regional network
building; and common frameworks for quality control and
sufficient annotation of archived data. A remaining challenge
is to develop a culture of data sharing (Vision, 2010; Whitlock,
2011; Vines et al., 2013) that reverses the traditional scientific
view that data are not public but rather belong to the investigator
who conducted the study (Nguyen et al., 2017). However,
collaborating scientists are more prolific publishers, and the scale
and scope of their collaborative work makes it more impactful
(e.g., Piwowar et al., 2007; Young et al., 2013).

Pathways to Strengthen Our Science

Culture
• Share and promote research (with colleagues and students)

highlighting the personal, institutional, and societal benefits
of collaboration and data sharing, including greater individual
scientific productivity and better science being done on larger
geographic scales.

• Incorporate existing tracking scientists, and new users
(especially students), into large research teams to unlock the
present and future potential of tracking technology.

• Movement data networks must adopt common data and
metadata standards across networks or develop open source
code to merge data when common formats are not practical.
Open source software and architecture will help keep data
systems affordable and accessible to all countries.

• Researchers and movement data networks should
systematically archive and make freely available published
and historical data for use in novel analytical activity and
to document animal adaptation to changing environmental
conditions, while addressing potential challenges of free access
to ongoing long-term studies (Mills et al., 2015).

• Researchers should contribute data to shared data repositories
that ensure that the originators of the data are given full
credit for their work, that undertake quality control during the
submission process to minimize data recording error, and that
require sufficient annotation to fully inform future researchers
of the characteristics and potential limitations of the work and
to help avoid analytical errors and incorrect interpretations
(e.g., https://www.dataone.org/best-practices, Whitlock, 2011;
White et al., 2013; Goodman et al., 2014; Roche et al., 2015).

INCORPORATING MOVEMENT DATA INTO

DECISION-MAKING PROCESSES

There is growing recognition that environmental managers do
not make full use of all available scientific evidence when making
decisions (Pullin et al., 2004), tending instead to rely on their

experiences or those of their colleagues (Pullin et al., 2004;
Young et al., 2016). The reasons for this apparent science-action
divide are many (see Cook et al., 2013) and best considered
in the context of knowledge mobilization, rooted in principles
such as reliability, trust, access, institutional/cultural norms,
values, and properties of one’s network (Young et al., 2016).
Knowing the factors that impede knowledge mobilization can be
useful for identifying strategies to effectively employ movement
data in decision-making. These factors include the perception
of disruptive technology (Young et al., 2016), concerns about
data reliability due to low detection efficiency, error in location
estimates, or the effect of the tracking device on the animal’s
behavior, and that the data generated simply fail to provide the
information that managers need (Young et al., 2013) even when
studies are conducted at the request of managers and engage
managers in the research process (e.g., reviewed in Cooke et al.,
2016; Crossin et al., accepted).

Movement data generated using biologging tools (Rutz and
Hays, 2009) are one of multiple types of scientific evidence.
Given the novelty of these tools to managers, it is necessary
to understand how the use of information generated by new
technologies compares to the use of information provided
by more conventional tools or dogma/experience. It is also
important to communicate the types of new knowledge that
can be generated by electronic tagging that have here-to-fore
been unattainable [e.g., determining fate of individual animals
(Yergey et al., 2012); identifying behavioral changes using animal
movement data (Gurarie et al., 2009); evaluating consistency
of behaviors and thus behavioral syndromes in wild animals
(Harrison et al., 2015)]. Preparingmanagers for the capabilities of
the technology so that they are ready to receive new, potentially
transformative, information may be a useful strategy for helping
to ensure that data from electronic tagging studies are more
likely to be used by managers. There is a growing suite of
“success stories” in application of electronic tagging and tracking
techniques to management (e.g., Deguchi et al., 2014, 2016;
Crossin et al., accepted) which is promising, but there is also need
for additional social science research to better understand (from
the perspective of the manager) the relevance of these techniques
to contemporary management challenges.

How to Strengthen the Impact of Telemetry

Information
• Engage early and often with practitioners and stakeholders to

co-create the research agenda and ensure that tracking studies
are relevant to end-users. At this stage it is important to
not over-sell the technology and recognize that tracking may
not be the only or best tool to address a given management
question.

• Recognize that tracking studies generate data that contain
inherent uncertainties (e.g., Does the tagged animal behave
the same way as an untagged animal? How do we know
if we are tracking the animal we tagged or something
that ate it? How big a sample size is needed to reliably
address a given question?). Address issues about limitations
and uncertainty directly where possible through parallel
methodological studies (e.g., tagging validation studies).
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• Work closely with data scientists to create data visualization
products that are both informative and impactful.

UNDERSTANDING THE IMPLICATIONS OF

ANIMAL MOVEMENT RESEARCH

Conservation dollars are limited and are allocated toward a
diversity of species, habitats, countries, and activities (McCarthy
et al., 2012). Many studies demonstrate that conservation
resources are often not optimally allocated (Wu and Boggess,
1999; Wilson et al., 2006). For example, charismatic species (and
scientific activities) receive disproportionatelymore funding than
less-charismatic species (Bennett et al., 2015). Animal tracking
has arisen as one such charismatic activity that has produced a
number of scientific and conservation achievements (Burger and
Shaffer, 2008; Block et al., 2011; Lascelles et al., 2016; Crossin
et al., accepted).

Since studies of animal movement can be expensive
(McGowan et al., 2016), managers with conservation dollars
to spend should carefully weigh whether the data obtained
through studies of animal movement are worth the cost
given actual conservation needs and anticipated return on
investment (McGowan and Possingham, 2016). We agree it is
important to strategically assess the cost-benefit function of
expensive tracking studies. However, funding for both animal
movement studies and conservation practice comes from a
wide variety of sources for a wide variety of reasons (Evans
et al., 2012; Lennox, 2012). Some studies are born of the
passion of private individuals, companies, or foundations for
species, oceans, or animal migration and others are driven by
organizational missions grounded in basic science or education
and outreach. We posit that dollars coming from the above
sources are often not in play in conservation prioritization
discussions and their effect on conservation practice is added
value.

It can be difficult to measure the downstream conservation
impacts of movement studies that were conducted primarily for
other reasons (basic science and discovery, education, etc.). These
endeavors have drawn criticism regarding return on investment
of expensive satellite tracking studies in the context of specific
conservation planning scenarios (see McGowan et al., 2016).
However, studies of animal movement include a wide-variety of
approaches that provide critical pieces of biological information
enabling us to determine species abundance trajectories, ecology
of critical life history stages, and acceptable harvest or bycatch
rates.

Suggestions to Improve the Conservation

Relevance and Return on Investment of

Animal Movement Data Include
• The field of conservation biology in general has difficulty

translating research into action (Robinson, 2006). To
achieve greater conservation impact, review and employ
recommendations from the extensive literature on bridging

the “knowing-doing” gap in fields as diverse as business
management and healthcare (Pfeffer and Sutton, 2000), and
targeted conservation recommendations (Habel et al., 2013;
Hulme, 2014; Thornhill, 2014).

• When an animal movement study is determined to be the
most strategic approach to achieve a conservation objective,
estimate the optimal investment needed (McGowan and
Possingham, 2016) and the value of additional scientific
information to reducing uncertainty in the decision, including
the the potential costs of NOT knowing the answer
(Morgan et al., 1992) when tracking technology could
provide it.

• Be a good steward of data and data products to maximize their
value. Contribute data to shared repositories to ensure data
are available for use in conservation and management and be
available to managers and educators to help them understand
the species and data.

• When data have been meaningful to a conservation process,
consider contributing examples to synthetic initiatives like
http://www.conservationevidence.com.

SYNTHESIS

Movement ecology can provide unique insights for addressing
difficult conservation and management problems. Technological
advances are likely to increase the number and type of
species and the range of body sizes followed, and habitats
examined in movement studies. Improved data archiving,
accessibility, sharing, and collaborative analysis/meta-analysis
will increase the use of movement data. However, effective
visualization, interpretation and communication of the results of
movement studies will be critical to applying movement data in
decision-making processes and realizing their full potential for
conservation and management.
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