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The processing scheme of a novel in-water algorithm for the retrieval of ocean color

products from Sentinel-3 OLCI is introduced. The algorithm consists of several blended

neural networks that are specialized for 13 different optical water classes. These

comprise clearest natural waters but also waters reaching the frontiers of marine optical

remote sensing, namely extreme absorbing, or scattering waters. Considered chlorophyll

concentrations reach up to 200mg m−3, non-algae particle concentrations up to

1,500 g m−3, and the absorption coefficient of colored dissolved organic matter at

440 nm is up to 20 m−1. The algorithm generates different concentrations of water

constituents, inherent and apparent optical properties, and a color index. In addition, all

products are delivered with an uncertainty estimate. A baseline validation of the products

is provided for various water types. We conclude that the algorithm is suitable for the

remote sensing estimation of water properties and constituents of most natural waters.

Keywords: ocean color, remote sensing, Sentinel-3, OLCI, extreme Case-2 waters, neural network, fuzzy logic

classification

INTRODUCTION

The Sentinel-3 Ocean and Land Colour Instrument (OLCI) was developed by the European Space
Agency as part of the Copernicus Earth observation program (Donlon et al., 2012). The first
of a row of consecutive satellites, Sentinel-3A, was launched early in 2016. Mission objectives
include measuring of the ocean reflectance (color) as well as monitoring of sea-water quality and
pollution. OLCI is based on the heritage of theMedium Resolution Imaging Spectrometer (MERIS)
on board ENVISAT (mission between 2002 and 2012), but with six additional spectral bands.
OLCI operates in full resolution mode with a spatial resolution of approximately 300m and a
swath width of 1,270 km. Thus, the instrument images wide sea areas including details of coastal
waters, e.g., estuaries, intertidal mudflats, and lagoons, but also inland waters. The challenge is to
extract extensively reliable ocean color products such as chlorophyll concentration, Chl, from such
wide-scale satellite observations, which cover the high natural variability of optical water properties.

The spectral water-leaving reflectance or remote sensing reflectance, Rrs, is characterized by
absorption and scattering properties of four main components: sea-water, phytoplankton (together
with small organisms), colored dissolved organic matter (CDOM), and inorganic particulate
material (Mobley, 1994). In addition, wind-dependent air bubbles and boundary conditions
may influence the color signal. The composition of water constituents varies considerably, both
temporally and regionally. At the open ocean, inherent optical properties (IOPs) of water are
determined primarily by phytoplankton and related CDOM and detritus degradation products.
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In accordance with the classical (and not unambiguous) bipartite
differentiation, these are the so called “Case-1” (C1) waters
and all other water types correspond to “Case-2” (Morel
and Prieur, 1977; Mobley et al., 2004). Coastal and inland
waters can be significantly influenced by other constituents
whose concentrations do not covary with the phytoplankton
concentration, e.g., due to CDOM and mineral runoff from
adjacent land areas or resuspension of bottommaterial in shallow
waters. In extreme cases concentrations of CDOM or inorganic
particles can be exceptionally high; those are defined as (Case-
2) extremely absorbing (C2AX) and extremely scattering (C2SX)
waters respectively (Hieronymi et al., 2016). Absorbing waters are
characterized by very lowmarine reflectance and a shift of the Rrs
maximum toward the red spectral range. Typically, the CDOM
absorption at 440 nm is>1m−1 in C2AXwaters. There are “black
lakes,” e.g., many boreal lakes, where the reflectance is negligible
in almost the entire visible part of spectrum (VIS: 400–700 nm);
signal from chlorophyll is—if at all—only detectable in the near
infrared (Kutser et al., 2016; NIR in the sensor response division
scheme: 700–1,000 nm). Observations from remote sensing face
similar challenges for extreme turbid C2SX waters, because non-
algae particles mask optical properties of algae particles over
large parts of the visible spectrum. But in general, the water
appears much brighter; the water-leaving reflectance spectrum
has still significant amplitudes in the NIR (Ruddick et al., 2006)
and measurably non-zero reflectance at the last OLCI band at
1,020 nm (Knaeps et al., 2012). Typically, the concentration
of inorganic suspended matter, ISM, is >100 g m−3 in C2SX
waters (Hieronymi et al., 2016). An overview of water type sub-
classification, used for differentiation in this work, is provided in
Table 1.

Great variability of IOPs causes ambiguousness and therefore
a significant degree of uncertainty in the interpretation of
the remote sensing signal. We have to deal with a nonlinear
and multivariate problem and the ocean color algorithm must
be designed accordingly. The capability of bio-(geo)-optical
algorithms strongly varies on global, regional, and very small
scales and algorithms generally face more difficulties in Case-2
waters (e.g., Blondeau-Patissier et al., 2004; Darecki and Stramski,
2004; Gregg and Casey, 2004; Reinart and Kutser, 2006; Attila
et al., 2013; Beltrán-Abaunza et al., 2014; Harvey et al., 2015).
Indeed, it is a challenge to bridge the different scales with a
high degree of reliability of the ocean color products. And we
should not forget that marine atmospheric correction (AC),
which is necessary to derive Rrs at the sea surface from satellite
imagery and thus, provides input for in-water algorithms, is
a complex task with additional uncertainties, in particular for
extreme waters.

An artificial neural network (NN) is an appropriate regression
technique to parametrize the inverse relationship between optical
properties and reflectances. It has been proven in the last years
that NNs produce reasonable approximations of ocean color
products from optically complex (Case-2) waters. NNs have
been applied to different satellite sensors in order to derive
concentrations of water constituents, inherent and apparent
optical properties (IOPs and AOPs), and photosynthetically
available radiation (PAR), or to discriminate algae species (Gross

TABLE 1 | Water case sub-classification that characterize the database in

view of concentration ranges of chlorophyll, CDOM, and inorganic

suspended matter.

Case Description Chl [mg m−3] acdom (440) [m−1] ISM [g m−3]

C1 Open ocean and

algae bloom

0: 200 X ChlY <1.5

C2A Moderately to

strongly absorbing

0: 200 0.1: 1 <10

C2AX Extremely

absorbing

0: 200 > 1 <10

C2S Moderately to

strongly scattering

0: 200 < 0.5 1: 100

C2SX Extremely

scattering

0: 200 < 0.5 >100

In Case-1 (C1), CDOM is related to chlorophyll concentration with arbitrary parameters X

and Y.

et al., 1999; Schiller and Doerffer, 1999; D’Alimonte and Zibordi,
2003; Zhang et al., 2003; Tanaka et al., 2004; Schiller, 2006;
Bricaud et al., 2007; Schroeder et al., 2007; Ioannou et al., 2011;
Jamet et al., 2012; Chen et al., 2014; Hieronymi et al., 2015;
D’Alimonte et al., 2016). Due to their speed, NN-based ocean
color algorithms are deployed for operational and near-real time
satellite observations, e.g., the MERIS Case-2 water algorithm
(Doerffer and Schiller, 2007) and C2RCC (Brockmann et al.,
2016).

The objective of this study is to introduce a new in-water
processing scheme designed for OLCI ocean color observations
called OLCI Neural Network Swarm (ONNS). The distinctive
feature of this algorithm is its wide range of applicability in
terms of optical water properties ranging from oligotrophic
ocean waters to extremely turbid (scattering) or dark (absorbing)
waters. The specific goals of the study are: (1) to reference the
fundamental processing scheme, (2) to provide the scientific
background, (3) to introduce the derived ocean color products,
and (4) to evaluate the basic suitability of the algorithm for
oceanic and coastal waters, i.e., C1, C2A, C2AX, C2S, and C2SX
waters (Table 1).

ONNS BASIS AND ALGORITHM
DESCRIPTION

ONNS is an in-water processor, which retrieves ocean color (OC)
products from Sentinel-3 OLCI satellite scenes. Inputs to the
algorithm are normalized remote sensing reflectances (just above
the sea surface). Atmospheric correction is not part of the in-
water processing scheme, and thus, ONNS fully relies on proper
atmospheric correction (see Section Retrieval Accuracy). The
processor logic is illustrated in Figure 1 and documented in the
following.

Neural Network Algorithm
As it is the case for all ocean color algorithms, NNs are valid for a
certain range of constituents and their concentrations, and some
parameters may be deduced more accurately than others, e.g.,
retrieval of suspended matter is usually the least critical, whereas
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FIGURE 1 | Flowchart of the OLCI Neural Network Swarm in-water

ocean color processor.

CDOM retrievals are the most challenging (Odermatt et al., 2012;
Brewin et al., 2015). Our approach proposes to blend various NN
algorithms, each optimized for a specific scope. This swarm of
neural networks therefore, covers the largest possible variability
of water properties including oligotrophic and extreme waters
(Table 1).

Neural Network Data Basis
Basis for NN training is knowledge of the relationship
between water constituents, i.e., their optical activity, and the
spectral remote sensing reflectance, Rrs. The latter is defined
as ratio between water-leaving (upwelling) radiance, Lw, and
downwelling irradiance, Ed, both just above the water surface. For
training and validation (test) purposes, a large (>105) dataset has
been simulated using the commercial radiative transfer software
Hydrolight (version 5.2; Sequoia Scientific, USA; Mobley, 1994).
Hydrolight is a forward model to compute Rrs and many other
light field-related quantities from optical specifications of the
water body, such as specific absorption and scattering properties.
Considered concentration ranges are defined in Table 1. Basis
for estimating distributions, ranges, and covariances of optical
parameters in the model are different in situ datasets: (1)
primarily our data from the North and Baltic Sea (HZG), (2)
OC-CCI (ESA, worldwide; Valente et al., 2016), (3) HELCOM
(Baltic Sea 1997–2013; ICES, 2011), and (4) NOMAD (NASA,
worldwide; Werdell and Bailey, 2005). The simulations cover
the spectral range from 380 to 1,100 nm in 2.5 nm steps
(hyperspectral over full VIS and NIR). Resulting reflectances and
AOPs refer to a solar irradiation from zenith direction and nadir
viewing angle, i.e., they are fully normalized. Many standard
settings of Hydrolight are utilized (Mobley, 1994; Mobley and
Sundman, 2013); specific inputs are defined in the following.

FIGURE 2 | Bio-optical model of phytoplankton absorption.

(A), Fundamental absorption spectra of five algae groups. (B), Modelled

variability of the absorption coefficient of phytoplankton at 440 nm as function

of chlorophyll concentration. The solid line shows the regression line of

observations (Bricaud et al., 2004).

The total absorption contains fractions of absorption of pure
water, phytoplankton pigments, minerals (also inorganic detritus
or non-algae particles), and colored dissolved organic matter
(CDOM, also referred as yellow substance or gelbstoff ). The same
distinction is made for scattering; only to CDOM no scattering
is attributed. The absorption and scattering coefficients of pure
water depend on temperature, salinity, and wavelength (data
fromWOPP v2 by Röttgers et al., 2016).

Phytoplankton absorption is determined by the composition
and concentration of pigments, e.g., chlorophyll-a, Chl, which
is generally used to quantify the marine biomass concentration.
This means that different algae species have unique absorption
spectra. Xi et al. (2015) showed the impact of chlorophyll-specific
absorption spectra on Rrs. They identified five fundamental
absorption shapes from which an inversion of algae species from
remote sensing reflectance is possible. Figure 2A illustrates the
basic chlorophyll-specific absorption, a∗p , spectra normalized at
440 nm that are utilized in this work (from Xi et al., 2015).
Mixtures of these spectra represent the variability of spectral
shapes that are found in measured data. It has been decided
to combine two types of spectra, whereby one component
dominates the signal with 80%. The globally most common
spectral shape is labeled with “brown group”; it is very similar
to the standard absorption spectrum used in Hydrolight and
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summarizes Heterokontophyta, Dinophyta, Haptophyta, and
others that have a similar spectral shape. The “green group”
includes Chlorophyta. Cyanobacteria are separated into blue
(e.g., Aphanothece clathrata) and red (e.g., Synechococcus red)
species. The two spectra for cyanobacteria are derived from in
situ absorption measurements in the Baltic Sea. The three other
spectra are taken from cultures. The phytoplankton (particle)
absorption, ap, is related to the spectral chlorophyll-specific
absorption and chlorophyll concentration, ap (λ) = a∗p (λ) Chl.
The natural variability of phytoplankton absorption is very high
(e.g., Bricaud et al., 2004) and included in the simulations
(Figure 2B). Thus, when assessingChl retrieval performance, this
must be kept in mind.

The shape of CDOM absorption is nearly exponential.
Exponential functions have been used for C1 water simulations
(Table 1). Here, CDOM absorption coefficients, acdom, and
exponential slopes are varied strongly in order to display the
natural variability (e.g., Valente et al., 2016). In addition, the
present work uses modeled absorption spectra that are fitted
to spectral measurements (by Rüdiger Röttgers, HZG). Based
on this, further CDOM spectra are extrapolated toward ultra-
extreme absorption with acdom(440) = 20 m−1. The exponential
slope of these spectra (between 300 and 400 nm) is approximately
0.014 nm−1.

Fournier-Forand volume scattering functions have been
applied for algae and non-algae particles (see Mobley and
Sundman, 2013). The particle backscatter fraction, which actually
correlates poorly with Chl and mineral (ISM) concentrations,
is needed for the selection of appropriate phase functions. The
corresponding formula of Twardowski et al. (2001) has been used
for Chl-bearing particles. For inorganic particles, the mineral
backscattering-ISM relationship of Zhang et al. (2010) has been
utilized. The spectral mass-specific scattering coefficients are
approximated by exponential functions, following the natural
variability shown in measurements of organic-dominated and
mineral-dominated waters (Woźniak et al., 2010).

The atmospheric and surface boundary conditions in
Hydrolight are set constant, i.e., usage of the semi-empirical sky
radiance model, assuming dry air with a marine aerosol type and
moderate wind speed of 5m s−1. The refractive index of water
(as it is the case for absorption and scattering) is a function of
water temperature (0–30◦C) and salinity (0–35 PSU). The water
is (virtually) infinitely deep. Effects of light polarization are not
taken into account in Hydrolight.

All simulations have been carried out with and without
inelastic scattering, i.e., Raman scattering, CDOM and
Chl fluorescence, but without internal sources, i.e., no
bioluminescence. In the end, data without inelastic scattering
have been used for ONNS development. This is unproblematic
in the selected setup with the 11 OLCI bands. Seen over the
visible spectral range, differences mostly play no role, except
for extreme absorbing waters, where high CDOM fluorescence
is present. During algae bloom events, very high chlorophyll
fluorescence peaks can be observed in nature (e.g., Fawcett et al.,
2006), but modeling a certain quantum yield efficiency holds in
itself great uncertainties (see Section ONNS Design). However,
the simulations have been compared with observations and we

generally have found a good agreement (Hieronymi et al., 2016).
But we also have found some discrepancies partly related to
plausible measuring uncertainties and possibly due to model
simplifications.

NN Training
One part of the simulated dataset is put aside for later quasi-
independent test purposes (see Section ONNS Application to
Validation Data). The rest of the Rrs data is optically classified
(Section Out-of-Scope Test) and grouped together. The scopes
of concentrations together with median values are given in
Table 2.

The usable wavebands of the in-water algorithm are
determined by the atmospheric correction at OLCI bands. We
selected 11 (out of 21) OLCI wavebands for NN input (bands 1–
8, 12, 16, and 17, i.e., at 400, 412.5, 442.5, 490, 510, 560, 620, 665,
755, 777.5, and 865 nm). The instrument’s band widths vary and
to be precise, the centers of bands 12 and 16 are actually at 753.75
and 778.75 nm respectively (Donlon et al., 2012). In contrast
to other NN algorithms (e.g., Doerffer and Schiller, 2007), sun-
viewing geometry is no input to the present NNs, instead input
reflectances are normalized.

The selected output parameters are mostly common ocean
color products (e.g., Nechad et al., 2015; Valente et al., 2016):

(1) Concentration of chlorophyll, Chl [mg m−3],
(2) Concentration of inorganic suspended matter (minerals),

ISM [g m−3],
(3) Absorption coefficient of CDOM at 440 nm, acdom(440)

[m−1],
(4) Absorption coefficient of phytoplankton particles at

440 nm, ap(440) [m
−1],

(5) Absorption coefficient of minerals at 440 nm, am(440)
[m−1],

(6) Absorption coefficient of detritus plus gelbstoff at 412 nm,
adg(412) [m

−1],
(7) Scattering coefficient of phytoplankton particles at 440 nm,

bp(440) [m
−1],

(8) Scattering coefficient of minerals at 440 nm, bm(440) [m
−1],

(9) Total backscattering coefficient of all particles (organic and
inorganic) at 510 nm, bbp(510) [m

−1],
(10) Downwelling diffuse attenuation coefficient at 490 nm,

Kd(490) [m
−1],

(11) Upwelling diffuse attenuation coefficient at 490 nm,
Ku(490) [m

−1], and.
(12) Forel-Ule number, FU [-].

The 12 parameters are results of three independent sets of NNs,
one that computes concentrations, one gives IOPs at 440 nm,
and the last provides different IOPs and AOPs (see Appendix
Table A1). Concentrations can be directly derived with NNs
or alternatively, they can be estimated using IOPs, e.g., Chl
from ap(440) or ISM from bm(440) (Doerffer and Schiller,
2007). The latter approach allows better adaptation of empirical
relationships by means of in situ match-up data (which in case
of OLCI is not yet available at present). All absorption and
scattering contributions are retrieved at the reference wavelength
440 nm (pure water IOPs are known). Thereby, it is possible
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TABLE 2 | Chlorophyll, CDOM, and inorganic suspended matter concentrations for the 13 optical water types.

OWT Chl [mg m−3] acdom(440) [m−1] ISM [g m−3] Fractions of cases [%]

Min Median Max Min Median Max Min Median Max C1 C2A C2S C2AX C2SX

1 0.03 1.4 195 0 2.8 8.3 0 0.8 60 0 0.15 19.51 80.34 0

2 0.03 1.5 195 4.3 8.1 20 0 0.7 10 0 0 0 100 0

3 0.03 1.5 200 0 0.156 20 0 750 1500 0.01 0.01 0.01 0.34 99.63

4 0.03 1.8 195 0 0.164 17 0 110 300 2.41 2.88 25.42 5.24 64.05

5 0.03 2.3 195 0 0.224 2.1 0 2.5 25 6.3 31.42 58.7 3.59 0

6 0.03 1.1 195 0 0.162 0.5 0 0.9 6 8.91 63.31 27.79 0 0

7 70 185 200 0.002 0.262 20 0 2.6 750 20.64 23.49 23.49 23.13 9.25

8 70 185 200 0.008 0.223 18 0 2.75 1000 20.22 16.18 26.84 22.06 14.71

9 0.03 2 195 0 0.096 0.3 0 0.2 5 48.4 42.24 9.36 0 0

10 0.03 1.3 195 0 0.04 0.272 0 0.08 2 90.63 8.83 0.54 0 0

11 0.03 0.33 5 0.002 0.016 0.222 0 0.1 0.5 99.63 0.37 0 0 0

12 0.03 0.2 0.64 0.002 0.01 0.028 0 0.06 0.4 100 0 0 0 0

13 0.03 0.12 0.53 0.002 0.006 0.016 0 0.04 0.2 100 0 0 0 0

The composition of an optical water type with reference to the sub-classification in Table 1 is additionally shown.

to estimate the total absorption, total scattering, and total
attenuation coefficients. Mineral particles have usually lower
absorption characteristics than CDOM, but shape-wise both are
very similar. Following this reasoning, semi-analytical models,
designed to retrieve IOPs from satellite data, often combine
absorption by detritus (in this work only inorganic fraction) and
gelbstoff (all water constituents which pass a filter pore size of 0.2
µm, which is often synonymous with CDOM). This absorption
coefficient often corresponds to 412 nm. A similar idea holds true
for the backscattering parameter. It is usually the backscattering
coefficient of all marine particles together, which is measured
in the field (at 510 nm). The diffuse attenuation coefficients are
used to describe the attenuation of irradiance as a function of
depth in water. It can be used to compute the depth of the
euphotic zone. The Forel-Ule color scale was used for natural
water classification long before the satellite era. In open ocean
regions, the FU number is closely related to Chl concentration.
Thus, the index can support ocean color trend analysis in the pre-
satellite age and afterwards (Wernand et al., 2013; van derWoerd
and Wernand, 2015). The color scale visualizes the color of the
water body above a white Secchi disk that is hold at half Secchi
depth.

A subsequent set of neural nets serves to evaluate the
divergence of final OC products from the original training basis,
i.e., Hydrolight simulations. The results are part of an uncertainty
estimate (see Section Uncertainty Analysis).

The actual NN training procedure is described in Schiller
and Doerffer (1999). The utilized multilayer feedforward-
backpropagation neural net program is documented in Schiller
(2000). The code was embedded in a program to test many NN
architectures, i.e., varying numbers of hidden layers and neurons,
and to optimize the learning process.

NN Scoring and Selection
Several hundreds of nets per water class and task with
much different architecture have been produced. Afterwards,
a ranking system has been applied in order to determine

the optimal nets without over-training. In principle, statistical
parameters such as root-mean-square error and goodness of
fit are transformed into relative scores, which evaluate the
quality of individual nets (Müller et al., 2015a). The best
performing neural network architectures per water class are
specified in Table A1. Inputs and outputs for the NNs are
log10(X + 0.001), where X stands for Rrs or an ocean color
product. The only exception is the Forel-Ule number, which
is an integer between 1 and 21 and not logarithmized. The
logarithmic form of input/output enables a distribution of values,
which is closer to a uniform distribution within the range
of input data, and therefore better approximation of outputs.
The addition of 0.001 allows consideration of zero-values as
input.

Fuzzy Logic Classification
Optical water type, OWT, classification based on remote
sensing reflectance spectra has been developed to overcome
the simplifications of Case-1 and Case-2 waters (Moore
et al., 2001). It can bridge the gap between regionalized
optical models and the global scale by combining
several models according to their respective membership
to a certain water type (Moore et al., 2009, 2012,
2014).

The classification is based on the simulated Rrs spectra
(at 11 OLCI wavebands), but it is used for atmospheric
corrected satellite data afterwards. Negative reflectances can
occur after AC sometimes, while the spectral shape is still
realistic. In order to avoid conflict with negative reflectances,
the spectra are therefore transformed by log10(Rrs + 1) (note
that Rrs is treated differently during classification and the NN
application). Before the clustering, these transformed spectra
are normalized by their brightness (sum of log-transformed
reflectances), so that the classification is based on the shape
of the spectrum alone. As the goal is to derive representative
spectra, which have different spectral shapes and in particular
a different spectral maximum, the sample from the simulation
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database does not take into account the frequency of natural
occurrence of spectra. Spectra with their maximum at 510,
620, and 777.5 nm come in two distinctive shapes and there
is no spectrum with maximum at 865 nm, so that during
the agglomerative clustering 13 classes are selected. The 13
OWT classes are described by their class mean and standard
deviation per wavelength of the brightness-scaled Rrs, which
are used for the classification of spectra furthermore. The
mean reflectance spectra of the 13 OWT classes are plotted in
Figure 3.

The five water type categories (Table 1) are defined by
combinations of concentrations and thresholds. The water classes
are designed to represent spectra, which have their maximum in
the spectral shape at different wavelengths, independent of their
brightness. Combining the water classes and the concentration
categories is a test, which spectral shapes can be found in certain
concentration ranges (Table 2).

Fuzzy set theory allows an element to have membership to
one or more OWT classes (Moore et al., 2001). The weight of
a class (membership function) is altered to allow for graded
memberships, i.e., 0 ≤ wi ≤ 1, and to express partial class
membership to the ith class. For constrained fuzzy sets the
sum of all 13 weights equals 1. However, the class membership
had to be above a minimum threshold, which was set at
0.0001. The membership to a class (weight) is calculated by
determining the Mahalanobis distance between the given
spectrum and the class means using the classes’ covariance
matrix respectively. Reconstruction of Rrs spectra by means of
the fuzzy classification inversion yields mostly satisfying results.
However, Rrs inversion from different atmospheric corrections
reveals expected uncertainties in the violet-blue, which can be
the case, if the satellite-acquired spectrum provided by the AC
is distinctly different from modeled Rrs (which is basis of the
classification).

FIGURE 3 | Brightness-scaled remote sensing reflectances for 13

classes of optical water types. Utilized OLCI bands are marked.

Within the ONNS framework (Figure 1), the fuzzy logic
classification scheme is used to assess the atmospheric corrected
Rrs, and to determine the corresponding class memberships.
The final blended retrieval for each pixel and each ocean color
product is a weighted sum of the retrievals of all class-specific
NNs (Appendix Table A1).

Out-of-Scope Test
Well-constructed NNs have good interpolation properties but
produce unpredictable output when forced to extrapolate
(Doerffer and Schiller, 2000). Therefore, measures have to be
taken to recognize NN input not foreseen in the NN training
phase and thus out of scope of the algorithm. Regarding
simulated data, the fuzzy classification is well-constructed;
maximum (or high) membership of a water class usually
correlates well with the scopes of the corresponding NNs.
However, it may happen that the classification yields a broad
distribution of weights or that all memberships are such low that
the spectrum is not classifiable. In the latter case, the satellite
image pixel is flagged out. Despite the memberships, a quality
measure is applied that evaluates the deviation of the NN input
from theNN training range. The out-of-range parameter,OOR, is
zero if the input is within the range but increases with increasing
deviation. The assessment treats the input-reflectances spectrally
differently; wavebands in the green spectral range have highest
weights. The varying signal-to-noise specifications of OLCI are
one argument for this (Donlon et al., 2012). Uncertainties in
the fluorescence quantum yield efficiency of phytoplankton are
another argument. Furthermore, we observe higher uncertainties
in violet and blue wavebands generally shown in atmospheric
correction validations (Müller et al., 2015a), but also from in
situ determinations of Rrs due to the variable surface reflectance
factor (Hieronymi, 2016; Zibordi, 2016). The allowance for OOR
> 0 is one of the fine-tuning techniques to gain better spatial
homogeneity of an OLCI scene and to adapt the algorithm to in
situ observations.

Uncertainty Analysis
The determination of uncertainties of OC products is similar
to the procedure applied in the C2RCC algorithm (Brockmann
et al., 2016). All NNs per water class were reapplied to their
training datasets to estimate the OC products. The uncertainty
nets compare the estimated value, XE, with the initial training
value, XT . The uncertainty per product is given as approximation
(percent) error:

ε = 100
XE − XT

XT
. (1)

As it is the case for all OC products, the final approximation error
is a weighted sum of the retrievals of all class-specific uncertainty
NNs.

Test Data
Remote sensing reflectance data at OLCI wavelengths in
conjunction with bio-geo-optical properties of the top water layer
are used to evaluate the capacity of ONNS. For this purpose,
different statistical parameters have been utilized. The degree
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of deviation is presented by the absolute root-mean-square
error, RMSE. The Bias shows the average difference and is a
measure for systematic over- or underestimation. Furthermore,
the correlation coefficient, r, is calculated.

Simulated Data
Hydrolight-simulated data have been used to develop the
classification scheme and to train neural nets. From the same
data source (>105), a quasi-independent set of 23,445 reflectance
spectra is used for testing and validation; these particular data are
not used for ONNS development. The test data contain all water
types from Table 1 and are shared approximately equally.

Simulated CCRR Data
A second synthetic dataset has been used to evaluate the
performance of ONNS for the retrieval of water quality
parameters. The “CoastColour Round Robin” (CCRR) dataset
by Nechad et al. (2015) compiles inputs and results from
5,000 Hydrolight simulation. Atmospheric boundary conditions
and simulation setup are comparable with above mentioned
simulations. The used data refer to a sun zenith angle of
0◦. Remote sensing reflectance at the 11 needed OLCI bands
is interpolated from hyperspectral water-leaving reflectances
between 350 and 900 nm with 5 nm steps. Corresponding Chl
and ISM concentrations as well as CDOM absorption at 443 nm
are tested with the ONNS retrieval (note that ONNS CDOM
absorption coefficient refers to 440 nm).

In situ Data
Complete in situ datasets for the evaluation of OLCI-specific
algorithms like ONNS are not freely available. The accessible
data of CCRR (Nechad et al., 2015) and OC-CCI (Valente et al.,
2016), which compiles data from several sources (e.g., MOBY,
BOUSSOLE, AERONET-OC, NoMAD, MERMAID), lack of
several Rrs bands. The ONNS algorithm needs only 11 out of 21
OLCI bands, but coinstantaneous data at 400, 755, 777.5, and
865 nm are not available. However, many of these sub-datasets
are actually measured hyper-spectrally. Ramses radiometers, for
example, that are deployed during our in situ campaigns, measure
between 320 and 950 nm (TriOS optical sensors, Germany).
Extracted multi-spectral reflectances together with Chl, ISM,
and CDOM data are included in the CCRR in situ dataset; the
corresponding measurement protocols are described in (Nechad
et al., 2015). Our 48 data were collected between 2005 and
2006 (but not in winter) onboard a ferry from Cuxhaven
to the island Helgoland in the German Bight (see Figure 5).
Radiometric measurements were conducted under optimal sun-
viewing angles (e.g., Zibordi, 2016), but strictly speaking, ONNS
requires angle-normalized Rrs (with the sun in zenith) as input.
Nonetheless, these data are used to test ONNS as well.

Sentinel-3 OLCI Scene
One Sentinel-3 OLCI scene is shown with permission to illustrate
the qualitative and spatial application of ONNS (Figure 5). The
tripartite scene was captured on 20 July 2016 between 9:30 and
9:36 UTC and shows large parts of the North and Baltic Sea.
Thus, the scene images many different water types including
different algae blooms. The satellite image indicates transparent

cirrus clouds over the German Bight and Gulf of Finland, broken
clouds over the Skagerrak and Kattegat, and cloud shadows. In
comparison with MERIS, OLCI’s view is slightly tilted in order
to reduce the impact of sun glint, which is somewhat visible
at the right edge of the image. Level-1 data of the first OLCI
reprocessing are utilized for this work (IPF-OL-1-EO version
06.06). Atmospheric correction of the scene is provided by the
C2RCC algorithm (“Case-2 Regional CoastColour,” version 0.15,
Brockmann et al., 2016). An additional cloud mask was applied
using the provided path radiance and viewing angles. At the same
time of the satellite data acquisition, we measured Rrs in the
German Bight for Sentinel-3 validation purposes (Figure 5), but
these data are not used in this work.

RESULTS

ONNS Application to Validation Data
The classification of simulated test data reveals that a maximum
of four classes contribute to the inversion of Rrs spectra (the
classes have non-zero weights). In principle, all water types (clear
to extremely turbid) can be assigned properly. The classification
failed on <3% of validation data; of those 56% are absorbing
waters (C2A, C2AX) and approximately 70% have high Chl
concentrations (Chl > 10mg m−3). The classification of the
in situ and simulated CCRR data yields no plausible results
in approximately 10% of cases. The classifiable 4512 CCRR
spectra exhibit maximum memberships in OWTs 1 (9%), 2
(0.5%), 4 (0.16%), 5 (55.2%), 6 (14.9%), 9 (10.6%), 10 (6.9%),
11 (1.7%), 12 (0.3%), and 13 (0.5%). Thus, a high percentage of
these data correspond to the Case-1 or moderately to strongly
scattering waters (Tables 1, 2). The 43 in situ data points,
which are captured in coastal waters of the German Bight
(Figure 5), have maximum memberships in OWT 1 (10.4%) and
5 (89.6%).

Examples of the retrieval capabilities of ONNS in comparison
with validation data are illustrated in Figure 4. Estimates of
concentration of Chl, ISM, and CDOM are shown for different
water types, namely Case-1, extreme absorbing, and extreme
scattering waters (Table 1). In addition, ONNS retrieval tests are
shown for simulated data from the CCRR dataset and our in situ
data. The colors characterize the estimated uncertainty in terms
of the percent error. Green marks the generic ±5% uncertainty
target for satellite ocean color products (defined for oligotrophic
and mesotrophic Case-1 waters), orange and red colors signify
an overestimation of the retrieved value in comparison with the
expected (trained) value, and blue stands for an underestimation
respectively. The uncertainty can be high in ambiguous cases
with significant masking effects (in extreme waters) or if the
NN data basis already provides high (natural) variability, as for
example for Chl concentration (compare Figures 4A,D,G with
Figure 2B). Despite high Chl variability, the uncertainty target
can be achieved for all magnitudes of concentrations (varying
over five orders of magnitudes), but with different occurrence
in the water types: approximately 30% in C1, 10% in C2AX,
and 5% in C2SX waters. An acceptance level of ±50% can be
achieved in >97% of cases for C1, >80% in C2AX, and >70% in
C2SX respectively. In all the cases, mean and median percentage
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FIGURE 4 | ONNS retrieval capacity for chlorophyll concentration (left), concentration of inorganic suspended matter (center column), and CDOM

absorption at 440 nm (right) in comparison with simulated and in situ validation data. (A–C): Case-1 data from database, (D–F): Case-2 extreme absorbing

waters, (G–I): Case-2 extreme scattering waters, (J–L): simulated data from CoastColour Round Robin (Nechad et al., 2015), (M–O): HZG in situ data. Colors indicate

the retrieved uncertainty.
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errors are slightly negative, i.e., ONNS Chl retrieval shows a
tendency for underestimation of expected values. Even if the test
value is overestimated by ONNS, the uncertainty estimate may
point to underestimation. This may be due to blending of NN
from different OWT classes with distinctive different ranges of
concentrations. In contrast to the simulated validation data, the
ONNS Chl retrieval of CCRR and in situ data yields stronger
deviations from the one-to-one line (Figures 4J,M).

With regards to ISM, the retrieval performance is less
skilled if the optical signal of minerals is weak due to low
mineral concentrations—as it is the case in oligotrophic waters
(Figure 4B). The 5% uncertainty target is reached within
approximately 20% of all cases in C1 waters, 27% in C2AX, and
>87% in C2SX. Thus, the more non-algae particles are present,
the better ONNS performs. A similar trend can be observed for
CDOM retrieval (Figures 4C,F,I). Lowest concentrations vanish
in the noise, whereas high concentrations can be retrieved
accurately. Approximately 60% target-retrievals can be achieved
in C1 and >94% in extreme absorbing waters. Figure 4I

illustrates the difficulties to separate the absorption signal due
to CDOM and minerals; only 6% of estimates fall in the target-
uncertainty range. In comparison to the Chl retrieval, ISM
and CDOM retrievals of CCRR and in situ data show better
agreement (Figures 4K,L,N,O).

The NN-estimated uncertainties and corresponding color
distributions in Figure 4 reflect the comparative statistics that
are tabulated for all water types (Table 3). Additional statistics
of all OC products are listed in the (Table A2). With reference
to the simulated test data and seen over all water types, the
smallest differences between estimated and test data occur for the
Forel-Ule number and both “mixed” IOPs, adg(412) and bbp(510).
In comparison, larger deviations occur for low-concentration
mineral-related values. We found weak water type-independent
underestimation for the direct phytoplankton-related quantities
[Chl, ap(440), and bp(440)] and for FU, Kd(490), Ku(490),
adg(412), and bbp(510). But again, largest Biases are observed
for the retrieval of non-algae properties in clear oceanic (almost
mineral-free) C1 waters. The correlation coefficient reveals
strong linear relationship for all cases exclusive of CDOM in
extremely scattering waters, here the relation is weak (CDOM
retrieval correlation is >0.95 for C2S and the other cases). The
statistical values of the comparison with independent CCRR and
in situ data paint a somewhat different picture with generally
lower correlation coefficients (Table 3). Both datasets include
turbid Case-2 waters that are predominantly characterized by one
optical water type, i.e., OWT 5 (see Table 2). Most of the other
water types are not independently evaluated.

ONNS Application to OLCI Scene
Application of the new ONNS algorithm to the satellite image
is illustrated in Figure 6. Again, up to four optical water type
classes are needed for the inversion. In this particular scene,
water classes 3, 7, and 8 have no contribution to the products
(all rather extreme turbid cases, see Table 2); all other classes
give spatially dependent contributions (Figure 6A). Comparison
with the mean shapes of the Rrs (Figure 3) meets regional
expectations. In the western part of the Baltic Sea, including the

TABLE 3 | Statistics of ONNS retrievals vs. test data.

Statistics Dataset Chl [mg m−3] ISM [g m−3] acdom(440) [m−1]

RMSE C1 10.2577 0.0856 0.0174

C2A 10.5276 0.1116 0.0234

C2S 11.2224 1.4917 0.0290

C2AX 10.3555 0.1429 0.4356

C2SX 16.7236 35.6890 0.0971

CCRR 21.4129 8.5279 0.5067

In situ 4.3860 1.7515 0.1760

Bias C1 −1.3144 0.0170 −0.0023

C2A −1.1262 0.0110 −0.0049

C2S −0.5576 −0.3131 −0.0014

C2AX −1.0591 0.0162 −0.0201

C2SX −2.1005 −4.2457 −0.0355

CCRR 1.9023 −2.3966 0.2990

In situ −1.2786 −0.8777 0.1410

r C1 0.8702 0.9212 0.9515

C2A 0.8495 0.9880 0.9855

C2S 0.8163 0.9978 0.9540

C2AX 0.6856 0.9777 0.9932

C2SX 0.7017 0.9961 0.3120

CCRR 0.5855 0.7496 0.8030

In situ 0.3658 0.8616 0.7286

Datasets marked with C1, C2A, C2S, C2AX, and C2SX refer to simulated data that

are not used for NN training (numbers of points for comparison are 5392, 4699, 4049,

4526, and 4082 respectively). The independent Hydrolight-simulated CoastColour Round

Robin (CCRR) dataset contains 4512 data. 43 match-ups are basis for the in situ data

comparison. The corresponding plots in Figure 4 are shown in log form; the statistical

values here are not in log form.

Western Gotland Basin and the Bothnian Sea, the spectra show
the strongest resemblance to classes 6, 9, and 10. Spectra of the
Eastern Gotland Basin and Gulf of Finland fall into class 5 mostly
and the Lagoons behind the Bay of Gdansk have some spectra
with the shape of class 1. In contrast, we have found maximum
memberships of classes 9, 10, and 11 in the clear open North
Sea and Norwegian Sea and classes 1, 2, 4, 5, and 9 along the
German and Dutch coasts. In some clear water cases (OWT 9, 10,
and 11), the out-of-range warning flag for input spectra raises;
these cases are mostly in spatial conjunction with transparent
cirrus clouds (Figure 5). The Forel-Ule number that is estimated
with ONNS provides an intuitively color impression and
reconfirms expected geographic characteristics of the sea areas
(Figure 6B).

Concentrations of Chl, ISM, and CDOM together with their
accompanied uncertainty estimates are shown in Figure 7. Only
valid sea pixels are shown; land areas and clouds are masked
out. However, in spatial vicinity to clouds and coasts, apparently
wrong assessments of OC products are possible; here, the
predictions are overestimating the true values for the most part.
Some areas are very shallow, e.g., the Curonian and Vistula
Lagoons, and therefore, bottom reflections cannot be ruled out.
This again would lead to possible overestimation of (particle)
concentrations. All in all, the ranges of derived concentrations
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are reasonable (the colors on the left side of Figure 7 correspond
to the respective units). Previous match-up analyses showed that
most of the measured Baltic Chl values range between ∼1 and
10mg m−3 with somewhat smaller values in the Skagerrak-
Kattegat region in comparison with the Central Baltic Sea
(Pitarch et al., 2016). The ONNS-retrieved Chl values are in
this range and reflect the geographic expectations (Figure 7A).
But from the filamentous patterns it can be assumed that a
cyanobacteria bloom including floating vegetation has developed
in the Gotland Basin. In surface blooms, the concentrations are
typically much higher, but the estimated biomass concentration
seems too low. On the other hand, in some of these cases with
visible algae structures, the out-of-range warning flag is raised
(mostly OWT 9). Unfortunately, no in situ validation data of this
OLCI image are available. The spatial distribution of ISM yields
partly implausible features (Figure 7B). Commonly, significant
concentrations of non-algae particles are not expected at the open
sea. The concentration ranges, however, fit to observations by
Berthon and Zibordi (2010). The regional distribution of CDOM,
including the east-west gradient and high concentrations in the
northern Baltic and Gulf of Finland, is plausible (e.g., Kowalczuk,
1999; Berthon and Zibordi, 2010; Ylöstalo et al., 2016). The
corresponding uncertainty maps partly mirror the boundaries
of the dominant water classes. Again, the high Chl uncertainties
reflect the likewise high modeled variability (Figures 2B, 4, 7D).

ONNS application to contemporaneous Rrs measurements in
the German Bight yield plausible results. All measured spectra
exhibit maximum membership in OWT 5, the same as derived
from the OLCI image for the transect (Figure 6A) and from 90%
of the in situ data from the same area. The results are entirely
in the same magnitudes as our previously measured in this area.
ONNS estimates Chl along the transect between 1.7 and 4.5mg
m−3, ISM from 0.7 to 3.4 g m−3, and CDOM absorption (at
440 nm) between 0.38 and 0.68 m−1. Due to tides and hydrologic
changes of the Elbe river plume, ISM can be higher than 10 gm−3

near the coast.

DISCUSSION

Retrieval Accuracy
In general, the retrieval statistics of ONNS (Tables A1, A2,
Figure 4) display the general problems of OC algorithms in
the various water types (e.g., Blondeau-Patissier et al., 2004;
Gregg and Casey, 2004; IOCCG, 2010; Odermatt et al., 2012;
Brewin et al., 2015; Pitarch et al., 2016). All the more, one
has to critically assess the quality of the Rrs input spectra,
which is influenced by two factors: the sensor calibration (over
which we have no control) and the atmospheric correction (AC).
A careful atmospheric correction is of systematic importance
for the success of the in-water algorithm—in particular for
extreme Case-2 waters. Most of the light arriving at the satellite
has been scattered by the atmosphere or reflected at the sea
surface. The atmospheric path radiance is typically >85% of
the total signal in C1 waters, >60% in C2SX, and >94% in
C2AXwaters (IOCCG, 2010). Existing AC processors address the
various modeling aspects quite differently, e.g., the treatment of
subvisible cirrus clouds or aerosol properties, and therefore, have

FIGURE 5 | Sentinel-3 OLCI (top-of-atmosphere) scene of 20 July 2016

(contains modified Copernicus Sentinel data [2016] processed by

ESA/EUMETSAT/HZG). The boundaries of individual scenes are marked with

dashed lines. The picture detail shows the route with reflectance

measurements in the German Bight.

strengths and weaknesses for specific water types (Müller et al.,
2015a). In view of the new algorithm ONNS, which relies on
normalized reflectances, angle-dependent AC processes such as
“smile correction” and sun glint handling are important as well
to ensure spatial homogeneity of satellite data. OLCI’s viewing
direction is slightly shifted in comparison with MERIS in order
to reduce sun glint contaminated areas. However, some AC
processors incorporate sun glint contributions in their reflectance
models and derive normalized Rrs in this condition. These AC
yieldmuch larger coverage of data (Müller et al., 2015b), but areas
with high glint should nevertheless be considered cautiously. One
of the AC processors is Polymer (Steinmetz et al., 2011), which
reveals good performance in comparison with MERIS match-
ups (Müller et al., 2015a). Another processor is C2RCC (Case-
2 Regional CoastColour; Brockmann et al., 2016), which is an
evolution of the precursors “Case-2 Regional,” “ForwardNN,”
and the “MERIS Case-2 water” algorithm (Doerffer and Schiller,
2007). C2RCC is available through ESA’s Sentinel toolbox SNAP
and it is used in the Sentinel-3 OLCI ground segment processor
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FIGURE 6 | ONNS application to the OLCI scene (20 July 2016, Figure 5). (A): Optical water type classes with maximum membership. The gray color marks

land areas, white shows the cloud mask above water and inland waters, and the other colors correspond to the spectra in Figure 3. (B): Retrieved Forel-Ule colors

with true color impression.

of ESA for generating Case-2 water products. Both Case-2 AC
algorithms, Polymer and C2RCC, provide usable normalized
Rrs at OLCI bands and give comparable memberships of OWT
classes. Some differences between C2RCC and Polymer-derived
Rrs are visible, mainly in the shape of the reflectance spectrum in
the violet-blue spectral range. The sensor calibration especially
for shorter wavelengths is subject to current investigations.
Future versions of AC algorithms may incorporate the specific
sensor properties. For this reason, we have to keep in mind that
the results of ONNS to a certain degree rely on the applied
atmospheric correction and data reprocessing version (subject to
ongoing research).

One of the most important ocean color quantity is chlorophyll
concentration. It is our general impression that ONNS delivers
Chl in the expected orders of magnitude. Future tests must show
the suitability of ONNS in comparison with other algorithms,
globally and for the specific region (e.g., Blondeau-Patissier
et al., 2004; Darecki and Stramski, 2004; Gregg and Casey,
2004; Attila et al., 2013). However, the Baltic Sea for example is
known for intense cyanobacteria blooms with small-scale patches
and extreme high biomass conditions (Chl > 200mg m−3)
partly associated with surface scums and floating algae. Under
these conditions, results from different satellite sensors are
very variable, values of Chl may exceed processing limits and
atmospheric correction often fails (Reinart and Kutser, 2006).
Optical properties of floating (also air bubble containing)
material can be distinctly different from the data basis assumed in

this work, e.g., higher backscattering and also higher reflectance
in the NIR. Consequently, Rrs resembles dry vegetation rather
than water (e.g., Kutser, 2004; Matthews et al., 2012), or—in
terms of the defined optical water types—looks like (extreme)
scattering waters. This means, as a corollary, that high biomass
(Chl) is rather interpreted as non-algae particles (ISM). The out-
of-range warning is notified for some of the affected areas. But
here, it can be useful to raise an additional flag for surface scum
conditions as it is suggested by Matthews et al. (2012). With
regards to the possible misinterpretation of algae vs. non-algae
particles, we must concede a potential weakness of the bio-
geo-optical model assumptions underlying the simulated data
basis. For example, the data include high variability of scattering
properties but do not take scattering properties of different
species into account (only chlorophyll-specific absorption), but
it is likely that they are different (e.g., Harmel et al., 2016).

The selected OLCI scene is a good example for phytoplankton
diversity. It is not well visible in Figure 5, but different algae
blooms occur (none of them are confirmed). Very likely, a
cyanobacteria bloom occurred in the Gotland Basin of the Baltic
Sea. The bright water top left of the image along the Norwegian
coast points to the occurrence of blooming coccolithophore.
Moreover, west of the island Sylt in the German Bight fingerlike
structures related to enhanced biomass are recognizable. The fact
that we have to deal with different species within predominant
water types increases the uncertainties. Chlorophyll-specific
variability is included in the database for ONNS (Figure 2A).
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FIGURE 7 | ONNS application to the OLCI scene (20 July 2016, Figure 5). (A–C): Upper panels show concentrations of chlorophyll, inorganic suspended matter,

and CDOM (absorption coefficient at 440 nm). (D–F): The panels below show the corresponding retrieval uncertainties. Land and clouds are masked out.

This and the high natural variability of phytoplankton absorption
vs. Chl concentration are reflected in the uncertainty estimates
of ONNS. On this basis, future developments of ONNS
may be directed into optical differentiation of diversity with
corresponding traceability of uncertainties (Bracher et al., 2017;
Mouw et al., 2017).

It is a frequent practice to derive inherent optical properties
from ocean color and from this create an empirical relationship
to observed concentrations (e.g., Doerffer and Schiller, 2007).
Besides the directly retrieved concentrations, ONNS provides a
number of IOPs and AOPs. The nets which derive concentrations

(Table A1, second column) must balance their estimates
indirectly by means of the relationship between absorption
and scattering properties. NNs that retrieve IOPs or AOPs
can rather focus on either spectral reflectance reduction or
enhancement, i.e., absorption or scattering. This is demonstrated
by the statistical analysis shown in Table 3, A2. The correlation
coefficients of estimated IOPs and AOPs are generally very
high, even if we have to deal with cases of significant pigment
absorption masking due to the influence of sediments. Once
the spectrum is properly classified, the anticipated values are
significantly restricted, which leads to high correlation. The
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derived sets of IOPs and AOPs form closure in a similar manner
as the Hydrolight simulations, e.g., if we compare the sum of
absorption and scattering coefficients at 440 nm (which is the
attenuation coefficient) with the diffuse attenuation coefficient
of downwelling irradiance, Kd(490), the correlation coefficient
yields 0.856 for the test data and 0.841 for the ONNS-retrieved
values, both seen over all water types. Due to the high input-
variability of phytoplankton absorption vs. Chl concentration, we
expect higher uncertainties related to the biomass concentration
than related to other quantities as for example CDOM absorption
(Figures 4, 7). The exploitation of various IOPs, e.g., absorption
coefficient adg(412) or backscattering coefficient bbp(510),
may lead to more accurate and regionalized OC products.
Additionally, certain absorption or scattering properties may
help identifying oceanographic features such as water masses or
(sub-) mesoscale eddies and frontal systems (structures are best
visible in total particulate backscattering). ONNS already is a
regionally employable algorithm that delivers plausible outputs,
and is thus in line with new multi-water type ocean color
algorithms (e.g., D’Alimonte et al., 2014; Moore et al., 2014).

ONNS Design
The present version of the bio-geo-optical processing scheme
applies 11 (from 21) OLCI bands (namely at 400, 412.5, 442.5,
490, 510, 560, 620, 665, 755, 777.5, and 865 nm). Wavebands
that are affected by phytoplankton fluorescence (at 673.75,
681.25, and to only a minor degree at 708.75 nm) are not
utilized. In principle, the inclusion of these bands could help
the classification and Chl retrieval capacity, in particular for
highly eutrophic waters. Admission of the three additional bands,
also in the combined form of a fluorescence line height, slightly
increases the accuracy of the Chl retrieval with respect to the
simulated dataset, where inelastic scattering features with the
standard settings of Hydrolight are included. But we have to
keep in mind that fluorescence (quantum yield efficiency) is
subject to strong fluctuations and potential false assessment; it
has diurnal variability, depends on nutrient- and light-availability
and algae species (e.g., Greene et al., 1994). The retrieval
accuracy slightly decreases if the present fluorescence line height
mismatches the expected range from the training dataset. Our
tests show that this is less of a problem in case of in situ
measured remote sensing reflectance, but deviations can be
higher in case of atmospheric corrected satellite data (tested
with C2RCC and Polymer). A proper atmospheric correction
for these bands is difficult to achieve. For this reason, the Chl
fluorescence bands are not used in the present version of the
ONNS algorithm.

The main purpose of other OLCI NIR bands is atmospheric
correction, e.g., due to oxygen and water vapor absorption
and optical features of aerosols. Thus, satellite-derived Rrs
is not provided for all of the NIR bands (Steinmetz et al.,
2011). In contrast, many radiometers that are deployed for
in situ Rrs determination measure hyper-spectrally in the
VIS and NIR range (e.g., Ramses sensors). Hence, 20 OLCI
bands (or more bands) could be theoretically used for a
bio-geo-optical algorithm. The last OLCI band at 1,020 nm
is not covered by many radiometers. For this reason and

because of the little information gain in most waters, the
1,020 nm band was also not selected for ONNS input.
However, we must bear in mind that available spectral bands
in compiled in situ datasets (e.g., Nechad et al., 2015; Valente
et al., 2016) are limited too, making meaningful validation
difficult.

The new algorithm deploys Rrs that are angle-normalized, i.e.,
the sun is at zenith and the viewing direction is perpendicular.
All sun and viewing angle-related effects must be eliminated
by the atmospheric correction prior to ONNS application. The
approach simplifies for example comparisons of different satellite
sensors. The first step of the processing scheme is to transform
the input Rrs into brightness-scaled reflectances. The advantage
of this approach is that the classification is less sensitive to
the amplitude of Rrs spectra, which can be shifted by various
scattering processes, e.g., due to wind-dependent micro-bubbles
in water (white scatterer), marine particle aggregation, particle
size, or just under-estimation of the measured total scattering
(e.g., McKee et al., 2013).

OWT Classification
The classification of synthetic validation data with same data
source shows general good performance for most of the water
types. Occasionally, in <3% of the validation data, the fuzzy
classification yields no plausible memberships of the classes
and thus no ONNS-retrieval values. Classification of very
weak remote sensing reflectance signals, for example, is still
challenging but mostly possible. The reason is that, e.g., in
CDOM-rich lakes, the reflectance is near zero in almost the entire
VIS, but nevertheless, significant phytoplankton biomass can be
present (e.g., Kutser et al., 2016).

Fuzzy logic classification of the in situ and simulated
CCRR validation data yields no significant memberships in
approximately 10% of cases, i.e., in 5 and 488 cases respectively.
Hence, the spectra were not considered plausible and the final
blended retrieval delivers no results. One possible explanation is
that spectral shapes of Rrs appear which not occur in the database
with 105 spectra. Moore et al. (2001) propose a minimum
threshold for class memberships, which was arbitrarily set at
10−4. If this threshold is lowered to 10−5, the non-plausible cases
reduce to <1% of both datasets. Further tests are needed in the
framework of an all-water-type-embracing validation.

Applied to a satellite scene, all marine spectra are classifiable,
but water classification can be problematic and spatially
heterogeneous in association with cloud and adjacency effects.
Nonetheless, the optical water type classification of the scene
basically yields geographically expected results. Three of the
water classes (OWT 3, 7, and 8) gained never significant weights.
Therefore, they were not used for blending. Those cases include
extreme absorbing or scattering cases with very high biomass,
e.g., like the mentioned “black lakes” (Kutser et al., 2016) or the
Gulf of Finland (Ylöstalo et al., 2016), which is mostly flagged
out due to clouds in the example scene. In global terms, they are
restricted very locally. However, the three cases each represent a
spectral Rrs with maxima in one of the three selected NIR bands
(Figure 3); therefore, they have an essential function in the fuzzy
logic classification scheme.
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Application to Radiometric In situ Data
The OC processor ONNS can be applied to in situmeasurements
as well. In this case, an atmospheric correction is not needed.
Remote sensing reflectance can be determined from above- or in-
water radiometric measurements. Nechad et al. (2015) assembled
reflectance measurements that are gained in five different
manners. In case of above-water measurements for example,
downwelling irradiance, sky radiance, and upwelling radiance
are measured under specific sun-viewing angle conditions. From
this, Rrs is determined using a surface reflectance factor, which
depends on sun-viewing geometry and wind speed and which is
usually between 2 and 5% for optimal viewing angles (Hieronymi,
2016; Zibordi, 2016). The surface reflectance factor determines
the shape of Rrs mainly in the violet-blue range. Thus, there are
some uncertainties for the application of the classification scheme
and the overall processor. Optimally, the measured Rrs is adapted
to the input criteria for ONNS, i.e., fully normalized, a moderate
wind speed, no micro-bubbles in water, etc., In our tests, the
fuzzy logic classification scheme is applicable and yields useable
inputs for ONNS. Furthermore, ONNS retrieves OC products in
the expected orders of magnitude. However, this cannot hide the
fact that the retrieval statistic for the comparison with in situ
data could be better (Table 3). Thus, more and all-water-type-
embracing validation is needed.

Outlook
Proper validation of ONNS products using in situ data and
OLCI match-ups will be a future task. Every OWT class must be
validated (and possibly readjusted) independently, knowing that
it is the balance between the water constituents (phytoplankton,
minerals, and CDOM), represented in the training data, that
decides on the quality of the OC products (D’Alimonte et al.,
2016). Furthermore, higher validation uncertainties must be
expected in extreme Case-2 waters and heterogeneous waters in
coastal areas or during algae blooms (e.g., Kutser, 2004; Pahlevan
et al., 2016). These in situ validation uncertainties must be
incorporated into the delivered uncertainty products. The aim of
this paper is to provide the scientific background description of
the processor together with a baseline validation of the present
ONNS version (v0.4). Once the processor has been validated, it
is planned to make it freely accessible via ESA’s Sentinel toolbox
SNAP. After that, the algorithm will be compared with other
bio-geo-optical algorithms.

In principle, ONNS can provide results in near-real time. The
computational time depends on the (in our case high) number of
neurons of the NNs and a swarm of 4 × 13 NNs obviously takes
more time. However, single NNs are fast and the processing can
occur in parallel. Thus, OC products can be disseminated in near
real time mode, which usually comprises the time up to one day
after satellite acquisition.

CONCLUSIONS

This study presents a novel in-water algorithm for the retrieval
of ocean color remote sensing products from atmospheric
corrected OLCI-like satellite imagery or in situ radiometric
measurements. The algorithm consists of several specialized

neural networks with task-optimized architectures (OLCI Neural
Network Swarm). The products contain concentrations of water
constituents (Chl and ISM), inherent and apparent optical
properties [acdom(440), ap(440), am(440), adg(412), bp(440),
bm(440), bbp(510), Kd(490), and Ku(490)], and a sea color index
(FU). In addition, all products are delivered with an uncertainty
estimate that describes the deviation of the product from the
original data basis. The algorithm makes use of a comprehensive
fuzzy logic classification scheme. Thirteen optical water type
classes have been identified based on Hydrolight simulated and
brightness-scaled remote sensing reflectances at 11 OLCI bands
(400, 412.5, 442.5, 490, 510, 560, 620, 665, 755, 777.5, and
865 nm). The corresponding water types range from clearest
sea waters to extreme Case-2 waters (Table 1). This includes
chlorophyll concentrations up to 200mg m−3, non-algae particle
concentrations up to 1,500 g m−3, and an absorption coefficient
of colored dissolved organic matter up to 20m−1 at 440 nm.
A baseline validation of ONNS products for the various water
types is provided, showing principle strengths and weaknesses of
the algorithm. With simulated test data the algorithm performs
generally well within the wide range of optical properties
of the water. Additional tests have been conducted using
simulated data from the independent CCRR database and a
few in situ data; both datasets contain mostly turbid Case-2
waters, which are classified in few optical water type classes. As
might be expected, these comparisons revealed somewhat worse
correlation but are overall encouraging, for example regarding
ISM and CDOM retrieval. An appropriate full validation
for all OWT classes and all provided ocean color products
is still to be done. Conclusions on the performance using
OLCI Earth observation data can be drawn after throughout
validation against field measurements or other bio-geo-optical
algorithms. The shown example demonstrates that ONNS-
estimated ocean color products are mostly within the range of
observed concentrations (e.g., Kowalczuk, 1999; Berthon and
Zibordi, 2010; Pitarch et al., 2016; Ylöstalo et al., 2016). From
our present point of view, we conclude that the new ONNS in-
water algorithm is suited for the remote sensing estimation of
water properties and constituents of most natural waters.
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APPENDIX

TABLE A1 | Numbers of neurons from selected neural network architectures (input, hidden, and output layers) for all 13 optical water type classes.

NN input 11 (Rrs at 400, 412.5, 442.5,

490, 510, 560, 620, 665, 755,

777.5, and 865 nm)

11 (Rrs at 400, 412.5, 442.5,

490, 510, 560, 620, 665, 755,

777.5, and 865 nm)

11 (Rrs at 400, 412.5, 442.5,

490, 510, 560, 620, 665, 755,

777.5, and 865 nm)

12 [NN outputs: Chl, acdom(440), ISM,

ap(440), am(440), bp(440), bm(440), FU,

Kd (490), Ku(490), adg(412), bbp(510)]

OWT 1 23 × 76 × 55 × 36 23 × 76 × 55 × 36 97 × 77 × 37 37 × 77 × 97

OWT 2 23 × 76 × 55 × 36 23 × 41 × 59 × 43 23 × 76 × 55 × 36 37 × 77 × 97

OWT 3 17 × 97 × 47 17 × 97 × 47 23 × 76 × 55 × 36 37 × 77 × 97

OWT 4 97 × 77 × 37 23 × 41 × 59 × 43 23 × 76 × 55 × 36 37 × 77 × 97

OWT 5 23 × 41 × 59 × 43 37 × 77 × 97 97 × 77 × 37 97 × 77 × 37

OWT 6 23 × 41 × 59 × 43 23 × 76 × 55 × 36 23 × 76 × 55 × 36 37 × 77 × 97

OWT 7 17 × 97 × 47 17 × 97 × 47 23 × 41 × 59 × 43 97 × 77 × 37

OWT 8 17 × 97 × 47 23 × 41 × 59 × 43 23 × 76 × 55 × 36 23 × 41 × 59 × 43

OWT 9 23 × 41 × 59 × 43 23 × 76 × 55 × 36 97 × 77 × 37 97 × 77 × 37

OWT 10 23 × 41 × 59 × 43 23 × 76 × 55 × 36 23 × 76 × 55 × 36 37 × 77 × 97

OWT 11 23 × 47 × 22 × 7 97 × 77 × 37 97 × 77 × 37 37 × 77 × 97

OWT 12 97 × 77 × 37 97 × 77 × 37 23 × 76 × 55 × 36 37 × 77 × 97

OWT 13 23 × 76 × 55 × 36 23 × 41 × 59 × 43 23 × 41 × 59 × 43 37 × 77 × 97

NN output 3 (Chl, acdom(440), ISM) 5 [acdom(440), ap(440),

am(440), bp(440), bm(440)]

5 [FU, Kd (490), Ku(490),

adg(412), bbp(510)]

12 [Training inputs: Chl, acdom(440),

ISM, ap(440), am(440), bp(440),

bm(440), FU, Kd (490), Ku(490),

adg(412), bbp(510)]

Three sets of NNs deliver selected concentrations, IOPs, AOPs, and the Forel-Ule color code. A fourth set of NNs (right column) estimates the uncertainties of the NN outputs. Inputs

and outputs for the NNs are log10(X + 0.001), where X stands for Rrs or an ocean color product (this applies not for FU).

TABLE A2 | Correlation coefficients of additional ONNS retrievals vs.

simulated validation data subdivided by water type.

OC product C1 C2A C2S C2AX C2SX

ap(440) 0.8548 0.9977 0.9990 0.9937 0.9370

am(440) 0.9228 0.9872 0.9975 0.9817 0.9818

bp(440) 0.9105 0.8974 0.8528 0.8030 0.7878

bm(440) 0.8412 0.9062 0.9838 0.8901 0.8274

FU 0.9854 0.9805 0.9802 0.9581 0.7230

Kd (490) 0.8488 0.9993 0.9989 0.9945 0.9991

Ku(490) 0.8464 0.9992 0.9989 0.9881 0.9992

adg(412) 0.9867 0.9943 0.9990 0.9936 0.9984

bbp(510) 0.9877 0.9981 0.9990 0.9960 0.9984

Statistics are based on NC1 = 5392, NC2A = 4699, NC2S = 4049, NC2AX = 4526, and

NC2SX = 4082.
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